-
公开(公告)号:CN117523244B
公开(公告)日:2024-05-24
申请号:CN202311439517.6
申请日:2023-10-31
Applicant: 哈尔滨工业大学(威海)
IPC: G06V10/762 , G06V10/82 , G06N3/088 , G06N3/0455 , G06N3/0475 , G06N3/094 , G06F17/16 , G06N3/045
Abstract: 本发明实施例提供一种多视图聚类方法、系统、电子设备及存储介质,属于信息技术领域。该方法包括:获取待聚类的多个数据缺失视图;利用多重插补法,对所述多个数据缺失视图中缺失的数据进行缺失值处理,获得多个完整视图,并生成不确定性度量矩阵;提取所述不确定性度量矩阵中易于聚类的隐空间特征;将所述易于聚类的隐空间特征以及所述多个完整视图输入至循环对抗生成网络进行聚类,获得所述待聚类的多个数据缺失视图的聚类结果。通过上述技术方案,利用多重插补法,不仅可以充分利用多视图数据之间的互补信息,对缺失数据进行有效插补,增强了数据之间的关联性,还通过循环对抗生成网络在此基础上实现高效率的多个数据缺失视图的聚类。
-
公开(公告)号:CN118261874B
公开(公告)日:2024-08-23
申请号:CN202410359722.X
申请日:2024-03-27
Applicant: 哈尔滨工业大学
IPC: G06T7/00 , G06T7/11 , G06V10/764 , G06T7/194 , G06T7/13
Abstract: 本发明公开了一种基于图像分割大模型和多元高阶回归拟合的鱼竿钓性分析方法,所述方法包括如下步骤:步骤一、图像裁切;步骤二、鱼竿预识别;步骤三、图像识别;步骤四、鱼竿曲线拟合。该方法能够将图像中的鱼竿自动识别出来并生成鱼竿图像在原图中的坐标从而衡量鱼竿的钓性,支持在光线昏暗下分割图像,并且在处理大尺寸图像时仍有较高的效率和分割效果。
-
公开(公告)号:CN118261874A
公开(公告)日:2024-06-28
申请号:CN202410359722.X
申请日:2024-03-27
Applicant: 哈尔滨工业大学
IPC: G06T7/00 , G06T7/11 , G06V10/764 , G06T7/194 , G06T7/13
Abstract: 本发明公开了一种基于图像分割大模型和多元高阶回归拟合的鱼竿钓性分析方法,所述方法包括如下步骤:步骤一、图像裁切;步骤二、鱼竿预识别;步骤三、图像识别;步骤四、鱼竿曲线拟合。该方法能够将图像中的鱼竿自动识别出来并生成鱼竿图像在原图中的坐标从而衡量鱼竿的钓性,支持在光线昏暗下分割图像,并且在处理大尺寸图像时仍有较高的效率和分割效果。
-
公开(公告)号:CN118274709B
公开(公告)日:2024-08-23
申请号:CN202410359726.8
申请日:2024-03-27
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于透视变换和鱼竿测量背景板的像素坐标转世界坐标方法,所述方法如下:一、在背板上粘贴两种不同半径大小的圆形标志点,通过大圆标志点的位置确定其余所有小圆标志点的世界坐标,实现对背景板上坐标的定位;二、通过识别鱼竿测量背景板上的所有圆形标志点,根据圆形标志点的面积判断大圆标志点的像素坐标,从而确定剩余小圆标志点的像素坐标;对小圆标志点排序后与鱼竿测量背景板进行比对确定其相对位置,并与世界坐标对应;三、通过找到转换点附近的六个背景板上的圆点,并根据这些点的坐标和特征点的排序计算透视变换矩阵;根据透视变换矩阵将输入的像素坐标转换为真实物体坐标。本发明能够提供更精确的位置信息和距离测量。
-
公开(公告)号:CN118274709A
公开(公告)日:2024-07-02
申请号:CN202410359726.8
申请日:2024-03-27
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于透视变换和鱼竿测量背景板的像素坐标转世界坐标方法,所述方法如下:一、在背板上粘贴两种不同半径大小的圆形标志点,通过大圆标志点的位置确定其余所有小圆标志点的世界坐标,实现对背景板上坐标的定位;二、通过识别鱼竿测量背景板上的所有圆形标志点,根据圆形标志点的面积判断大圆标志点的像素坐标,从而确定剩余小圆标志点的像素坐标;对小圆标志点排序后与鱼竿测量背景板进行比对确定其相对位置,并与世界坐标对应;三、通过找到转换点附近的六个背景板上的圆点,并根据这些点的坐标和特征点的排序计算透视变换矩阵;根据透视变换矩阵将输入的像素坐标转换为真实物体坐标。本发明能够提供更精确的位置信息和距离测量。
-
公开(公告)号:CN117523244A
公开(公告)日:2024-02-06
申请号:CN202311439517.6
申请日:2023-10-31
Applicant: 哈尔滨工业大学(威海)
IPC: G06V10/762 , G06V10/82 , G06N3/088 , G06N3/0455 , G06N3/0475 , G06N3/094 , G06F17/16 , G06N3/045
Abstract: 本发明实施例提供一种多视图聚类方法、系统、电子设备及存储介质,属于信息技术领域。该方法包括:获取待聚类的多个数据缺失视图;利用多重插补法,对所述多个数据缺失视图中缺失的数据进行缺失值处理,获得多个完整视图,并生成不确定性度量矩阵;提取所述不确定性度量矩阵中易于聚类的隐空间特征;将所述易于聚类的隐空间特征以及所述多个完整视图输入至循环对抗生成网络进行聚类,获得所述待聚类的多个数据缺失视图的聚类结果。通过上述技术方案,利用多重插补法,不仅可以充分利用多视图数据之间的互补信息,对缺失数据进行有效插补,增强了数据之间的关联性,还通过循环对抗生成网络在此基础上实现高效率的多个数据缺失视图的聚类。
-
-
-
-
-