基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备

    公开(公告)号:CN119399210A

    公开(公告)日:2025-02-07

    申请号:CN202510014884.4

    申请日:2025-01-06

    Abstract: 本发明的一种基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备,包括构建训练数据集和测试数据集;构建基于条件扩散模型的不确定性感知的工业产品表面缺陷检测模型并训练,将测试图片输入到上述模型中进行检测,分别得到输入结果的缺陷预测图像、不确定性预测图像;将原始输入图像,缺陷预测结果与不确定性预测结果进行整理,得到第二次迭代时的条件引导图像;将得到的条件引导图像、待检测图像输入到条件扩散模型中,得到最终的缺陷预测图像以及不确定性度量。本发明基于拉普拉斯近似,对模型生成的结果进行不确定性度量,并利用输出结果的不确定性优化检测结果,紧接着进行迭代提高最终检测结果的可信度。

    基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备

    公开(公告)号:CN119399210B

    公开(公告)日:2025-04-29

    申请号:CN202510014884.4

    申请日:2025-01-06

    Abstract: 本发明的一种基于贝叶斯条件扩散模型的可信表面缺陷检测方法及设备,包括构建训练数据集和测试数据集;构建基于条件扩散模型的不确定性感知的工业产品表面缺陷检测模型并训练,将测试图片输入到上述模型中进行检测,分别得到输入结果的缺陷预测图像、不确定性预测图像;将原始输入图像,缺陷预测结果与不确定性预测结果进行整理,得到第二次迭代时的条件引导图像;将得到的条件引导图像、待检测图像输入到条件扩散模型中,得到最终的缺陷预测图像以及不确定性度量。本发明基于拉普拉斯近似,对模型生成的结果进行不确定性度量,并利用输出结果的不确定性优化检测结果,紧接着进行迭代提高最终检测结果的可信度。

    一种基于证据学习的不确定性感知半监督胰腺分割方法

    公开(公告)号:CN118674927B

    公开(公告)日:2025-03-25

    申请号:CN202410771852.4

    申请日:2024-06-15

    Abstract: 本发明公开了一种基于证据学习的不确定性感知半监督胰腺分割方法。首先,引入可变形卷积,构建具有可自适应不同尺度和形变大小感受野的可变形U‑Net,以更好的提取胰腺多变的几何特征;其次,基于MT框架,引入证据深度学习对模型的预测不确定性进行建模,将模型的输出视为证据,并形式化为狄利克雷分布,通过主观逻辑计算预测类别概率以及不确定性,根据不确定性信息生成未标记数据上可靠的伪标签指导模型学习;最后,引入对目标边界分割质量更敏感的边界损失,使模型更关注目标边界的分割效果。本发明克服了现有半监督学习方法难以保证伪标签质量、平衡估计精度及计算成本的问题,并针对胰腺分割任务提供了更具有针对性的解决方案。

    一种基于证据学习的不确定性感知半监督胰腺分割方法

    公开(公告)号:CN118674927A

    公开(公告)日:2024-09-20

    申请号:CN202410771852.4

    申请日:2024-06-15

    Abstract: 本发明公开了一种基于证据学习的不确定性感知半监督胰腺分割方法。首先,引入可变形卷积,构建具有可自适应不同尺度和形变大小感受野的可变形U‑Net,以更好的提取胰腺多变的几何特征;其次,基于MT框架,引入证据深度学习对模型的预测不确定性进行建模,将模型的输出视为证据,并形式化为狄利克雷分布,通过主观逻辑计算预测类别概率以及不确定性,根据不确定性信息生成未标记数据上可靠的伪标签指导模型学习;最后,引入对目标边界分割质量更敏感的边界损失,使模型更关注目标边界的分割效果。本发明克服了现有半监督学习方法难以保证伪标签质量、平衡估计精度及计算成本的问题,并针对胰腺分割任务提供了更具有针对性的解决方案。

Patent Agency Ranking