-
公开(公告)号:CN118347984A
公开(公告)日:2024-07-16
申请号:CN202410457986.9
申请日:2024-04-17
Applicant: 安徽大学
Abstract: 本发明提供一种基于SERS和戊唑醇对镰孢菌孢子的检测方法,包括如下步骤:合成银纳米颗粒溶液;配置戊唑醇溶液;将待测溶液和戊唑醇溶液按1:(1~10)的体积比混合,以获得溶液a;将溶液a与银纳米颗粒溶液按1:(1~4)的体积比混合并震荡,以获得溶液b;利用拉曼光谱仪采集溶液b的拉曼光谱,得到第一光谱数据;根据第一光谱数据以及预设光谱数据求得待测溶液中镰孢菌孢子的类别和浓度。戊唑醇能够抑制真菌的麦角甾醇合成,从而改变细胞膜的通透性和吸附性,促进孢子内部物质释放以及纳米颗粒和细胞间的热点区域构筑,以提高不同孢子的特异性物质和纳米颗粒的结合概率,大大提高镰孢菌孢子的检测效果和灵敏度。
-
公开(公告)号:CN117286014A
公开(公告)日:2023-12-26
申请号:CN202311254140.7
申请日:2023-09-26
Applicant: 安徽大学
Abstract: 本发明涉及农业病菌孢子检测技术领域,具体是涉及一种能够捕捉气传真菌病害孢子的自动化装置,包括壳体、竖直设置于壳体内的孢子捕捉装置,孢子捕捉装置靠近壳体顶部设置;所述孢子捕捉装置还设有顶部捕捉仓和侧壁捕捉仓,顶部捕捉仓呈竖直状态设置于孢子捕捉装置顶部且穿过壳体置于防尘罩内;侧壁捕捉仓呈竖直状态固定设置于壳体边角处且一一对应壳体边角设置有多组;孢子检测装置呈竖直状态固定设置于壳体内且靠近壳体底部设置;所述壳体的外壁还折叠设置有用以为设置供电的太阳能供电模块;本发明不仅可以实现自动对孢子进行捕捉而且可以自动对其进行检测,可以实时对孢子进行检测,精确地预测孢子的传播以及病害情况。
-
公开(公告)号:CN115494066A
公开(公告)日:2022-12-20
申请号:CN202211129757.1
申请日:2022-09-16
Applicant: 安徽大学
IPC: G01N21/88 , G06V20/68 , G06V10/40 , G06V10/80 , G06V10/764
Abstract: 本发明特别涉及一种融合结构光的果品表面损伤检测方法,包括如下步骤:利用投影仪向参考平面和被测水果表面投射正弦条纹图,并用摄像机采集调制后的形变条纹图;利用结构光四步相移法计算得到水果表面三维结构;提取水果表面三维结构的二值特征;采用基于贝叶斯理论的特征融合算法将均匀光照图像的特征与二值特征进行融合;采用支持向量机的方法对融合后的特征进行分类得到水果表面损伤情况。整个检测过程都是自动的,降低了人力成本,增加了检测的效率;采用无损检测技术,避免了由检测造成的损伤;整个装置只需要用到投影仪、摄像机以及计算机,实现低成本的工业要求;采用结构光和均匀光照融合的方法,提高了损伤检测的准确度。
-
公开(公告)号:CN115494066B
公开(公告)日:2025-04-29
申请号:CN202211129757.1
申请日:2022-09-16
Applicant: 安徽大学
IPC: G01N21/88 , G06V20/68 , G06V10/40 , G06V10/80 , G06V10/764
Abstract: 本发明特别涉及一种融合结构光的果品表面损伤检测方法,包括如下步骤:利用投影仪向参考平面和被测水果表面投射正弦条纹图,并用摄像机采集调制后的形变条纹图;利用结构光四步相移法计算得到水果表面三维结构;提取水果表面三维结构的二值特征;采用基于贝叶斯理论的特征融合算法将均匀光照图像的特征与二值特征进行融合;采用支持向量机的方法对融合后的特征进行分类得到水果表面损伤情况。整个检测过程都是自动的,降低了人力成本,增加了检测的效率;采用无损检测技术,避免了由检测造成的损伤;整个装置只需要用到投影仪、摄像机以及计算机,实现低成本的工业要求;采用结构光和均匀光照融合的方法,提高了损伤检测的准确度。
-
公开(公告)号:CN118521476A
公开(公告)日:2024-08-20
申请号:CN202410518449.0
申请日:2024-04-28
Applicant: 安徽大学
IPC: G06T3/4053 , G06T3/4046 , G06N3/0464 , G06N3/0455 , G06N3/084 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/048
Abstract: 本发明提供一种图像超分辨率方法、电子设备及存储介质,其中图像超分辨率方法包括如下步骤:获取待处理的低分辨率图像;利用训练得到的超分网络的编码器对低分辨率图像进行处理,以提取低分辨率图像的基本特征,得到潜码;利用超分网络的多尺度隐式Transformer对潜码进行处理,以提取潜码的多尺度信息,得到注意力潜码;利用超分网络的解码器对注意力潜码进行处理,得到高分辨率图像。该方法通过构建和训练超分网络,将待处理的低分辨率图像和超分后图像的宽高输入到训练好的超分网络中,该超分网络会自动输出设定尺寸的高分辨率图像,宽高还可以分别具有不同的放大倍率,该方法实现了在任意尺度超分辨率任务下的优异表现。
-
公开(公告)号:CN117272021A
公开(公告)日:2023-12-22
申请号:CN202311211477.X
申请日:2023-09-19
Applicant: 安徽大学
IPC: G06F18/213 , G06F18/2451 , G01N25/72
Abstract: 本发明涉及一种基于水果表面不同组织热特性的水果损伤检测方法,与现有技术相比解决了难以针对水果进行损坏检测的缺陷。本发明包括以下步骤:温度数据的采集;温度数据特征值的提取;特征值的计算;分类器的训练;获取待检测水果的温度数据;水果损伤检测结果的获得。本发明通过热电堆传感器采集水果样品不同感兴趣区域的温度数据;对温度数据进行压缩和傅里叶变换分析,提取曲线峰值作为特征值;将特征值输入最小二乘法线性分类器进行分类训练,从而实现对待测水果损伤的检测。
-
公开(公告)号:CN117115660A
公开(公告)日:2023-11-24
申请号:CN202311239981.0
申请日:2023-09-25
Applicant: 安徽大学
IPC: G06V20/10 , G06V20/68 , G06V10/22 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种结合检测网络和点回归的葡萄图像采摘点位置单阶段定位方法,与现有技术相比解决了难以定位出葡萄图像中茎位置的缺陷。本发明包括以下步骤:葡萄图像的获取及预处理;葡萄采摘点定位模型的构建;葡萄采摘点定位模型的训练;待定位葡萄图像的获取;葡萄图像采摘点位置的定位。本发明使用了具有点回归的检测网络来检测葡萄茎并同时确定采摘点,获得了良好而准确的采摘点定位,其简单性、可部署性和可操作性远远优于两阶段方法,为葡萄果实采摘提供了实用可靠的技术支撑。
-
公开(公告)号:CN119339088B
公开(公告)日:2025-03-18
申请号:CN202411874111.5
申请日:2024-12-19
Applicant: 安徽大学
IPC: G06V10/26 , G06V10/764 , G06V10/774 , G06T7/90 , G06T7/529 , G06V10/82
Abstract: 本发明提供一种基于感知增强门控网络的小麦染病麦穗分割方法,包括:获取待检测小麦图像,待检测小麦图像中包括若干小麦麦穗;将待检测小麦图像输入至训练好的感知增强门控网络模型中,得到分割图像;分割图像中的健康小麦麦穗的颜色、患病小麦麦穗的颜色、背景区域的颜色相异;感知增强门控网络模型融合了双门控机制和多尺度扩张卷积块,以实现对小麦麦穗的精确分割。该方法通过两种不同的门控单元在语义特征提取分支中保留了浅层局部特征的同时又提取到了更深层次的上下文特征,获取多样的特征细节,使得语义分割模型在复杂场景下仍然可以拥有优异的性能表现,进而得到非常精确的分割图像。
-
公开(公告)号:CN117333365A
公开(公告)日:2024-01-02
申请号:CN202311270123.2
申请日:2023-09-28
Applicant: 安徽大学
IPC: G06T3/40 , G06T7/10 , G06N3/0464 , G06N3/09
Abstract: 本发明涉及一种基于混合Transformer超分辨率网络的图像超分辨率方法,包括:首先获取图像对作为训练样本,图像对由图像ILR和图像IHR组成;搭建混合Transformer超分辨率网络模型;利用训练样本对混合Transformer超分辨率网络模型进行训练,得到训练后的混合Transformer超分辨率网络模型;将待处理图像作为LR图像导入到训练后的混合Transformer超分辨率网络模型中,混合Transformer超分辨率网络模型输出的结果即为HR图像。本发明通过构建混合Transformer超分辨率网络模型,在参数和性能做出合适权衡;增强了网络的局部信息的提取能力,并且提高网络全局建模的效率,得到更加优秀的超分辨率图像,通过对图像中的全局结构信息局部纹理信息作有针对性的处理,实现了在多种超分辨率任务下的优异表现。
-
公开(公告)号:CN116597308A
公开(公告)日:2023-08-15
申请号:CN202310549038.3
申请日:2023-05-16
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/80 , G06V10/774 , G06V10/82 , G06V10/30 , G06V10/54 , G06V10/58 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及一种基于改进型Transformer网络的小麦样本图像参考超分方法,包括:获取小麦样本的LR‑HSI图、HR‑HSI图和HR‑RGB图,组成图像对;对获取的图像对进行预处理,得到训练样本,将训练样本划分为训练集和测试集;搭建改进型Transformer网络,利用训练样本训练改进型Transformer网络;将待处理的小麦样本的LR‑HSI图和HR‑RGB图导入训练好的改进型Transformer网络,输出参考超分HR‑HSI图像。本发明通过双分支特征提取模块对训练样本有针对性的处理,通过多水平特征融合模块对训练样本多样特征细节的补充,使得改进型Transformer网络在小麦样本图像参考超分中拥有更加锐利的边缘与更精细的细节。
-
-
-
-
-
-
-
-
-