-
公开(公告)号:CN114997386B
公开(公告)日:2024-03-22
申请号:CN202210749104.7
申请日:2022-06-29
Applicant: 桂林电子科技大学
IPC: G06N3/065 , G06N3/0464 , G06F30/327 , G06F30/331
Abstract: 本发明公开一种基于多FPGA异构架构的CNN神经网络加速设计方法,包括以下步骤:根据模块的功能判断,在RTL级使用Verilog HDL设计能实现完整的计算功能的模块,其余的模块使用Vivado的HLS工具进行开发;对卷积神经网络进行量化;CPU依据任务分配法分配计算任务给FPGA板;FPGA板和外部存储器进行初始化配置;CPU获取加载信息并将加载信息通过数据收发单元加载至各个FPGA开发板;两个卷积计算单元通过流水交替方式进行计算;直到当前卷积神经网络计算完成,输出结果。本发明采取HLS与HDL相结合的方式,对神经网络的不同模块分别使用HLS和HDL开发,缩短了开发时长,降低研究成本。
-
公开(公告)号:CN114997386A
公开(公告)日:2022-09-02
申请号:CN202210749104.7
申请日:2022-06-29
Applicant: 桂林电子科技大学
IPC: G06N3/063 , G06N3/04 , G06F30/327 , G06F30/331
Abstract: 本发明公开一种基于多FPGA异构架构的CNN神经网络加速设计方法,包括以下步骤:根据模块的功能判断,在RTL级使用Verilog HDL设计能实现完整的计算功能的模块,其余的模块使用Vivado的HLS工具进行开发;对卷积神经网络进行量化;CPU依据任务分配法分配计算任务给FPGA板;FPGA板和外部存储器进行初始化配置;CPU获取加载信息并将加载信息通过数据收发单元加载至各个FPGA开发板;两个卷积计算单元通过流水交替方式进行计算;直到当前卷积神经网络计算完成,输出结果。本发明采取HLS与HDL相结合的方式,对神经网络的不同模块分别使用HLS和HDL开发,缩短了开发时长,降低研究成本。
-