-
公开(公告)号:CN118229531B
公开(公告)日:2024-09-17
申请号:CN202410609646.3
申请日:2024-05-16
Applicant: 华侨大学
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06T3/4046 , G06V10/44
Abstract: 本发明公开了一种基于局部增强Transformer的图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于局部增强Transformer的图像超分辨率网络;输入低分辨率图像,图像超分辨率网络根据低分辨率图像重建对应的高分辨率图像;其中,所述图像超分辨率网络包括依次连接的浅层特征提取模块、深层特征提取模块和图像重建模块;其中,浅层特征提取模块利用卷积层提取浅层特征,深层特征提取模块利用多个局部增强自注意力单元提取深层特征,每个局部增强自注意力单元包括多个Transformer层和一个3×3卷积组成,图像重建模块采用卷积实现重建。本发明利用局部增强Transformer来提取丰富的全局与局部特征,从而使网络兼顾图像的全局与局部细节。
-
公开(公告)号:CN118247180A
公开(公告)日:2024-06-25
申请号:CN202410661695.1
申请日:2024-05-27
Applicant: 华侨大学
Abstract: 本发明设计图像修复技术领域,公开了一种基于流形约束扩散模型的人脸图像复原方法及系统,方法包括以下步骤:S1,制作数据集并利用数据集预训练一个基础扩散模型;S2,构建受流形约束启发的额外校正项并添加到基础扩散模型,构建语义扩散引导统一框架并添加到基础扩散模型,获得人脸图像复原模型;S3,输入待复原人脸图像和引导信息到人脸图像复原模型,生成复原人脸图像。本发明基于扩散概率模型(DDPM)反向生成过程设计了一个受流形约束(Manifold Constrained)启发的额外校正项并引入语义扩散引导(Semantic Diffusion Guidance)框架控制生成过程,与之前的求解器协同使用,综合考虑了复原图像的正确性、真实性、一致性问题。
-
公开(公告)号:CN118229531A
公开(公告)日:2024-06-21
申请号:CN202410609646.3
申请日:2024-05-16
Applicant: 华侨大学
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06T3/4046 , G06V10/44
Abstract: 本发明公开了一种基于局部增强Transformer的图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于局部增强Transformer的图像超分辨率网络;输入低分辨率图像,图像超分辨率网络根据低分辨率图像重建对应的高分辨率图像;其中,所述图像超分辨率网络包括依次连接的浅层特征提取模块、深层特征提取模块和图像重建模块;其中,浅层特征提取模块利用卷积层提取浅层特征,深层特征提取模块利用多个局部增强自注意力单元提取深层特征,每个局部增强自注意力单元包括多个Transformer层和一个3×3卷积组成,图像重建模块采用卷积实现重建。本发明利用局部增强Transformer来提取丰富的全局与局部特征,从而使网络兼顾图像的全局与局部细节。
-
公开(公告)号:CN118247180B
公开(公告)日:2024-09-24
申请号:CN202410661695.1
申请日:2024-05-27
Applicant: 华侨大学
Abstract: 本发明设计图像修复技术领域,公开了一种基于流形约束扩散模型的人脸图像复原方法及系统,方法包括以下步骤:S1,制作数据集并利用数据集预训练一个基础扩散模型;S2,构建受流形约束启发的额外校正项并添加到基础扩散模型,构建语义扩散引导统一框架并添加到基础扩散模型,获得人脸图像复原模型;S3,输入待复原人脸图像和引导信息到人脸图像复原模型,生成复原人脸图像。本发明基于扩散概率模型(DDPM)反向生成过程设计了一个受流形约束(Manifold Constrained)启发的额外校正项并引入语义扩散引导(Semantic Diffusion Guidance)框架控制生成过程,与之前的求解器协同使用,综合考虑了复原图像的正确性、真实性、一致性问题。
-
公开(公告)号:CN118314027A
公开(公告)日:2024-07-09
申请号:CN202410426734.X
申请日:2024-04-10
Applicant: 华侨大学
IPC: G06T5/00 , G06T5/70 , G06V10/774
Abstract: 本发明属于计算机视觉技术领域,具体涉及一种基于扩散后验采样的图像复原方法,包括制作数据集以及确定退化算子;构建基于VIT的扩散模型,采用影响因子机制改良扩散模型中的跳跃连接方式,采用数据集进行训练和测试得到噪声预测模型;利用训练好的噪声预测模型对图像进行预测输出扩散模型反向过程中所需的高斯噪声图;采用基于确定的退化算子并采用近似对数似然的后验采样机制在反向过程对的高斯噪声图进行不断的迭代去噪实现图像复原。本发明能够更好的注重图像的纹理细节,从而保证复原后图像的真实性与一致性,通过采用PSM和引入影响因子机制,DVIT网络能够保持高度真实性的条件下,以保证一致性,并且可以有效的加速采样速度。
-
-
-
-