一种多尺度集成的温度组分相图建模方法及装置

    公开(公告)号:CN116612842A

    公开(公告)日:2023-08-18

    申请号:CN202310698694.X

    申请日:2023-06-13

    Abstract: 本发明涉及材料基因工程和集成计算材料工程领域,具体公开了一种多尺度集成的温度组分相图建模方法,以第一性原理为基础计算材料各物相在有限温度下的热力学数据,将计算的热力学数据作为CALPHAD热力学公式的输入数据,构建CALPHAD热力学模型。本发明还公开了一种多尺度集成的温度组分相图建模装置。本发明以第一性原理热力学数据为相图建模的数据来源,解决实验热力学数据匮乏的问题。采用贝叶斯采样、马尔可夫链蒙特卡罗方法实现多参数的自动优化,提出了开发自主可控相图建模软件的核心算法,加快实现相图建模软件的国产替代,可在低成本、短研发周期的前提下实现规模化、流程化、自动化地构建可靠度高的热力学数据库,辅助新材料成分设计、优化工艺参数、添加元素对相稳定性的影响等。

    一种固溶合金物态方程的快速计算方法

    公开(公告)号:CN116431957B

    公开(公告)日:2023-11-07

    申请号:CN202310304954.0

    申请日:2023-03-27

    Abstract: 本发明提供了一种固溶合金物态方程的快速计算方法,涉及固溶合金技术领域,所述固溶合金物态方程的快速计算方法,包括:基于平均场势法计算离子经典振动对自由能的贡献#imgabs0#基于所述离子热振动中量子效应的影响,计算量子修正项#imgabs1#计算所述离子经典振动对自由能的贡献#imgabs2#与所述量子修正项#imgabs3#之和,得到所述离子热振动对自由能的贡献Fvib(V,T)。本发明能够避免计算固溶合金的3n阶动力学矩阵,可以使计算开销降低约两个量级,修正了热膨胀系数及比热等热物性的低温非物理行为,避免了固溶合金声子所需的较大计算开销。

    金属液相物态方程的快速计算方法及电子设备

    公开(公告)号:CN118113969B

    公开(公告)日:2024-10-18

    申请号:CN202311834302.4

    申请日:2023-12-28

    Abstract: 本发明提供了金属液相物态方程的快速计算方法及电子设备;其中,该方法包括:基于金属的固体结构和固相Helmholtz自由能建立熔化方程,所建立的熔化方程考虑金属固体结构的不同以及不同的Grüneisen系数理论模型对高压熔化线的影响,提高了熔化线预估的置信度;此外,对目标方程进行自洽场迭代求解,得到作为待定量的液相冷能函数;在自洽场迭代求解中,采用多步混合方案实现液相冷能函数的修正,相比于现有技术中采用单步方案,加速了自洽场迭代收敛;以及,采用特定的冷能物态方程模型对该修正进行拟合得到新的液相冷能函数,避免了液相冷能函数在自洽场迭代中出现非物理行为,从而提高了金属液相物态方程的计算精度和效率。

    一种基于多元函数模型的物态方程分段衔接方法

    公开(公告)号:CN116343959A

    公开(公告)日:2023-06-27

    申请号:CN202310207407.0

    申请日:2023-03-03

    Abstract: 本发明提出一种基于多元函数模型的物态方程分段衔接方法,包括针对物态方程的方程分项A,将物态方程所描述的状态区域划分低温段、高温段以及两者之间的衔接区域;衔接区域与低温段之间具有以温度T1为等温线的第一边界,衔接区域与高温段之间具有以温度T2为等温线的第二边界;在低温段和高温段中,分别以不同的低温段模型和高温段模型表征方程分项A;在衔接区域中,通过衔接函数表征方程分项A,衔接函数是温度T、密度ρ的二元函数,满足在第一、第二边界处的衔接条件。本发明可使衔接区域的物态方程数据满足二维解析性,更进一步可满足热力学自洽性关系,实现不留衔接痕迹的分段衔接。

    金属液相物态方程的快速计算方法及电子设备

    公开(公告)号:CN118113969A

    公开(公告)日:2024-05-31

    申请号:CN202311834302.4

    申请日:2023-12-28

    Abstract: 本发明提供了金属液相物态方程的快速计算方法及电子设备;其中,该方法包括:基于金属的固体结构和固相Helmholtz自由能建立熔化方程,所建立的熔化方程考虑金属固体结构的不同以及不同的Grüneisen系数理论模型对高压熔化线的影响,提高了熔化线预估的置信度;此外,对目标方程进行自洽场迭代求解,得到作为待定量的液相冷能函数;在自洽场迭代求解中,采用多步混合方案实现液相冷能函数的修正,相比于现有技术中采用单步方案,加速了自洽场迭代收敛;以及,采用特定的冷能物态方程模型对该修正进行拟合得到新的液相冷能函数,避免了液相冷能函数在自洽场迭代中出现非物理行为,从而提高了金属液相物态方程的计算精度和效率。

Patent Agency Ranking