-
公开(公告)号:CN103955464B
公开(公告)日:2017-10-03
申请号:CN201410115414.9
申请日:2014-03-25
Applicant: 南京邮电大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于情境融合感知的推荐方法,包括如下步骤:步骤1:根据情境的定义和需求将情境分为物理情境和用户偏好情境;步骤2:通过参数学习和结构学习构建贝叶斯网络,推理计算某一环境中的物理情境匹配程度;步骤3:考虑到用户兴趣爱好随时间变化的动态性,将时间函数融入基于内容的推荐算法中,计算用户偏好情境的匹配程度;步骤4:综合考虑情境匹配度,对所有候选信息资源进行评分,并将排名前Top‑N的信息推荐给目标用户。与现有技术相比,本发明考虑的推荐因素更全面,更能适应多变的环境,提高了推荐准确度,并且考虑用户兴趣随时间变化而变化的情况,将时间函数和基于资源内容的推荐结合,提高了用户满意度。
-
公开(公告)号:CN103955464A
公开(公告)日:2014-07-30
申请号:CN201410115414.9
申请日:2014-03-25
Applicant: 南京邮电大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于情境融合感知的推荐方法,包括如下步骤:步骤1:根据情境的定义和需求将情境分为物理情境和用户偏好情境;步骤2:通过参数学习和结构学习构建贝叶斯网络,推理计算某一环境中的物理情境匹配程度;步骤3:考虑到用户兴趣爱好随时间变化的动态性,将时间函数融入基于内容的推荐算法中,计算用户偏好情境的匹配程度;步骤4:综合考虑情境匹配度,对所有候选信息资源进行评分,并将排名前Top-N的信息推荐给目标用户。与现有技术相比,本发明考虑的推荐因素更全面,更能适应多变的环境,提高了推荐准确度,并且考虑用户兴趣随时间变化而变化的情况,将时间函数和基于资源内容的推荐结合,提高了用户满意度。
-