-
公开(公告)号:CN114927239B
公开(公告)日:2024-07-02
申请号:CN202210422918.X
申请日:2022-04-21
Applicant: 厦门大学
IPC: G16H70/40 , G16H50/70 , G06F18/2415
Abstract: 本发明提供了机器学习技术领域的一种应用于药物分析的决策规则自动生成方法及系统,方法包括:步骤S10、获取药物数据,提取药物数据的药物特征并构建数据集;步骤S20、计算数据集中各药物特征的方差、数据复杂度以及排列重要性,基于方差、数据复杂度以及排列重要性筛选重要特征;步骤S30、从重要特征中筛选包含n(n=1,2,3,…)个特征的特征子集,并计算各特征子集的排列重要性;步骤S40、按排列重要性的顺序在各特征子集上搜索使预测结果发生翻转时,各特征子集所需的最小特征变化量,进而生成类别边界;步骤S50、通过贝叶斯公式将类别边界描述成决策规则。本发明的优点在于:能为任意机器学习模型(包括不可解释的黑盒模型)生成高度可解释的决策规则。
-
公开(公告)号:CN114927239A
公开(公告)日:2022-08-19
申请号:CN202210422918.X
申请日:2022-04-21
Applicant: 厦门大学
Abstract: 本发明提供了机器学习技术领域的一种应用于药物分析的决策规则自动生成方法及系统,方法包括:步骤S10、获取药物数据,提取药物数据的药物特征并构建数据集;步骤S20、计算数据集中各药物特征的方差、数据复杂度以及排列重要性,基于方差、数据复杂度以及排列重要性筛选重要特征;步骤S30、从重要特征中筛选包含n(n=1,2,3,…)个特征的特征子集,并计算各特征子集的排列重要性;步骤S40、按排列重要性的顺序在各特征子集上搜索使预测结果发生翻转时,各特征子集所需的最小特征变化量,进而生成类别边界;步骤S50、通过贝叶斯公式将类别边界描述成决策规则。本发明的优点在于:能为任意机器学习模型(包括不可解释的黑盒模型)生成高度可解释的决策规则。
-
公开(公告)号:CN114708627A
公开(公告)日:2022-07-05
申请号:CN202210186949.X
申请日:2022-02-28
Applicant: 厦门大学
IPC: G06V40/16 , G06V10/82 , G06V10/44 , G06V10/62 , G06V10/764 , G06V10/774 , G06N3/04 , G06K9/62
Abstract: 本发明公开一种应用于社交机器人的人脸微表情识别方法。步骤一:社交机器人从摄像头获取视觉输入。步骤二:社交机器人的中央处理单元对视觉输入进行人脸定位。步骤三:中央处理单元提取四种光流信息的输入组。步骤四:将输入组传入训练好的分块卷积网络中,得到分类后的微表情状态。步骤五:社交机器人的交互层根据用户不同的微表情状态来进行相应的响应。本发明设计了一个全新的基于深度特征增强的分块卷积网络,提高了微表情识别的泛化性和鲁棒性,并应用于社交机器人,使得社交机器人可以实时地根据用户的微表情状态实施不同的响应方式。
-
公开(公告)号:CN114708627B
公开(公告)日:2024-05-31
申请号:CN202210186949.X
申请日:2022-02-28
Applicant: 厦门大学
IPC: G06V40/16 , G06V10/82 , G06V10/44 , G06V10/62 , G06V10/764 , G06V10/774 , G06N3/0464 , G06N3/082
Abstract: 本发明公开一种应用于社交机器人的人脸微表情识别方法。步骤一:社交机器人从摄像头获取视觉输入。步骤二:社交机器人的中央处理单元对视觉输入进行人脸定位。步骤三:中央处理单元提取四种光流信息的输入组。步骤四:将输入组传入训练好的分块卷积网络中,得到分类后的微表情状态。步骤五:社交机器人的交互层根据用户不同的微表情状态来进行相应的响应。本发明设计了一个全新的基于深度特征增强的分块卷积网络,提高了微表情识别的泛化性和鲁棒性,并应用于社交机器人,使得社交机器人可以实时地根据用户的微表情状态实施不同的响应方式。
-
公开(公告)号:CN114973362A
公开(公告)日:2022-08-30
申请号:CN202210549594.6
申请日:2022-05-20
Applicant: 厦门大学
Abstract: 本发明公开了一种应用于社交机器人的动态延长编码微表情识别方法,属于微表情领域;所述方法包括如下步骤:S1、对数据集中的数据进行增强扩充数据量并预处理;S2、搭建表情识别模型并利用S1中的数据集进行训练;S3、将步骤S2中训练后的表情识别模型进行优化调整;S4、输出最终的表情识别模型;本发明方法构建表情识别模型为基于一个标准卷积神经网络的实时CNN,有四个residual模块,每一个卷积均有一个BatchNormalization和Relu处理,末尾的卷积层也添加了全局平均池化层和softmax层;此架构包含大约六万个参数,是基本模型的十分之一;经过测试,系统在自闭症患儿数据集上的准确率达到70%,改进后的模型相较于之前获得了更高的识别精度。
-
-
-
-