基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备

    公开(公告)号:CN119399210A

    公开(公告)日:2025-02-07

    申请号:CN202510014884.4

    申请日:2025-01-06

    Abstract: 本发明的一种基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备,包括构建训练数据集和测试数据集;构建基于条件扩散模型的不确定性感知的工业产品表面缺陷检测模型并训练,将测试图片输入到上述模型中进行检测,分别得到输入结果的缺陷预测图像、不确定性预测图像;将原始输入图像,缺陷预测结果与不确定性预测结果进行整理,得到第二次迭代时的条件引导图像;将得到的条件引导图像、待检测图像输入到条件扩散模型中,得到最终的缺陷预测图像以及不确定性度量。本发明基于拉普拉斯近似,对模型生成的结果进行不确定性度量,并利用输出结果的不确定性优化检测结果,紧接着进行迭代提高最终检测结果的可信度。

    一种基于深度学习的中文分词方法

    公开(公告)号:CN109086267B

    公开(公告)日:2022-07-26

    申请号:CN201810756452.0

    申请日:2018-07-11

    Inventor: 王传栋 史宇 李智

    Abstract: 本发明公开了一种基于深度学习的中文分词方法,包括如下步骤:基于字面字频将汉字映射为字面向量;对字面向量进行精化,提取携带上下文语义信息的特征向量和携带字性特征的特征向量;将字符级别向量有效融合成词级别的分布式表示,再将融合好的候选词向量送入深度学习模型中计算句子得分,运用集束搜索的方法进行解码,最终通过句子得分来选择合适的分词结果。如此使得分词任务从繁琐的特征工程中解脱出来,通过提取更丰富的特征信息能够获得更好的系统性能,并且利用完整的分割历史进行建模,具有序列级别的分词能力。

    一种基于KNN离群点检测算法的网络入侵检测方法及系统

    公开(公告)号:CN111314327A

    公开(公告)日:2020-06-19

    申请号:CN202010078565.7

    申请日:2020-02-03

    Abstract: 本发明公开了一种基于KNN离群点检测算法的网络入侵检测方法及系统,该方法包括以下步骤,训练阶段:采集网络流量数据集,并将数据集进行预处理,得到第一层网络疑似入侵数据集;采用遗传算法对第一层网络疑似入侵数据特征进行寻优,得到第二层疑似入侵数据集;将事先分好类别的训练数据集分别使用KNN离群点检测算法优化,得到若干个新数据集;采用果蝇算法优化随机森林算法,并使用若干个新数据集分别对随机森林进行训练,得到训练模块;测试阶段:采用第二层疑似入侵数据集对训练模型进行分类。该方法从检测正确率,误报率,漏报率三个方面进行比较,对于传统的方法来说,有了更好的检测效果和正确性。

    一种基于卷积神经网络的无人驾驶行人轨迹预测方法

    公开(公告)号:CN109635793A

    公开(公告)日:2019-04-16

    申请号:CN201910097865.7

    申请日:2019-01-31

    CPC classification number: G06K9/00362 G06N3/0454 G06N3/08

    Abstract: 本发明公开了一种基于卷积神经网络的无人驾驶行人轨迹预测方法,包括处理样本数据、获取输入信息序列、构建并优化网络、测试及评估最优模型。将无人驾驶车辆上的视觉传感器采集到的实时视频,分割成以帧为单位的图像作为样本数据,将样本数据中即将通过斑马线的目标人群划分成三类,从样本中获取行人位置‑比例信息序列、行人骨架信息序列、视觉传感器自身运动序列,再将信息序列输入卷积神经网络进行训练,得到初步的预测模型,经过测试和评估,最终输出预测轨迹和动作类别。本发明采用卷积神经网络进行无人驾驶行人轨迹预测,可以有效降低无人驾驶车辆在道路行驶过程中碰撞行人发生的概率。

    一种基于神经网络聚类优化的Web服务发现的实现方法

    公开(公告)号:CN102123172B

    公开(公告)日:2014-09-10

    申请号:CN201110046066.0

    申请日:2011-02-25

    Abstract: 本发明提供一种基于神经网络聚类优化的Web服务发现的实现方法,主要用于解决开放网络环境下快速、准确地发现满足用户需求的Web服务。本发明由服务请求子系统、服务提供子系统、服务注册中心和服务发现中介子系统四部分组成。其中服务发现中介子系统是该系统的核心构件,包括服务表示模块、服务分类模块和服务匹配模块。本发明实现了一个聚类优化的语义Web服务发现原型系统,真实Web服务数据集上的评测结果表明,本发明不仅具有较高的服务发现效率和精度,而且实现简单,系统灵活,代价低,易推广。

    一种基于神经网络聚类优化的Web服务发现的实现方法

    公开(公告)号:CN102123172A

    公开(公告)日:2011-07-13

    申请号:CN201110046066.0

    申请日:2011-02-25

    Abstract: 本发明提供一种基于神经网络聚类优化的Web服务发现的实现方法,主要用于解决开放网络环境下快速、准确地发现满足用户需求的Web服务。本发明由服务请求子系统、服务提供子系统、服务注册中心和服务发现中介子系统四部分组成。其中服务发现中介子系统是该系统的核心构件,包括服务表示模块、服务分类模块和服务匹配模块。本发明实现了一个聚类优化的语义Web服务发现原型系统,真实Web服务数据集上的评测结果表明,本发明不仅具有较高的服务发现效率和精度,而且实现简单,系统灵活,代价低,易推广。

    基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备

    公开(公告)号:CN119399210B

    公开(公告)日:2025-04-29

    申请号:CN202510014884.4

    申请日:2025-01-06

    Abstract: 本发明的一种基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备,包括构建训练数据集和测试数据集;构建基于条件扩散模型的不确定性感知的工业产品表面缺陷检测模型并训练,将测试图片输入到上述模型中进行检测,分别得到输入结果的缺陷预测图像、不确定性预测图像;将原始输入图像,缺陷预测结果与不确定性预测结果进行整理,得到第二次迭代时的条件引导图像;将得到的条件引导图像、待检测图像输入到条件扩散模型中,得到最终的缺陷预测图像以及不确定性度量。本发明基于拉普拉斯近似,对模型生成的结果进行不确定性度量,并利用输出结果的不确定性优化检测结果,紧接着进行迭代提高最终检测结果的可信度。

    一种基于多模双线性池化融合GNN的事件关系抽取方法

    公开(公告)号:CN115964660A

    公开(公告)日:2023-04-14

    申请号:CN202211693617.7

    申请日:2022-12-28

    Abstract: 本发明属于数据挖掘技术领域,公开了一种基于多模双线性池化融合GNN的事件关系抽取方法,包括:步骤1:对数据集进行预处理,划分双重GNN模型的训练集和测试集;步骤2:利用BiLSTM作为句子编码器,来获取每个句子中单词基于上下文的隐表示;步骤3:将隐表示分别输入到SynGCN模块和SemGAT模块中,提取句法结构特征和语义特征;步骤4:使用多模双线性池化来融合两模块的特征,再用PCA对特征进行降维后,利用融合特征来进行关系分类,得到对应关系的概率;步骤5:对网络参数进行优化更新;步骤6:根据训练好的模型,对测试集中的数据进行预测。本发明时考虑句法特征和语义特征,达到对句子的全局理解。

    基于环境元嵌入和深度学习的情感倾向性分析方法

    公开(公告)号:CN109948158A

    公开(公告)日:2019-06-28

    申请号:CN201910197440.3

    申请日:2019-03-15

    Inventor: 王传栋 李智 史宇

    Abstract: 本发明提供了一种基于环境元嵌入和深度学习的情感倾向性分析方法,包括如下步骤:S1,采集用于训练的文本数据,获得分词文本;S2,利用word2vec和Glove训练出分词文本的词向量,再通过扩展分词文本的词向量特征的方式,获得环境元嵌入作为文本语义的词向量表示;S3,利用BLSTM和动态获取上下文窗口相融合的神经网络,自动学习上下文来抽取情感评论对象;S4,基于局部注意力机制,通过BLSTM训练所述文本语义的词向量,得到句子级特征向量;S5,通过卷积神经网络训练句子级特征向量,得到全局的文本级特征向量;S6,利用多分类函数Softmax对全局的文本级特征向量进行分类,得到文本数据的情感倾向。该方法提高了文本数据情感倾向判定的准确性。

Patent Agency Ranking