一种基于深度卷积网络的舰船噪声识别分类方法

    公开(公告)号:CN107609488B

    公开(公告)日:2020-11-03

    申请号:CN201710717199.3

    申请日:2017-08-21

    Abstract: 本发明公开了一种基于深度卷积网络的舰船噪声识别分类方法,属于水下舰船噪声识别的领域。本发明主要是针对BP神经网络处理的文件数量少,提取特征不明显以及易陷入局部最优解的问题提出的解决方案。该发明首先根据MFCC将原始声音中的噪声去掉,提取出相应有效的特征,这个过程主要是去除干扰性大的噪声。将经过MFCC处理的声音文件转换成深度卷积网络可以接收的格式。通过深度卷积神经网络多层次的提取有效的特征,这样提取的特征的有效性更强,更具有普适性。针对现实中的大量声音数据进行识别分类,减少了人为的干预度,可以更好的区分出不同的舰船噪声,从而达到识别的目的。

    一种基于贝叶斯理论的小子样可靠性评定方法

    公开(公告)号:CN107908807A

    公开(公告)日:2018-04-13

    申请号:CN201710599154.0

    申请日:2017-07-21

    Abstract: 本发明涉及一种基于贝叶斯理论的小子样可靠性评定方法,包括以下步骤:(1)系统初始化,输入验前信息;(2)对验前信息进行分类;(3)对相似系统信息的现有折算方法进行了分析,采用D-S证据理论和基于F-HS算法并进行分别分析;(4)使用混合验前分布模型;(5)确定现场试验信息的贝叶斯可靠性模型;(6)通过贝叶斯方法将现场试验信息与验前信息进行整合,得到有效的分布模型;(7)采用Gibbs采样算法获取验后分布函数的样本值;(8)对可靠性参数的进行评定估计,得到可靠性参数的估计值。因此本发明提出的一种基于贝叶斯理论的小子样可靠性评定方法,在验前信息折算的效果和小子样可靠性评定准确率上均表现出了其优越性。

    一种基于贝叶斯理论的小子样可靠性评定方法

    公开(公告)号:CN107908807B

    公开(公告)日:2021-01-05

    申请号:CN201710599154.0

    申请日:2017-07-21

    Abstract: 本发明涉及一种基于贝叶斯理论的小子样可靠性评定方法,包括以下步骤:(1)系统初始化,输入验前信息;(2)对验前信息进行分类;(3)对相似系统信息的现有折算方法进行了分析,采用D‑S证据理论和基于F‑HS算法并进行分别分析;(4)使用混合验前分布模型;(5)确定现场试验信息的贝叶斯可靠性模型;(6)通过贝叶斯方法将现场试验信息与验前信息进行整合,得到有效的分布模型;(7)采用Gibbs采样算法获取验后分布函数的样本值;(8)对可靠性参数的进行评定估计,得到可靠性参数的估计值。因此本发明提出的一种基于贝叶斯理论的小子样可靠性评定方法,在验前信息折算的效果和小子样可靠性评定准确率上均表现出了其优越性。

    面向情报大数据的决策树增量学习方法

    公开(公告)号:CN107194468A

    公开(公告)日:2017-09-22

    申请号:CN201710259763.1

    申请日:2017-04-19

    CPC classification number: G06N20/00

    Abstract: 本发明提供的是一种面向情报大数据的决策树增量学习方法。在分裂结点之前,把结点中每个候选属性的多个属性值分别合并成两组,选择信息增益最大的候选属性将结点分为两个分支。在选择下一个将要分裂的结点方面,为所有候选分裂结点计算对应的结点分裂度量值,并且总是选择结点分裂度量值最大的候选结点作为下一个分裂结点。IID5R增加了评估分类属性质量的功能。本发明将NOLCDT与IID5R相结合,提出了一个混合分类器算法HCS,主要有两个阶段组成:构建初始决策树和增量学习。根据NOLCDT建立初始决策树,然后使用IID5R进行增量学习。HCS算法综合了决策树以及增量学习方法的优点,既便于理解又适于增量学习。

    一种基于深度卷积网络的舰船噪声识别分类方法

    公开(公告)号:CN107609488A

    公开(公告)日:2018-01-19

    申请号:CN201710717199.3

    申请日:2017-08-21

    Abstract: 本发明公开了一种基于深度卷积网络的舰船噪声识别分类方法,属于水下舰船噪声识别的领域。本发明主要是针对BP神经网络处理的文件数量少,提取特征不明显以及易陷入局部最优解的问题提出的解决方案。该发明首先根据MFCC将原始声音中的噪声去掉,提取出相应有效的特征,这个过程主要是去除干扰性大的噪声。将经过MFCC处理的声音文件转换成深度卷积网络可以接收的格式。通过深度卷积神经网络多层次的提取有效的特征,这样提取的特征的有效性更强,更具有普适性。针对现实中的大量声音数据进行识别分类,减少了人为的干预度,可以更好的区分出不同的舰船噪声,从而达到识别的目的。

Patent Agency Ranking