一种基于图积分的单特征加密流检测方法及系统

    公开(公告)号:CN116886637A

    公开(公告)日:2023-10-13

    申请号:CN202311133687.1

    申请日:2023-09-05

    Abstract: 本发明提供一种基于图积分的单特征加密流检测方法及系统,所述方法的步骤包括:获取流量信息中的多个数据包,基于数据包的五元组信息将多个数据包分为多个数据流;获取数据流中数据包的第一特征值,基于数据包为上行数据包或下行数据包为第一特征值赋予第一标记或第二标记,得到第二特征值;将数据流中的第二特征值构建为特征序列,并构建上行流量交互图和下行流量交互图;基于上行流量交互图和中下行流量交互图节点的节点属性,对上行流量交互图和下行流量交互图进行图积分,得到上行流量积分图和下行流量积分图;将上行流量积分图和下行流量积分图进行拼接得到联合积分图,基于将联合积分图输入到预设的神经网络分类模型得到检测结果。

    基于深度强化学习的可迁移性网络流行为异常检测方法及装置

    公开(公告)号:CN114629699A

    公开(公告)日:2022-06-14

    申请号:CN202210224580.7

    申请日:2022-03-07

    Abstract: 本发明提供一种基于深度强化学习的可迁移性网络流行为异常检测方法及装置,所述方法包括模型训练阶段和流量识别阶段,模型训练阶段中,基于训练数据集中的数据点初始化环境;将训练数据集中的数据点作为本轮次的单轮训练集,将单轮训练集中的数据点逐个输入预设的智能体中进行训练;根据环境得到该数据点的状态组,将状态组输入到预设的智能体中,输出动作组,基于动作组输出数据点的数据类型;将输出的数据类型与数据点的标签类型进行比对,获取奖励值,对智能体中的参数进行更新;流量识别阶段中,接收待测流量数据,将待测流量数据中的数据点输入智能体得到数据点的数据类型。

    一种基于上下文分析的加密流威胁检测方法及系统

    公开(公告)号:CN117640252A

    公开(公告)日:2024-03-01

    申请号:CN202410097556.0

    申请日:2024-01-24

    Abstract: 本发明提供一种基于上下文分析的加密流威胁检测方法及系统,所述方法的步骤包括:获取待检测的原始网络流文件中的多个数据包的长度特征值,将全部数据包的长度特征值构建为原始长度序列;基于所述长度特征值在原始长度序列中的出现频率对每个所述长度特征值映射为编码值,得到所述原始长度序列对应的长度编码序列;将所述长度编码序列输入到预设的编码器中,所述编码器包括嵌入层和循环层,所述嵌入层向循环层输出编码向量,所述循环层输出上下文向量,将所述上下文向量输入到预设的解码器中,得到注意力向量;基于所述注意力向量和编码向量计算上下文长度序列,将所述上下文长度序列输入到训练的检测器中,得到威胁检测结果。

    一种基于图积分的单特征加密流检测方法及系统

    公开(公告)号:CN116886637B

    公开(公告)日:2023-12-19

    申请号:CN202311133687.1

    申请日:2023-09-05

    Abstract: 本发明提供一种基于图积分的单特征加密流检测方法及系统,所述方法的步骤包括:获取流量信息中的多个数据包,基于数据包的五元组信息将多个数据包分为多个数据流;获取数据流中数据包的第一特征值,基于数据包为上行数据包或下行数据包为第一特征值赋予第一标记或第二标记,得到第二特征值;将数据流中的第二特征值构建为特征序列,并构建上行流量交互图和下行流量交互图;基于上行流量交互图和中下行流量交互图节点的节点属性,对上行流量交互图和下行流量交互图进行图积分,得到上行流量积分图和下行流量积分图;将上行流量积分图和下行流量积分图进行拼接得到联合积分图,基于将联合积分图输入到预设的神经网络分类模型得到检测结果。

    基于深度强化学习的可迁移性网络流行为异常检测方法及装置

    公开(公告)号:CN114629699B

    公开(公告)日:2022-12-09

    申请号:CN202210224580.7

    申请日:2022-03-07

    Abstract: 本发明提供一种基于深度强化学习的可迁移性网络流行为异常检测方法及装置,所述方法包括模型训练阶段和流量识别阶段,模型训练阶段中,基于训练数据集中的数据点初始化环境;将训练数据集中的数据点作为本轮次的单轮训练集,将单轮训练集中的数据点逐个输入预设的智能体中进行训练;根据环境得到该数据点的状态组,将状态组输入到预设的智能体中,输出动作组,基于动作组输出数据点的数据类型;将输出的数据类型与数据点的标签类型进行比对,获取奖励值,对智能体中的参数进行更新;流量识别阶段中,接收待测流量数据,将待测流量数据中的数据点输入智能体得到数据点的数据类型。

    基于网络架构搜索的模型构建方法、装置及存储介质

    公开(公告)号:CN114707635A

    公开(公告)日:2022-07-05

    申请号:CN202210249994.5

    申请日:2022-03-14

    Abstract: 本发明提供一种基于网络架构搜索的模型构建方法、装置及存储介质,所述方法的步骤包括,将节点数和操作数进行组合,得到第一数量个构建方案,将构建方案对应的多维向量构建为初始种群;交叉变异获得新种群;新种群和初始种群融合为融合种群;基于搭建目标数量在杨辉三角中确定第一范围,基于融合种群在第一范围中划分第二范围,计算第二范围中的参数之和,为参考点数量,将参考点表示为参考点向量;采用非支配排序对融合种群中多维向量进行等级划分,基于阈值等级建立第一向量集;计算阈值等级下一等级的多维向量与参考点向量之间的距离,输出较近的多维向量为第二向量集;合并为目标向量集,目标向量集中的多维向量对应的构建方案为目标方案。

    一种基于上下文分析的加密流威胁检测方法及系统

    公开(公告)号:CN117640252B

    公开(公告)日:2024-03-26

    申请号:CN202410097556.0

    申请日:2024-01-24

    Abstract: 本发明提供一种基于上下文分析的加密流威胁检测方法及系统,所述方法的步骤包括:获取待检测的原始网络流文件中的多个数据包的长度特征值,将全部数据包的长度特征值构建为原始长度序列;基于所述长度特征值在原始长度序列中的出现频率对每个所述长度特征值映射为编码值,得到所述原始长度序列对应的长度编码序列;将所述长度编码序列输入到预设的编码器中,所述编码器包括嵌入层和循环层,所述嵌入层向循环层输出编码向量,所述循环层输出上下文向量,将所述上下文向量输入到预设的解码器中,得到注意力向量;基于所述注意力向量和编码向量计算上下文长度序列,将所述上下文长度序列输入到训练的检测器中,得到威胁检测结果。

    基于网络架构搜索的网络流入侵检测方法和系统

    公开(公告)号:CN117278332B

    公开(公告)日:2024-02-13

    申请号:CN202311555622.6

    申请日:2023-11-21

    Abstract: 本发明提供一种基于网络架构搜索的网络流入侵检测方法和系统,所述方法包括:在边缘物联网设备上预先部署有网络流入侵检测模型,基于所述网络流入侵检测模型对经过边缘物联网设备的流量进行分类以实现网络流入侵检测;其中,所述网络流入侵检测模型利用网络架构搜索模型构造得到,网络架构搜索模型中输入的训练数据为带标签的网络流数据集,在预先定义的搜索空间中进行搜索,并对搜索到的网络流入侵检测模型架构进行评估,所述搜索空间中包含全部可选的网络流入侵检测模型架构。本发明能够基于网络架构搜索技术在搜索空间查找轻量级的网络流入侵检测模型架构,从而部署模型在边缘物联网设备上,进行网络流入侵检测。

    基于网络架构搜索的网络流入侵检测方法和系统

    公开(公告)号:CN117278332A

    公开(公告)日:2023-12-22

    申请号:CN202311555622.6

    申请日:2023-11-21

    Abstract: 本发明提供一种基于网络架构搜索的网络流入侵检测方法和系统,所述方法包括:在边缘物联网设备上预先部署有网络流入侵检测模型,基于所述网络流入侵检测模型对经过边缘物联网设备的流量进行分类以实现网络流入侵检测;其中,所述网络流入侵检测模型利用网络架构搜索模型构造得到,网络架构搜索模型中输入的训练数据为带标签的网络流数据集,在预先定义的搜索空间中进行搜索,并对搜索到的网络流入侵检测模型架构进行评估,所述搜索空间中包含全部可选的网络流入侵检测模型架构。本发明能够基于网络架构搜索技术在搜索空间查找轻量级的网络流入侵检测模型架构,从而部署模型在边缘物联网设备上,进行网络流入侵检测。

Patent Agency Ranking