-
公开(公告)号:CN117611810A
公开(公告)日:2024-02-27
申请号:CN202311457394.9
申请日:2023-11-03
Applicant: 桂林电子科技大学
Abstract: 本发明涉及图像分割技术领域,具体涉及一种基于Segformer的轻量化道路图像分割方法,针对Segformer模型存在的问题,基于交叉特征融合网络进行改进,在第一层中引入语义特征融合模块(semantic‑feature fusion,SFF),在第二层中采用坐标注意力模块(coordinate attention,CA),第三层中采用门控注意力机制模块(gated‑attention mechanism,GAM),第四层中使用利用SENet模块重新校准特征映射,最后输送到语义分割解码器预测图像中各个像素的语义类别,本发明在不同情况下的语义特征融合分别采用了SFF和GAM模块,使分割效果更连续,更细化,同时采用了两种注意力模块CA和SENet,帮助模型精准地定位和识别感兴趣的目标,以少量的参数量和计算量保证高效且精准的图像分割,提高了自动驾驶时的实时性。
-
公开(公告)号:CN116883341A
公开(公告)日:2023-10-13
申请号:CN202310802870.X
申请日:2023-07-03
Applicant: 桂林电子科技大学
Abstract: 本发明涉及数字医疗技术领域,具体涉及一种基于深度学习的肝脏肿瘤CT图像自动分割方法,包括如下步骤:提取待分割CT图像;利用多尺度特征识别网络,提取所述待分割CT图像的多尺度特征;利用注意力机制网络,通过所述多尺度特征识别所述待分割CT图像中的病变区域;根据识别结果,在所述待分割CT图像中分割出肝脏肿瘤图像。本发明首先基于深度学习技术,解决了传统方法存在的手动标注、分割精度和效率低下等问题,同时相较于现有技术,本发明具有更高的自动化程度、更精准的分割结果和更高的分割效率。
-