一种基于SLSTM-RMTN模型的电力负荷预测方法

    公开(公告)号:CN119853023A

    公开(公告)日:2025-04-18

    申请号:CN202510329275.8

    申请日:2025-03-20

    Abstract: 本发明涉及一种基于SLSTM‑RMTN模型的电力负荷预测方法,针对目标电力系统,设计以数据值的STL分解为出发,分别针对趋势分量、季节分量、残差分量,筛选各分量分别对应的目标传感器,针对包含长短期记忆网络、残差连接、多项式展开所构成的目标待训练网络进行训练,获得各分量下的电力负荷预测模型,然后在预测应用下,针对采样数据,分别执行各分量下电力负荷预测模型的预测,并进行融合,完成对目标电力系统的电力负荷预测;设计方案在应用中,能够准确地捕获电力负荷数据的时间序列特性,减少数据维度,显著提高了模型的精度和泛化能力,能够优化电力资源配置,平衡供需关系。

    一种基于非整数阶多项式模型的空调机组故障检测方法

    公开(公告)号:CN119598308A

    公开(公告)日:2025-03-11

    申请号:CN202411452276.3

    申请日:2024-10-17

    Abstract: 本发明公开了一种基于非整数阶多项式模型的空调机组故障检测方法,包括:获取目标空调机组的故障特征数据;将故障特征数据为训练集和测试集;构建非整数阶多项式网络NIOPN模型;对NIOPN模型的输入数据进行归一化处理;基于梯度下降和Adam优化算法通过对模型进行训练,基于反向传播算法通过测试集计算损失函数对模型参数的梯度,并更新模型参数,获得训练后的NIOPN模型;本发明通过引入非整数阶多项式层的网络架构,增强模型对复杂非线性数据的拟合能力,并且在保持模型精度的同时减少过拟合。该方法可广泛应用于各类数据回归与分类场景,特别适用于特征高度非线性的数据集。

Patent Agency Ranking