基于环境元嵌入和深度学习的情感倾向性分析方法

    公开(公告)号:CN109948158A

    公开(公告)日:2019-06-28

    申请号:CN201910197440.3

    申请日:2019-03-15

    Inventor: 王传栋 李智 史宇

    Abstract: 本发明提供了一种基于环境元嵌入和深度学习的情感倾向性分析方法,包括如下步骤:S1,采集用于训练的文本数据,获得分词文本;S2,利用word2vec和Glove训练出分词文本的词向量,再通过扩展分词文本的词向量特征的方式,获得环境元嵌入作为文本语义的词向量表示;S3,利用BLSTM和动态获取上下文窗口相融合的神经网络,自动学习上下文来抽取情感评论对象;S4,基于局部注意力机制,通过BLSTM训练所述文本语义的词向量,得到句子级特征向量;S5,通过卷积神经网络训练句子级特征向量,得到全局的文本级特征向量;S6,利用多分类函数Softmax对全局的文本级特征向量进行分类,得到文本数据的情感倾向。该方法提高了文本数据情感倾向判定的准确性。

    一种基于深度学习的中文分词方法

    公开(公告)号:CN109086267B

    公开(公告)日:2022-07-26

    申请号:CN201810756452.0

    申请日:2018-07-11

    Inventor: 王传栋 史宇 李智

    Abstract: 本发明公开了一种基于深度学习的中文分词方法,包括如下步骤:基于字面字频将汉字映射为字面向量;对字面向量进行精化,提取携带上下文语义信息的特征向量和携带字性特征的特征向量;将字符级别向量有效融合成词级别的分布式表示,再将融合好的候选词向量送入深度学习模型中计算句子得分,运用集束搜索的方法进行解码,最终通过句子得分来选择合适的分词结果。如此使得分词任务从繁琐的特征工程中解脱出来,通过提取更丰富的特征信息能够获得更好的系统性能,并且利用完整的分割历史进行建模,具有序列级别的分词能力。

    一种基于深度学习的中文分词方法

    公开(公告)号:CN109086267A

    公开(公告)日:2018-12-25

    申请号:CN201810756452.0

    申请日:2018-07-11

    Inventor: 王传栋 史宇 李智

    Abstract: 本发明公开了一种基于深度学习的中文分词方法,包括如下步骤:基于字面字频将汉字映射为字面向量;对字面向量进行精化,提取携带上下文语义信息的特征向量和携带字性特征的特征向量;将字符级别向量有效融合成词级别的分布式表示,再将融合好的候选词向量送入深度学习模型中计算句子得分,运用集束搜索的方法进行解码,最终通过句子得分来选择合适的分词结果。如此使得分词任务从繁琐的特征工程中解脱出来,通过提取更丰富的特征信息能够获得更好的系统性能,并且利用完整的分割历史进行建模,具有序列级别的分词能力。

Patent Agency Ranking