基于混合神经网络模型优化的物联网入侵检测系统及方法

    公开(公告)号:CN115412332B

    公开(公告)日:2024-06-07

    申请号:CN202211026383.0

    申请日:2022-08-25

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于混合神经网络模型优化的物联网入侵检测系统及方法。从物联网系统历史数据库中采集生成过程的历史监控数据,经过数据解析和归一化后作为物联网入侵检测离线优化模块的输入数据集,设计基于离散粒子群优化技术的混合神经网络模型优化平台,获得物联网入侵检测特征库和混合神经网络最优模型,针对物联网系统实时数据库中的实时监控数据,从而实现物联网入侵检测的在线检测。本发明不仅可实现用于物联网入侵检测系统的混合神经网络模型的自动生成和优化设计,提高了物联网入侵检测系统的智能化设计水平和设计效率,还提升了物联网系统入侵检测的精准率、召回率和F1评分等性能指标。

    基于卷积神经网络架构优化的工控入侵检测系统及方法

    公开(公告)号:CN113591078B

    公开(公告)日:2024-06-07

    申请号:CN202110886083.9

    申请日:2021-08-03

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于卷积神经网络架构优化的工控入侵检测系统及方法。从工控系统历史数据库中采集生成过程的历史监控数据,经过数据解析和归一化后作为工控入侵检测离线训练模块的输入数据集,设计基于离散群体演化方法的卷积神经网络架构优化平台,获得工控入侵检测特征库和最优架构的卷积神经网络模型,针对工控系统实时数据库中的实时监控数据,从而实现工控入侵检测的在线检测。本发明不仅可实现用于工控入侵检测系统的卷积神经网络架构的自动生成和优化设计,提高了工控入侵检测系统的智能化设计水平和设计效率,还提升了工控系统入侵检测的精准率、召回率和F1评分等性能指标。

    SAR图像DNN分类器的后门攻击设计及评估系统与方法

    公开(公告)号:CN116524291A

    公开(公告)日:2023-08-01

    申请号:CN202310283389.4

    申请日:2023-03-22

    Applicant: 暨南大学

    Abstract: 本发明公开了一种SAR图像DNN分类器的后门攻击设计及评估系统与方法,获取来自SAR历史数据库的图像数据集,对其进行数据解析和归一化,得到干净数据集,并对DNN模型进行训练,得到干净模型;基于后门攻击触发器的多目标离线优化设计模块获取最优后门触发器,将其注入到待中毒干净数据集生成后门攻击数据集,并对干净模型进行训练,得到嵌入后门的中毒模型,并评估测试精度、后门隐蔽性和攻击成功率。本发明首次实现了针对SAR图像DNN分类器的后门嵌入触发器的多目标自动优化,在保持后门触发器具有较高隐蔽性的同时,仅使用少量后门样本便能达到极高的攻击成功率,且对遭遇后门攻击后的安全风险和性能进行了量化评估。

    基于后门特征提取优化的SAR图像抗后门分类方法与系统

    公开(公告)号:CN118587553A

    公开(公告)日:2024-09-03

    申请号:CN202410623748.0

    申请日:2024-05-20

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于后门特征提取优化的SAR图像抗后门分类方法与系统,该方法包括:构建基于网络块的后门特征提取子网络和分类子网络,对由上述两个子网络组成的SAR图像抗后门分类模型的神经网络架构参数、后门特征选择参数及剪枝位置参数进行粒子位置和速度编码,将SAR图像抗后门分类模型的参数量、后门攻击成功率和对正常样本的分类精度作为优化目标,设计基于三目标粒子群优化方法的离线优化平台,获得兼顾轻量化、高精度和强后门鲁棒性的SAR图像分类在线部署模型。本发明实现了SAR图像抗后门分类模型的自动优化设计,构建的后门特征提取子网络拓展了后门特征的处理方式,提升了模型轻量化、分类精度和后门鲁棒性。

    基于CNN架构与参数并行优化的电网入侵检测系统及方法

    公开(公告)号:CN115396198B

    公开(公告)日:2024-05-31

    申请号:CN202211025573.0

    申请日:2022-08-25

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于CNN架构与参数并行优化的电网入侵检测系统及方法,从智能电网的量测数据管理系统中采集电网运行状态的历史监控数据,解析数据获取各传感器的读数信息并进行基于标准分数的标准化处理,作为智能电网入侵检测离线优化训练模块的输入数据集,将CNN模型拓扑架构、卷积模块参数和训练参数进行编码,设计基于遗传算法的CNN模型架构与参数并行优化平台,获得最优CNN模型的架构与参数信息。针对智能电网的量测数据管理系统采集到的电网实时监控数据,在线部署最优CNN模型,从而实现智能电网入侵检测的在线检测。本发明不仅提升了智能电网入侵检测系统的智能化设计水平和设计效率,还提升了智能电网入侵检测的准确率和F1评分等性能指标。

    一种基于神经架构演化的工业互联网对抗攻击系统及方法

    公开(公告)号:CN117395028A

    公开(公告)日:2024-01-12

    申请号:CN202311208090.9

    申请日:2023-09-18

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于神经架构演化的工业互联网对抗攻击系统及方法,在拥有基于深度学习模型(即目标模型)的工业互联网入侵检测系统中训练数据或数据分布的情形下,采用这些数据训练替换模型,设计雅可比显著图攻击方法对工业互联网数据中攻击样本的特定特征添加扰动,从而生成能最大限度逃避替换模型检测的对抗样本;其中替换模型最多由4种神经网络基础模块组合构成,将组合方式进行编码,将目标模型分别对攻击样本和替换模型生成对抗样本的分类准确率的差值作为个体适应度,经过种群演化操作,获得分类准确率下降值最大的最优替换模型。本发明设计了神经架构演化技术,实现了替换模型的自动优化,提升了替换模型所生成对抗样本的攻击能力。

    用于SAR图像DNN分类模型后门防御的数据增强系统及方法

    公开(公告)号:CN117036847A

    公开(公告)日:2023-11-10

    申请号:CN202310823750.8

    申请日:2023-07-06

    Applicant: 暨南大学

    Abstract: 本发明公开了一种用于SAR图像DNN分类模型后门防御的数据增强系统及方法,本发明利用多种后门攻击技术产生SAR图像后门数据集,将数据增强组合策略进行变长编码,采用离线自动优化技术,获取兼顾高防御性能和低模型性能损失的最优数据增强组合后门防御策略,将其输入到在线后门防御性能评估模块,并评估经最优数据增强组合策略后的后门防御模型的测试精度和攻击成功率。本发明首次实现了基于数据增强自动组合优化的SAR图像DNN分类模型鲁棒后门防御,在仅损失较低模型性能的同时,通过扰乱后门模型中的触发器样式和消除后门模型对触发器的特征记忆,有效地抵御了多种后门攻击,从而提升了模型的安全性。

    基于AE模型优化的对抗训练式无监督入侵检测系统及方法

    公开(公告)号:CN116318773A

    公开(公告)日:2023-06-23

    申请号:CN202211504988.6

    申请日:2022-11-28

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于自编码器模型优化的工业互联网对抗训练式无监督入侵检测系统及方法。本发明使用数据解压模块采集工业互联网系统的通讯时序流量,经过谱残差技术的数据清洗、数据归一化和数据样本化等获得输入数据集,将AE网络模型的架构和参数进行二进制编码,设计基于二进制遗传优化技术的AE网络模型离线优化平台,并利用对抗训练对个体适应度进行评估,经迭代优化后自动获得工业互联网入侵检测系统的AE网络最优模型。本发明不仅可实现用于工业互联网无监督入侵检测系统的AE模型的对抗式训练和自动优化设计,提高了工业互联网入侵检测系统的模型训练稳定性和智能化设计水平,还提升了工业互联网系统入侵检测的召回率和F1评分等性能指标。

    融合特征损失和三目标优化的鲁棒SAR图像识别系统与方法

    公开(公告)号:CN116109926A

    公开(公告)日:2023-05-12

    申请号:CN202310041805.X

    申请日:2023-01-12

    Applicant: 暨南大学

    Abstract: 本发明公开了一种融合特征损失和三目标优化的鲁棒合成孔径雷达图像识别系统与方法。构建基于神经网络模型多个隐含层的多特征加权损失函数,对SAR图像识别模型的神经网络架构参数、多特征加权损失函数的权重参数和训练学习率进行个体编码,将SAR图像识别模型的参数数量、对正常样本的识别精度和对对抗样本的识别精度作为优化目标,设计基于三目标优化方法的离线优化平台,获得了用于在线部署的具有轻量化、高精度和强对抗鲁棒性的SAR图像识别模型。本发明技术不仅实现了兼顾多性能指标的SAR图像识别模型自动生成,构建的多特征加权损失函数扩展了SAR图像识别模型的特征组合方式,还提升了模型轻量化、识别精度和对抗鲁棒性等综合性能。

    基于最优特征归因选择的SAR图像对抗样本检测系统与方法

    公开(公告)号:CN115861804A

    公开(公告)日:2023-03-28

    申请号:CN202211504977.8

    申请日:2022-11-28

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于多目标最优特征归因选择的合成孔径雷达图像对抗样本检测系统与方法。从SAR系统监控数据库中采集历史SAR图像,经过数据规范化与归一化后作为输入数据集,将基于滑动扫描的特征分析过程产生的子样本数量和逻辑回归模型的受试者工作特征曲线下面积作为优化目标,设计基于多目标优化方法的特征扫描块参数优化平台,获得最优的特征归因扫描块和最优回归模型。使用该最优回归模型对SAR系统实时数据库中的实时SAR图像数据进行对抗样本在线检测。本发明技术能根据不同的场景自动获得最佳的特征分析粒度,高效实现了SAR图像识别领域中的多种对抗样本检测,并提升了SAR图像对抗检测的计算效率和AUC性能指标。

Patent Agency Ranking