-
公开(公告)号:CN119047303A
公开(公告)日:2024-11-29
申请号:CN202411059541.1
申请日:2024-08-04
Applicant: 同济大学
IPC: G06F30/27 , G06F30/15 , G06N3/045 , G06N3/0442 , G06N3/0499 , G06N3/084 , G06F119/14
Abstract: 本发明属于轮胎力估计领域,特别涉及一种基于物理信息融合循环神经网络的轮胎力估计方法,包括以下步骤:1)设计基于数据标签的损失函数,利用循环神经网络算法捕捉轮胎力与车辆状态序列之间的内在联系;2)结合车辆动力学模型,开发基于物理信息的损失函数,确保估计过程遵循物理规律;3)融合上述两种损失函数,形成一种综合考虑数据驱动和物理约束的轮胎力估计方法。通过循环神经网络深入挖掘轮胎力与车辆状态的关系,并融入基于车辆动力学的损失函数,从先验知识中提取有用信息,提高在多变道路条件下的估计效果;本发明结合了数据驱动的灵活性和物理模型的严谨性,不仅提升了轮胎力估计的准确性,还增强了模型的泛化能力和可解释性。