基于事件隐式要素与显式联系的事件预测方法和装置

    公开(公告)号:CN113761337B

    公开(公告)日:2023-10-27

    申请号:CN202011643504.7

    申请日:2020-12-31

    Abstract: 本发明提供一种基于事件隐式要素与显式联系的事件预测方法和装置,其中,方法包括:获取事件文本中的多个事件的事件要素;提取跨事件的事件要素之间的第一关系特征,所述第一关系特征用于表征跨事件的事件要素之间的语义联系特征;基于所述第一关系特征进行事件预测。在对事件进行预测时,加入跨事件的事件要素之间的第一关系特征,可以记录跨事件的事件要素之间的隐式联系,并且通过不同事件中的事件要素语义联系特征让不同的事件之间产生了联系,挖掘出了事件元组更深层次且更具有预测性的语义信息,不仅可以提升了事件预测的准确性,而且广泛适用于基于事件要素进行事件预测的方法中,通用性强。

    一种基于时空轨迹的用户识别方法及装置

    公开(公告)号:CN110515981A

    公开(公告)日:2019-11-29

    申请号:CN201810489734.9

    申请日:2018-05-21

    Abstract: 本发明涉及一种基于时空轨迹的用户识别方法及装置,包括:获取待识别用户的兴趣区域;构建待识别用户和数据库中用户的时空关系网络;利用node2vec算法计算所述待识别用户的特征向量和数据库中用户的特征向量;计算待识别用户特征向量与数据库中用户特征向量的相似度;通过所述相似度的排序,识别数据库中与待识别用户最相似的用户。本发明提供的技术方案综合考虑用户自身行为与用户间关系特征,兼顾对用户行为的稳定性和差异性的特征描述。其中,用户兴趣区域的获取更多的考虑行为稳定性,网络边权的设计更多的考虑差异性,采用多视角自主表示学习有助于获得更加鲁棒性的用户向量表示。

    一种基于时空轨迹的用户识别方法及装置

    公开(公告)号:CN110515981B

    公开(公告)日:2022-04-12

    申请号:CN201810489734.9

    申请日:2018-05-21

    Abstract: 本发明涉及一种基于时空轨迹的用户识别方法及装置,包括:获取待识别用户的兴趣区域;构建待识别用户和数据库中用户的时空关系网络;利用node2vec算法计算所述待识别用户的特征向量和数据库中用户的特征向量;计算待识别用户特征向量与数据库中用户特征向量的相似度;通过所述相似度的排序,识别数据库中与待识别用户最相似的用户。本发明提供的技术方案综合考虑用户自身行为与用户间关系特征,兼顾对用户行为的稳定性和差异性的特征描述。其中,用户兴趣区域的获取更多的考虑行为稳定性,网络边权的设计更多的考虑差异性,采用多视角自主表示学习有助于获得更加鲁棒性的用户向量表示。

    基于事件隐式要素与显式联系的事件预测方法和装置

    公开(公告)号:CN113761337A

    公开(公告)日:2021-12-07

    申请号:CN202011643504.7

    申请日:2020-12-31

    Abstract: 本发明提供一种基于事件隐式要素与显式联系的事件预测方法和装置,其中,方法包括:获取事件文本中的多个事件的事件要素;提取跨事件的事件要素之间的第一关系特征,所述第一关系特征用于表征跨事件的事件要素之间的语义联系特征;基于所述第一关系特征进行事件预测。在对事件进行预测时,加入跨事件的事件要素之间的第一关系特征,可以记录跨事件的事件要素之间的隐式联系,并且通过不同事件中的事件要素语义联系特征让不同的事件之间产生了联系,挖掘出了事件元组更深层次且更具有预测性的语义信息,不仅可以提升了事件预测的准确性,而且广泛适用于基于事件要素进行事件预测的方法中,通用性强。

Patent Agency Ranking