-
公开(公告)号:CN119299583A
公开(公告)日:2025-01-10
申请号:CN202411832943.0
申请日:2024-12-13
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
Abstract: 本公开提供了基于压缩感知的多位置重叠图像隐私保护方法及系统,涉及压缩感知与图像隐私保护技术领域,包括:获取原始图像,划分原始图像不同部位的隐私部分和非隐私部分;对重合的隐私部分生成重合隐私掩码,不重合的隐私部分生成隐私掩码,对全部隐私部分进行混淆,利用混淆后的隐私部分与原始非隐私部分进行图像重建;对所述重建图像进行压缩感知的采样加密,生成压缩感知密文,根据混淆矩阵针对不同隐私部分生成对应的水印矩阵和水印嵌入矩阵,将水印嵌入矩阵与水印矩阵嵌入到压缩感知密文,实现压缩感知密文的加密;利用不同级别密钥的用户对加密后的压缩感知密文进行不同部分图像的解码重建,实现多位置重叠图像的隐私保护。
-
公开(公告)号:CN118410498B
公开(公告)日:2024-10-01
申请号:CN202410881154.X
申请日:2024-07-03
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06N3/042 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了一种细粒度混合语义漏洞检测方法及系统,属于网络安全技术领域。包括将序列代码表示输入预训练语言模型进行处理,获取全局语义特征向量和注意力分数嵌入矩阵;将序列代码表示输入预设的多尺度融合卷积神经网络进行处理,获取局部特征向量;将图代码表示输入具有残差结构的图卷积神经网络进行处理,获取图嵌入向量;将全局语义特征向量、局部特征向量和图嵌入向量融合后输入训练好的漏洞检测模型进行处理,获取漏洞检测结果;根据漏洞检测结果和注意力分数嵌入矩阵对序列代码表示进行细粒度检测,获取漏洞定位结果。能够提高模型特征提取能力,提高漏洞检测的准确性;解决现有技术漏洞检测粒度过粗的问题。
-
公开(公告)号:CN116996392A
公开(公告)日:2023-11-03
申请号:CN202311254711.7
申请日:2023-09-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L41/12 , H04L41/142 , H04L41/0677 , H04L43/0876 , H04L43/50
Abstract: 本发明公开了一种基于加权有向图算法的流量路径重构方法及系统,涉及计算机网络技术领域。该方法包括步骤:采集待发送的流量数据,并对流量数据进行格式转化;根据流量数据的报文头格式,对流量数据进行提取;根据每一条报文的采样数据据创建子路径,并对子路径进行去重和排序;确定目标流路径,将其余子路径并行生成并进行对比,生成旁路路径;创建单向加权有向图,对目标流路径和旁路路径分别赋值;根据每条路径的路径终点进行权值更新,根据更新后的路径权值重新构造加权有向图;将重新构造的加权有向图中权重最大的路径作为重构路径。本发明能够实现更精确、全面的流量路径重构,以助于网络监控、故障定位和性能优化。
-
公开(公告)号:CN115953303A
公开(公告)日:2023-04-11
申请号:CN202310238326.7
申请日:2023-03-14
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/40 , G06V10/77 , G06V10/774 , G06V10/80
Abstract: 本发明属于图像处理相关技术领域,本发明提出了结合通道注意力的多尺度图像压缩感知重构方法及系统,包括:将原始图像转换为灰度图像,对灰度图像进行多尺度分块采样得到采样值,对所述采样值通过第一通道注意力模块计算输出特征的多通道融合矩阵,将所述多通道融合矩阵与采样值运算处理得到初始重建图像;将初始重建图像经过特征提取后依次经过第二通道注意力模块、多尺寸残差模型进行特征的多尺度融合,得到深度重建图像;将所述初始重建图像和深度重建图像进行结合,得到重构图像。通过图像初始重建和深度重建,在提取深度特征的同时也考虑了浅层特征对重构的影响,使得重构效果好。
-
公开(公告)号:CN116032775B
公开(公告)日:2025-01-14
申请号:CN202310025793.1
申请日:2023-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 哈尔滨工业大学(威海)
IPC: H04L41/14 , G06N20/10 , G06N3/08 , G06N3/0455 , G06N3/0442 , H04L41/142
Abstract: 本发明涉及一种面向概念漂移的工业控制网络异常检测方法,该方法以实时多维数据流作为目标数据。该方法在初始数据流上训练教师模型和单类支持向量机模型;对于每批次数据流,都基于教师模型训练一个新的学生模型;利用学生模型对当前批次数据流进行异常检测,并利用单类支持向量机模型清洗正常数据中的异常值以获得更新模型所需要的训练数据;利用旧的学生模型获得当前批次数据流和前一批次数据流的异常分数集,然后根据Hoeffding不等式计算模型的可靠性,从而计算模型的参数系数,利用参数系数更新模型以适应概念漂移。本发明可以有效解决异常检测模型在概念发生漂移时的效率衰减问题。
-
公开(公告)号:CN118869241A
公开(公告)日:2024-10-29
申请号:CN202410809122.9
申请日:2024-06-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及一种基于溯源图的入侵检测方法及系统,通过获取待监测系统的安全活动信息,转换为溯源图;随机选取溯源图中的部分节点和对应的邻居节点,确定所选取节点和每个邻居节点之间的注意力系数,利用得到的注意力系数,将邻居节点的特征加权聚合到所选取的每个节点中,通过跳跃连接将原始节点特征与聚合后的特征进行整合,得到聚合更新后的节点特征表示;基于训练完毕的检测模型,利用节点的概率关系,得到低置信度样本,利用得到的低置信度样本重新训练检测模型,迭代生成新模型,直到不产生低置信度样本为止,整合所有迭代后的模型,得到训练完毕的整体模型,并根据设定的等待时间,得到入侵检测的结果。
-
公开(公告)号:CN118433396B
公开(公告)日:2024-09-13
申请号:CN202410888157.6
申请日:2024-07-04
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04N19/192 , H04N19/176 , H04N19/136 , H04N19/44 , G06T9/00 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种多位置特征增强的压缩感知图像重构方法及系统,涉及图像处理技术领域,所述方法包括:获取原始图像;将原始图像输入图像重构模型中进行重构,获得重构图像;其中,所述图像重构模型包括依次连接的采样模块、初始化重构模块和深度重构模块;所述深度重构模块包括多个依次连接的轻型递归重构块;每个轻型递归重构块连接前一个轻型递归重构块输出的重构特征与采样模块输出的采样特征,得到连接特征,对连接特征进行若干次递归重构后,得到递归重构特征,再将递归重构特征与连接特征相连,得到该轻型递归重构块的重构特征。本发明能够在降低计算量的同时提高重构精度。
-
公开(公告)号:CN118410498A
公开(公告)日:2024-07-30
申请号:CN202410881154.X
申请日:2024-07-03
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/57 , G06N3/042 , G06N3/0455 , G06N3/0464 , G06N3/0499 , G06N3/082 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了一种细粒度混合语义漏洞检测方法及系统,属于网络安全技术领域。包括将序列代码表示输入预训练语言模型进行处理,获取全局语义特征向量和注意力分数嵌入矩阵;将序列代码表示输入预设的多尺度融合卷积神经网络进行处理,获取局部特征向量;将图代码表示输入具有残差结构的图卷积神经网络进行处理,获取图嵌入向量;将全局语义特征向量、局部特征向量和图嵌入向量融合后输入训练好的漏洞检测模型进行处理,获取漏洞检测结果;根据漏洞检测结果和注意力分数嵌入矩阵对序列代码表示进行细粒度检测,获取漏洞定位结果。能够提高模型特征提取能力,提高漏洞检测的准确性;解决现有技术漏洞检测粒度过粗的问题。
-
公开(公告)号:CN117828193A
公开(公告)日:2024-04-05
申请号:CN202410238782.6
申请日:2024-03-04
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/9535 , G06N3/098 , G06N3/0442
Abstract: 本发明属于计算机兴趣点推荐领域,提供了一种基于多兴趣半联合学习兴趣推荐方法、系统、设备及介质,包括获取用户行为数据进行预处理;基于预处理后的用户行为数据,利用预先训练好的多兴趣模型的半联合学习框架进行兴趣推荐;本发明能够有效识别多粒度的用户兴趣并感知时钟影响的连续依赖性,以不同粒度的兴趣组合来指导用户行为建模,并具体化时间点以学习连续的兴趣依赖关系;通过单模型预训练和多模型半联合训练,结合所有粒度的兴趣,为用户推荐其在未来指定的N个时间窗口内感兴趣的POI。
-
公开(公告)号:CN116452696A
公开(公告)日:2023-07-18
申请号:CN202310712409.5
申请日:2023-06-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于图像处理领域,为了解决现有技术没有充分利用图像特征信息的问题,提出了一种基于双域特征采样的图像压缩感知重构方法及系统,将原始图像基于图像域和特征域进行特征提取,并将所提取的特征进行分块采样得到采样值;将采样值进行卷积操作和第一像素混洗操作,得到初始重构图像;将初始重构图像经过深度重建子网络得到最终重构图像;深度重建子网络包括多个依次连接的更新模块和去噪模块,更新模块用于对初始重建图像和采样值基于不同特征维度的约束结合,去噪模块用于对更新模块的输出基于对不同分辨率特征分别去噪后融合输出。对原始图像双域特征提取,充分利用图像特征,提高后续图像重建质量。
-
-
-
-
-
-
-
-
-