一种基于上下文分析的加密流威胁检测方法及系统

    公开(公告)号:CN117640252B

    公开(公告)日:2024-03-26

    申请号:CN202410097556.0

    申请日:2024-01-24

    Abstract: 本发明提供一种基于上下文分析的加密流威胁检测方法及系统,所述方法的步骤包括:获取待检测的原始网络流文件中的多个数据包的长度特征值,将全部数据包的长度特征值构建为原始长度序列;基于所述长度特征值在原始长度序列中的出现频率对每个所述长度特征值映射为编码值,得到所述原始长度序列对应的长度编码序列;将所述长度编码序列输入到预设的编码器中,所述编码器包括嵌入层和循环层,所述嵌入层向循环层输出编码向量,所述循环层输出上下文向量,将所述上下文向量输入到预设的解码器中,得到注意力向量;基于所述注意力向量和编码向量计算上下文长度序列,将所述上下文长度序列输入到训练的检测器中,得到威胁检测结果。

    程序代码漏洞检测模型训练方法及检测方法

    公开(公告)号:CN117725422B

    公开(公告)日:2024-05-07

    申请号:CN202410175190.4

    申请日:2024-02-07

    Abstract: 本申请提供一种程序代码漏洞检测模型训练方法及检测方法,所述程序代码漏洞检测模型训练方法包括将各个训练程序代码分别转换为程序依赖图和抽象语法树;基于预设的关键节点类型、各个训练程序各自对应的程序依赖图和抽象语法树生成多个漏洞检测图;基于各个训练程序代码中的多个程序代码语句的漏洞标记,对各个漏洞检测图进行细粒度分类,得到一个包含多种样本类型的漏洞检测图训练集;基于漏洞检测图训练集训练预先构建的异构图神经网络以得到用于细粒度漏洞检测图检测并输出细粒度漏洞检测结果的程序代码漏洞检测模型。本申请能够有效提高程序代码漏洞检测的准确性、有效提升细粒度漏洞检测的多样性,以及有效提升程序代码漏洞检测的泛化性。

    程序代码漏洞检测模型训练方法及检测方法

    公开(公告)号:CN117725422A

    公开(公告)日:2024-03-19

    申请号:CN202410175190.4

    申请日:2024-02-07

    Abstract: 本申请提供一种程序代码漏洞检测模型训练方法及检测方法,所述程序代码漏洞检测模型训练方法包括将各个训练程序代码分别转换为程序依赖图和抽象语法树;基于预设的关键节点类型、各个训练程序各自对应的程序依赖图和抽象语法树生成多个漏洞检测图;基于各个训练程序代码中的多个程序代码语句的漏洞标记,对各个漏洞检测图进行细粒度分类,得到一个包含多种样本类型的漏洞检测图训练集;基于漏洞检测图训练集训练预先构建的异构图神经网络以得到用于细粒度漏洞检测图检测并输出细粒度漏洞检测结果的程序代码漏洞检测模型。本申请能够有效提高程序代码漏洞检测的准确性、有效提升细粒度漏洞检测的多样性,以及有效提升程序代码漏洞检测的泛化性。

    一种基于上下文分析的加密流威胁检测方法及系统

    公开(公告)号:CN117640252A

    公开(公告)日:2024-03-01

    申请号:CN202410097556.0

    申请日:2024-01-24

    Abstract: 本发明提供一种基于上下文分析的加密流威胁检测方法及系统,所述方法的步骤包括:获取待检测的原始网络流文件中的多个数据包的长度特征值,将全部数据包的长度特征值构建为原始长度序列;基于所述长度特征值在原始长度序列中的出现频率对每个所述长度特征值映射为编码值,得到所述原始长度序列对应的长度编码序列;将所述长度编码序列输入到预设的编码器中,所述编码器包括嵌入层和循环层,所述嵌入层向循环层输出编码向量,所述循环层输出上下文向量,将所述上下文向量输入到预设的解码器中,得到注意力向量;基于所述注意力向量和编码向量计算上下文长度序列,将所述上下文长度序列输入到训练的检测器中,得到威胁检测结果。

Patent Agency Ranking