-
公开(公告)号:CN109485041B
公开(公告)日:2022-05-27
申请号:CN201811425072.5
申请日:2018-11-27
Applicant: 南京林业大学
IPC: C01B32/318 , C01B32/342 , C01B32/348
Abstract: 本发明一种低共熔离子液作为造孔剂制备多孔碳的方法,采用氯化锌、尿素两种原料制备的低共熔离子液作为造孔剂,以苯酚(P)、甲醛(F)、氢氧化钠(NaOH)为原料制备酚醛树脂预聚体,在一定的条件下获得酚醛树脂凝胶,碳化得到多孔碳,制备出的多孔碳的孔径主要在0~10nm之间,属于微孔和中孔区域。本发明提供的低共熔离子液作为造孔剂制备多孔碳的方法,借助氯化锌/尿素低共熔离子液高温下易分解的特征,将碳化和活化造孔合二为一,原料价格低廉,既可简化制备工艺,又可减轻环境污染,降低能源消耗,且氯化锌/尿素低共熔离子液分子体积小,分散于酚醛树脂凝胶中时,酚醛树脂凝胶碳化后得到的多孔碳的微孔和中孔都有显著增加。
-
公开(公告)号:CN109483677A
公开(公告)日:2019-03-19
申请号:CN201811486120.1
申请日:2018-12-06
Applicant: 南京林业大学
Abstract: 本发明一种具有高耐磨性的超疏水木材的制备方法、装置及产品,先将木材进行预处理,再通入二甲基二氯硅烷气体和水蒸汽,使其发生水解和缩聚反应,在木材表面及内部固着疏水性聚二甲基硅氧烷,制得的木材具有超疏水的表面,且木材内部一定厚度上也具有超疏水性。本发明提供的一种具有高耐磨性的超疏水木材的制备方法、装置及产品,能使经过该方法处理的木材具有超疏水的表面及在其内部构建足够厚度的超疏水层,且赋予疏水木材稳定的机械耐磨性,气态疏水剂相较于溶剂更容易进入木材表面及内部,附着效果好,操作简单,一步完成整个构建过程,原料成本低,装置价格低,干燥系统可重复循环使用,能耗低,疏水稳定性和耐久性好,使用寿命长。
-
公开(公告)号:CN105504191B
公开(公告)日:2018-02-02
申请号:CN201610051105.9
申请日:2016-01-22
Applicant: 南京林业大学
IPC: C08G8/28 , C09J161/14 , C09J103/02 , B27D1/04
Abstract: 本发明涉及一种低共熔离子液改性木质素‑酚醛树脂的制备方法,其步骤是将苯酚和ChCl在55℃~70℃的条件下搅拌至反应液透明得到低共熔离子液(DES)。用其在80℃~100℃条件下处理木质素1‑2h后得到改性木质素和DES混合物。将该混合物与甲醛溶液和碱依次加入反应器中,通过两次加料、两次升温、保温等加成缩合过程制备木质素酚醛树脂。其特点是利用价格便宜且无毒的氯化胆碱作为低共熔离子液的季铵盐部分,与苯酚在温和条件下快速制备DES,借助其溶剂、催化剂等多重协同作用活化木质素,且不需分离,直接替代部分苯酚制备出性能优、苯酚替代量高的木质素‑酚醛树脂胶黏剂。本发明减少了传统木质素活化后需进行多次洗涤、分离、干燥等繁琐的环节。
-
公开(公告)号:CN114292351A
公开(公告)日:2022-04-08
申请号:CN202111149490.8
申请日:2021-09-29
Applicant: 南京林业大学
Abstract: 本发明属于疏水材料和复合板材技术领域,涉及一种乙酰化‑β‑环糊精、制备方法及其应用。针对现有技术中疏水木材制作原料主要采用无机试剂,存在纳米毒性,使用有机试剂存在着制备繁琐、原料来源困难,且大多取自石油等不可再生资源的技术问题,本申请通过将β‑环糊精溶于强极性有机溶剂中,再通过乙酸酐将其乙酰化,制得的乙酰化‑β‑环糊精,具有不溶于常见溶剂,热分解温度达350℃,稳定性良好等优点。本申请还提供了一种乙酰化‑β‑环糊精在制备疏水材料中的应用,制得的疏水木材,覆盖层稳定,同时完好地保留了纤维素骨架,具有很好的力学性能,制备方法简单、方便且迅速,静态接触角可达150°以上。
-
公开(公告)号:CN111662395B
公开(公告)日:2022-03-29
申请号:CN201910178180.5
申请日:2019-03-08
Applicant: 南京林业大学
IPC: C08B37/08
Abstract: 本发明公开了一步法制备乙酰化纳米甲壳素晶须的方法,其步骤是将氯化胆碱、氯化锌按一定比例混合加入反应容器中,加热搅拌至透明得到低共熔溶剂(DES)。再将甲壳素按一定质量比加入到DES中,同时加入醋酸酐或醋酸作为乙酰化改性剂,加热搅拌反应一段时间后冷却并在高速离心机上按设定速度、设定时间离心,反复水洗至中性,沉淀部分经超声处理得到乙酰化的甲壳素纳米晶须,上清液经旋转蒸发得到回收DES。其特点是借助DES与醋酸或醋酸酐的协同作用,常压下水解和酯化甲壳素,一步法制备乙酰化纳米甲壳素晶须,不但原料价格低廉,制备工艺简单,条件温和,反应易于控制,同时该低共熔溶剂可回收再利用,减少环境污染,降低能源消耗。
-
公开(公告)号:CN109134701A
公开(公告)日:2019-01-04
申请号:CN201810706463.8
申请日:2018-07-02
Applicant: 南京林业大学
IPC: C08B37/08
Abstract: 本发明公开了一种从虾蟹壳中快速提取高纯度低分子量甲壳素的方法,包括以下步骤:去除虾蟹壳内外表面的异物,用水反复冲洗后,浸泡在乙醇溶液中,经烘干、磨碎、过筛,取100目以下虾蟹壳粉备用;将甘油和盐酸溶液混合置于反应容器中,室温搅拌均匀后备用;将得到的虾蟹壳粉与混合溶剂按质量比混合,反应得到产物;将得到的反应产物加入蒸馏水并冷却,在高速离心机上按设定速度、设定时间离心,反复水洗到接近中性,将沉淀物烘干后即得到甲壳素。本发明借助甘油均匀渗透到虾蟹壳粉内部,从而在加热过程中使得其内外受热均匀,同时借助盐酸中氢离子,实现在加热的状态下快速水解蛋白质,达到同时脱钙和降解甲壳素的目的。
-
公开(公告)号:CN114292351B
公开(公告)日:2022-12-23
申请号:CN202111149490.8
申请日:2021-09-29
Applicant: 南京林业大学
Abstract: 本发明属于疏水材料和复合板材技术领域,涉及一种乙酰化‑β‑环糊精、制备方法及其应用。针对现有技术中疏水木材制作原料主要采用无机试剂,存在纳米毒性,使用有机试剂存在着制备繁琐、原料来源困难,且大多取自石油等不可再生资源的技术问题,本申请通过将β‑环糊精溶于强极性有机溶剂中,再通过乙酸酐将其乙酰化,制得的乙酰化‑β‑环糊精,具有不溶于常见溶剂,热分解温度达350℃,稳定性良好等优点。本申请还提供了一种乙酰化‑β‑环糊精在制备疏水材料中的应用,制得的疏水木材,覆盖层稳定,同时完好地保留了纤维素骨架,具有很好的力学性能,制备方法简单、方便且迅速,静态接触角可达150°以上。
-
公开(公告)号:CN109369886B
公开(公告)日:2021-07-20
申请号:CN201710678073.X
申请日:2017-08-04
Applicant: 南京林业大学
Abstract: 本发明涉及一种低共熔溶剂改性木质素用作环氧树脂固化剂的制备方法,其步骤是将氯化胆碱和另一原料按一定的摩尔比加入密封的容器中,在30℃~100℃的条件下搅拌至反应液透明,即得到低共熔溶剂(DES);用其在60℃~140℃条件下处理木质素1‑12h后得到改性木质素和DES的混合物,即为环氧树脂的固化剂。其特点是借助价格便宜且无毒的氯化胆碱系DES的溶剂化、催化、活化等多重协同作用处理木质素后,不经分离直接作环氧树脂的固化剂,减少了传统木质素活化处理后的分离、洗涤与再生步骤,过程简单,易于控制;本发明所制备的环氧树脂的固化剂具有无毒、黏度低、用量少、价格便宜、操作性和使用性优良的优点。
-
公开(公告)号:CN110171044B
公开(公告)日:2021-04-13
申请号:CN201910541025.5
申请日:2019-06-20
Applicant: 南京林业大学
Abstract: 本发明是一种多孔隙结构功能型木质基材的制备方法。采用氯化胆碱和二元酸在60~90℃温度下加热0.5~2h合成低共熔溶剂(DES),随后在60~120℃温度下浸渍处理木材4~10h以脱除木质素和半纤维素,再加入H2O2并用NaOH溶液调节pH值至9~11,最后通过冷冻干燥得到多孔隙结构木质基材。本发明的特点是制备工艺简单,环境友好,成本低,无后续处理问题;且得到的木质基材孔隙率高,孔结构分布合理,孔径适中,密度低,吸附性能优异;所用DES反应试剂可重复利用,脱除的木质素可回收,提高资源利用率。这种多孔隙结构功能型木质基材可根据不同需求做相应改性处理应用于建筑、医药、污水净化等各领域。
-
公开(公告)号:CN110171044A
公开(公告)日:2019-08-27
申请号:CN201910541025.5
申请日:2019-06-20
Applicant: 南京林业大学
Abstract: 本发明是一种多孔隙结构功能型木质基材的制备方法。采用氯化胆碱和二元酸在60~90℃温度下加热0.5~2h合成低共熔溶剂(DES),随后在60~120℃温度下浸渍处理木材4~10h以脱除木质素和半纤维素,再加入H2O2并用NaOH溶液调节pH值至9~11,最后通过冷冻干燥得到多孔隙结构木质基材。本发明的特点是制备工艺简单,环境友好,成本低,无后续处理问题;且得到的木质基材孔隙率高,孔结构分布合理,孔径适中,密度低,吸附性能优异;所用DES反应试剂可重复利用,脱除的木质素可回收,提高资源利用率。这种多孔隙结构功能型木质基材可根据不同需求做相应改性处理应用于建筑、医药、污水净化等各领域。
-
-
-
-
-
-
-
-
-