-
公开(公告)号:CN119064424A
公开(公告)日:2024-12-03
申请号:CN202411223524.7
申请日:2024-09-03
Applicant: 哈尔滨工业大学
IPC: G01N27/22
Abstract: 本发明公开了一种检测柴油中硫化物的ZnS‑TiO2‑PVDF传感器及其制备方法与应用,所述传感器包括基底,基底表面刻蚀有叉指状导电层,叉指间涂覆有ZnS‑TiO2‑PVDF复合材料结构,可用于测试柴油中噻吩类硫化物的含量。本发明采用旋转涂膜法制备ZnS‑TiO2‑PVDF传感器,制备工艺更为稳定,传感器敏感材料膜层更为均匀。传感器敏感材料膜层中,ZnS颗粒被TiO2颗粒包围,不会因为ZnS颗粒互相搭接,而导致传感器手指之间短路,制备成功率高;PVDF具有粘接作用,ZnS‑TiO2‑PVDF复合材料在基底表面结合牢固,减少了敏感材料的脱落,传感器可以在柴油中稳定存在。
-
公开(公告)号:CN115043430B
公开(公告)日:2024-02-09
申请号:CN202210589044.7
申请日:2022-05-26
Applicant: 哈尔滨工业大学
Abstract: 一种镨元素掺杂的多孔球形铌酸钛材料的制备方法及应用,属于锂离子电池领域。所述方法为:按照钛源、铌源和镨源为1:2‑x:x的摩尔比取料,x为0.01~0.1,将钛源化合物溶于无水乙醇,控制钛源浓度为0.05‑0.2mol/L,然后再加入铌源和镨源化合物,并混合均匀;在均相反应器中150‑200℃反应12h‑36h获得前驱体;离心分离清洗三次,将沉积物收集80℃真空干燥12h;将前驱体在高温炉中空气条件700‑800℃煅烧4‑12h。本发明中由于特殊多孔球形形貌及一次纳米颗粒的要求,煅烧温度为700~800℃,减少了材料制备过程中的能源消耗。
-
公开(公告)号:CN115043430A
公开(公告)日:2022-09-13
申请号:CN202210589044.7
申请日:2022-05-26
Applicant: 哈尔滨工业大学
Abstract: 一种镨元素掺杂的多孔球形铌酸钛材料的制备方法及应用,属于锂离子电池领域。所述方法为:按照钛源、铌源和镨源为1:2‑x:x的摩尔比取料,x为0.01~0.1,将钛源化合物溶于无水乙醇,控制钛源浓度为0.05‑0.2mol/L,然后再加入铌源和镨源化合物,并混合均匀;在均相反应器中150‑200℃反应12h‑36h获得前驱体;离心分离清洗三次,将沉积物收集80℃真空干燥12h;将前驱体在高温炉中空气条件700‑800℃煅烧4‑12h。本发明中由于特殊多孔球形形貌及一次纳米颗粒的要求,煅烧温度为700~800℃,减少了材料制备过程中的能源消耗。
-
公开(公告)号:CN114927662A
公开(公告)日:2022-08-19
申请号:CN202210588013.X
申请日:2022-05-26
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M4/38 , H01M4/48 , H01M10/0525 , H01G11/46
Abstract: 本发明公开了一种氧含量可控的SiOx材料的制备方法及其应用,涉及能源材料技术领域,所述制备方法为:将含硅盐放在含有低温熔盐和含氧化合物的混合物中,经过熔盐剥离和化学氧化后,得到片层状SiOx材料,然后依次用盐酸、去离子水清洗得到精制的片层状SiOx材料。本发明的制备方法易于大批量制备,得到的片层状SiOx材料可以用作锂离子电池的负极材料,并且能够表现出优异的电化学性能。
-
公开(公告)号:CN108899495B
公开(公告)日:2021-11-16
申请号:CN201810654400.2
申请日:2018-06-22
Applicant: 哈尔滨工业大学
IPC: H01M4/36 , H01M4/38 , H01M4/583 , H01M10/0525
Abstract: 锂离子电池硅氧碳基负极材料及其制备方法,它涉及锂离子电池负极材料及其制法。它是要解决现有的SiOC负极材料容量低、循环性能差的技术问题。本发明的负极材料是硅氧碳纳米颗粒或硅‑硅氧碳复合纳米颗粒。制法:把有机硅烷加入到碱液中反应得到微球乳液,再破乳,离心分离出聚倍半硅氧烷微球;将中空SiO2纳米带与微球混合后高温热解,再去除SiO2,得到硅氧碳纳米颗粒;它的首次放电容量1500~1550mAh/g,循环100次后容量保有率60%。将纳米硅粉与微球混合后高温热解,得到硅‑硅氧碳复合纳米颗粒。它的首次放电容量1000~1500mAh/g,循环100次后容量保有率85%。均可用于锂离子二次电池领域。
-
公开(公告)号:CN112357960A
公开(公告)日:2021-02-12
申请号:CN202011241289.8
申请日:2020-11-09
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第十八研究所
IPC: C01G33/00 , H01M4/485 , H01M4/62 , H01M10/0525
Abstract: 本发明公开了一种高性能稀土元素钕掺杂铌酸钛材料的制备方法及其在锂离子电池中的应用,所述铌酸钛材料的制备方法如下:一、将钛源化合物与草酸溶于有机溶剂中,将铌源化合物与草酸加热搅拌溶解与蒸馏水中,将含钕化合物溶解于稀盐酸当中;二、将步骤一配置的三种溶液混合通过加热搅拌蒸发溶剂法或者溶剂热法制备稀土元素钕掺杂的铌酸钛材料前驱体;三、将步骤二得到前驱体进行热处理,热处理后得到电化学性能较好的稀土元素钕掺杂铌酸钛材料。本发明通过稀土元素钕对铌酸钛材料进行掺杂改性,增大了晶胞尺寸、提升了材料锂离子传导速率,从而进一步提升铌酸钛的电化学性能,进而推进其在锂离子二次电池中的应用。
-
公开(公告)号:CN106984305B
公开(公告)日:2019-04-26
申请号:CN201710311836.7
申请日:2017-05-05
Applicant: 哈尔滨工业大学
Abstract: 一种高效电解水催化剂HRu4O8微米棒,它涉及一种高效电解水催化剂HRu4O8微米棒及其制备方法。本发明的目的是为了解决现有电催化剂无法同时在HER和OER上均表现出优异的催化性能和稳定性的问题。本发明HRu4O8微米棒中H:Ru:O的原子比为1:4:8,HRu4O8微米棒的直径为1~10μm,长度为5~100μm。制备方法为:一、制备RuO2纳米粒子;二、制备钌酸盐微米棒;三、制备HRu4O8微米棒。本发明制备的HRu4O8微米棒可应用于HER、OER,并且性能和稳定性优异。本发明应用于电催化领域。
-
公开(公告)号:CN105958084B
公开(公告)日:2018-07-03
申请号:CN201610528332.6
申请日:2016-07-06
Applicant: 哈尔滨工业大学
Abstract: 一种金属空气电池阴极材料及其一步合成的方法,本发明属于电化学技术领域,特别是涉及一种金属空气电池电极材料及其一步合成的方法。本发明为了解决现有的金属空气电池存在的高倍率性能差、循环性能差、充放电过程电化学极化严重等问题。本发明的金属空气电池阴极材料由具有均匀有序的超薄孔壁、大孔结构和镶嵌在多孔碳表面上的无定形金属团簇催化剂颗粒组成。本发明的金属空气电池阴极材料的一步合成方法按以下步骤进行:一、配制溶液,二、将配制的溶液混合,三、制备酚醛树脂/乙醇溶液,四、将金属盐溶液、得到的混合溶液与步骤二制备的二氧化硅球混合经一系列反应得到金属空气电池阴极材料。本发明的金属空气电池阴极材料用于电池领域。
-
公开(公告)号:CN105552327B
公开(公告)日:2018-03-30
申请号:CN201510961085.4
申请日:2015-12-18
Applicant: 哈尔滨工业大学
Abstract: 具有多层结构的锂金属氧化物复合正极材料和组成该材料的前驱体材料及其制备方法和应用。本发明涉及一种锂离子电池用锂金属氧化物复合正极材料及其制备方法和应用。本发明的目的是为了解决锂金属氧化物正极材料普遍存在比容量小、循环性能差、改性成本高、振实密度低的问题。本发明主要通过使用金属盐溶液成分阶段性变化和停歇式溢流来实时控制共沉淀法反应过程中一次颗粒按层排布,且每层一次颗粒的金属盐成分不同,制备了一种具有多层结构的高性能锂金属氧化物正极复合材料的前驱体,再结合梯度升温方式,最终合成了具有多层结构的锂金属氧化物正极复合材料。本发明用于锂离子电池用锂金属氧化物复合正极材料。
-
公开(公告)号:CN105958056A
公开(公告)日:2016-09-21
申请号:CN201610523899.4
申请日:2016-07-05
Applicant: 哈尔滨工业大学
IPC: H01M4/505 , H01M4/525 , H01M4/131 , H01M4/1391 , H01M10/0525
CPC classification number: H01M4/505 , H01M4/131 , H01M4/1391 , H01M4/525 , H01M10/0525
Abstract: 一种利用等离子氟化法制备的金属氟化物助熔剂合成锂金属氧化物正极材料的方法,本发明属于锂离子电池正极材料和电化学技术领域,具体涉及一种利用等离子氟化法制备的金属氟化物助熔剂合成锂金属氧化物正极材料的方法。本发明的目的是为了解决锂金属氧化物正极材料普遍存在的循环和倍率性能差、生产成本高和传统改性方法操作复杂的问题。本发明使用等离子氟化法在锂金属氧化物前驱体表面形成具有共掺杂作用的金属氟化物助熔剂,并将该助熔剂与锂源固相混合烧结制得锂金属氧化物正极材料。本发明的高效节能正极材料用于锂离子电池。
-
-
-
-
-
-
-
-
-