-
公开(公告)号:CN116032775B
公开(公告)日:2025-01-14
申请号:CN202310025793.1
申请日:2023-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 哈尔滨工业大学(威海)
IPC: H04L41/14 , G06N20/10 , G06N3/08 , G06N3/0455 , G06N3/0442 , H04L41/142
Abstract: 本发明涉及一种面向概念漂移的工业控制网络异常检测方法,该方法以实时多维数据流作为目标数据。该方法在初始数据流上训练教师模型和单类支持向量机模型;对于每批次数据流,都基于教师模型训练一个新的学生模型;利用学生模型对当前批次数据流进行异常检测,并利用单类支持向量机模型清洗正常数据中的异常值以获得更新模型所需要的训练数据;利用旧的学生模型获得当前批次数据流和前一批次数据流的异常分数集,然后根据Hoeffding不等式计算模型的可靠性,从而计算模型的参数系数,利用参数系数更新模型以适应概念漂移。本发明可以有效解决异常检测模型在概念发生漂移时的效率衰减问题。
-
公开(公告)号:CN116032775A
公开(公告)日:2023-04-28
申请号:CN202310025793.1
申请日:2023-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 哈尔滨工业大学(威海)
IPC: H04L41/14 , G06N20/10 , G06N3/08 , G06N3/0455 , G06N3/0442 , H04L41/142
Abstract: 本发明涉及一种面向概念漂移的工业控制网络异常检测方法,该方法以实时多维数据流作为目标数据。该方法在初始数据流上训练教师模型和单类支持向量机模型;对于每批次数据流,都基于教师模型训练一个新的学生模型;利用学生模型对当前批次数据流进行异常检测,并利用单类支持向量机模型清洗正常数据中的异常值以获得更新模型所需要的训练数据;利用旧的学生模型获得当前批次数据流和前一批次数据流的异常分数集,然后根据Hoeffding不等式计算模型的可靠性,从而计算模型的参数系数,利用参数系数更新模型以适应概念漂移。本发明可以有效解决异常检测模型在概念发生漂移时的效率衰减问题。
-
公开(公告)号:CN114595448A
公开(公告)日:2022-06-07
申请号:CN202210247513.7
申请日:2022-03-14
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于相关性分析和三维卷积的工控异常检测方法、系统、设备及存储介质,该方法以工控系统传感器和执行器数据作为目标数据。计算相邻时间采集到的目标数据之间的相关性,以确定最长序列长度,进一步根据最长序列长度确定RGB图的大小,计算观测数据的相关性并与序列长度列表对比得到粗粒度异常序列;根据序列长度列表得到不同长度的序列作为输入,利用改进的三维卷积神经网络从时空两个维度学习数据特征,深度解析数据关键信息点,从细粒度分析异常数据。本发明从粗粒度和细粒度两阶段分析工控数据,可以有效检测工控过程中的异常数据,实现异常检测准确率的提升。
-
公开(公告)号:CN112947360B
公开(公告)日:2021-09-03
申请号:CN202110105925.2
申请日:2021-01-26
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G05B23/02
Abstract: 本发明公开了基于状态转换时延图的水分配系统异常检测方法及系统,获取水分配系统的混合数据类型状态数据集;所述混合数据类型状态数据集,包括:数据采集时间、每个水塔对应的水位、每个水塔所连接的每个水管的开关状态、和每个水管所连接的每个阀门开关状态;将混合数据类型状态数据集,转换成二元数据类型状态数据集;基于二元数据类型状态数据集,生成状态转换时延图;获取水分配系统中的实时数据;其中,实时数据,包括:储水塔的水位、水管的打开/关闭状态、阀门开关的打开/关闭状态;将所获取的实时数据,输入到状态转换时延图中,输出水分配系统的异常检测结果。
-
公开(公告)号:CN114595448B
公开(公告)日:2022-09-27
申请号:CN202210247513.7
申请日:2022-03-14
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于相关性分析和三维卷积的工控异常检测方法、系统、设备及存储介质,该方法以工控系统传感器和执行器数据作为目标数据。计算相邻时间采集到的目标数据之间的相关性,以确定最长序列长度,进一步根据最长序列长度确定RGB图的大小,计算观测数据的相关性并与序列长度列表对比得到粗粒度异常序列;根据序列长度列表得到不同长度的序列作为输入,利用改进的三维卷积神经网络从时空两个维度学习数据特征,深度解析数据关键信息点,从细粒度分析异常数据。本发明从粗粒度和细粒度两阶段分析工控数据,可以有效检测工控过程中的异常数据,实现异常检测准确率的提升。
-
公开(公告)号:CN112947360A
公开(公告)日:2021-06-11
申请号:CN202110105925.2
申请日:2021-01-26
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G05B23/02
Abstract: 本发明公开了基于状态转换时延图的水分配系统异常检测方法及系统,获取水分配系统的混合数据类型状态数据集;所述混合数据类型状态数据集,包括:数据采集时间、每个水塔对应的水位、每个水塔所连接的每个水管的开关状态、和每个水管所连接的每个阀门开关状态;将混合数据类型状态数据集,转换成二元数据类型状态数据集;基于二元数据类型状态数据集,生成状态转换时延图;获取水分配系统中的实时数据;其中,实时数据,包括:储水塔的水位、水管的打开/关闭状态、阀门开关的打开/关闭状态;将所获取的实时数据,输入到状态转换时延图中,输出水分配系统的异常检测结果。
-
-
-
-
-