-
公开(公告)号:CN118747541A
公开(公告)日:2024-10-08
申请号:CN202410805661.5
申请日:2024-06-21
Applicant: 北京邮电大学
Abstract: 一种区块链驱动的智能电网联邦学习方法,属于智能电网领域,包括:描述智能电网系统;建立智能电网中联邦学习的优化目标;建立智能电网中数据的差异性度量方案;建立基于改进的MMD相似性度量的自适应聚合因子;节点认证与模型上链。本发明通过联邦学习使智能电网中的各个参与方可在本地设备上进行模型训练,打破了参与方间的数据孤岛,降低参与方本地数据泄露的风险;通过改进联邦学习算法引入MMD权重因子来提高模型的泛化能力和预测准确度;将区块链技术与联邦学习相结合,防止恶意节点攻击和干扰,并将联邦学习产生的本地模型及全局模型储存在区块链中,实现模型的溯源和防篡改,增强了系统透明度和可信度及数据可信度和模型安全性。
-
公开(公告)号:CN114418866B
公开(公告)日:2024-08-06
申请号:CN202111410413.3
申请日:2021-11-23
Applicant: 北京邮电大学
Abstract: 本发明公开了一种低采样率下的深度学习图像恢复方法,包括采样步骤和重建步骤,其中,采样部分引入离散小波变换,减少了由于应用单一尺度采样方法所丢失的高频部分内容,提高了方法的图像重建质量。将采样部分的矩阵乘法转换为半张量积的形式,显著减小了采样矩阵的大小,减少了矩阵的存储空间,节约了大量的计算资源。将AMP算法以去噪视角展开到深度卷积网络中,提高了图像的视觉效果和重建速度。在低采样率的条件下,与其他方法相比,本发明方法有着更好的量化指标和重建效果,在存储空间占用和运行时间方面有着优势,获得了更好的视觉效果。
-
公开(公告)号:CN118747540A
公开(公告)日:2024-10-08
申请号:CN202410805567.X
申请日:2024-06-21
Applicant: 北京邮电大学
Abstract: 一种面向数字孪生驱动的智能电网的自适应联邦学习方法,属于智能电网领域,包括:构建智能电网系统,智能电网系统中引入一个两层隐私计算架构,由电力设备层和数字孪生层组成;设计智能电网系统的通用数字孪生方案;区块链异步联邦学习工作流程;智能电网系统中过时本地模型问题定义、自适应聚合因子的设计以及委员会领导者选举:度量Station对训练任务的贡献度,并根据获得的贡献度利用权重随机选举算法选举委员会领导者。本发明通过将数字孪生技术、联邦学习和区块链技术相结合,提高了智能电网系统的实时性、响应能力、学习效率、准确性、安全性和可靠性,为智能电网系统的故障分析、运行决策等方面提供了全新的解决方案。
-
公开(公告)号:CN114065193B
公开(公告)日:2024-05-07
申请号:CN202111393890.3
申请日:2021-11-23
Applicant: 北京邮电大学
IPC: G06F21/55 , G06F21/62 , G06N3/0464 , G06N3/08 , G06F9/50
Abstract: 本发明公开了一种应用于边缘云环境下图像任务的深度学习安全方法,包括以下步骤:对AMP‑Net+模型进行训练,将AMP‑Net+应用于深度学习安全模型的图像重建过程;训练完成后整个AMP‑Net+通过结构化多重哈希映射对网络模型进行压缩减小后部署到边缘云网络设备中;当第三方用户需要获得边缘云上的数据时,第三方用户发出数据请求,通过用户认证后与边缘云建立通信;而后根据数据请求,通过提前部署的网络模型来恢复获得原始数据。本发明引入结构化多重散列方法对训练好的AMP‑Net+网络模型压缩,同时提出了一个新的用户认证和隐私保护安全协议,深度学习安全模型保证在图像任务中边缘云系统安全性的同时,在不影响图像恢复质量的前提下进一步降低了边缘云网络设备的开销。
-
公开(公告)号:CN115514787B
公开(公告)日:2023-06-27
申请号:CN202211130407.7
申请日:2022-09-16
Applicant: 北京邮电大学
IPC: H04L67/12 , H04B7/185 , G06N3/0499 , G06N3/045 , G06N3/084
Abstract: 本发明公开了一种用于车联网环境的智能无人机辅助决策规划方法及装置,首先将训练好的无人机辅助网络部署于多旋翼无人机上,得到智能无人机;其次创建道路信息数据库,将智能无人机部署在道路网络中收集实时数据;然后将智能无人机收集的实时数据输入三层人工神经网络的输入层,在隐藏层中对传入的信息进行数据预处理和预测,在输出层中对预测结果进行判断和决策,输出对车辆驱动部分的控制命令;最后对控制命令进行判断,再输出到目标车辆的驱动设备上,完成最终的驾驶行为转换。本发明提高了车辆决策规划的准确性,同时保证了信息的实时性,从而降低了决策的错误率,提高了对无人机的控制准确性,能够大面积覆盖道路,从而高效收集实时信息。
-
公开(公告)号:CN115514787A
公开(公告)日:2022-12-23
申请号:CN202211130407.7
申请日:2022-09-16
Applicant: 北京邮电大学
Abstract: 本发明公开了一种用于车联网环境的智能无人机辅助决策规划方法及装置,首先将训练好的无人机辅助网络部署于多旋翼无人机上,得到智能无人机;其次创建道路信息数据库,将智能无人机部署在道路网络中收集实时数据;然后将智能无人机收集的实时数据输入三层人工神经网络的输入层,在隐藏层中对传入的信息进行数据预处理和预测,在输出层中对预测结果进行判断和决策,输出对车辆驱动部分的控制命令;最后对控制命令进行判断,再输出到目标车辆的驱动设备上,完成最终的驾驶行为转换。本发明提高了车辆决策规划的准确性,同时保证了信息的实时性,从而降低了决策的错误率,提高了对无人机的控制准确性,能够大面积覆盖道路,从而高效收集实时信息。
-
公开(公告)号:CN114418866A
公开(公告)日:2022-04-29
申请号:CN202111410413.3
申请日:2021-11-23
Applicant: 北京邮电大学
Abstract: 本发明公开了一种低采样率下的深度学习图像恢复方法,包括采样步骤和重建步骤,其中,采样部分引入离散小波变换,减少了由于应用单一尺度采样方法所丢失的高频部分内容,提高了方法的图像重建质量。将采样部分的矩阵乘法转换为半张量积的形式,显著减小了采样矩阵的大小,减少了矩阵的存储空间,节约了大量的计算资源。将AMP算法以去噪视角展开到深度卷积网络中,提高了图像的视觉效果和重建速度。在低采样率的条件下,与其他方法相比,本发明方法有着更好的量化指标和重建效果,在存储空间占用和运行时间方面有着优势,获得了更好的视觉效果。
-
公开(公告)号:CN115002291B
公开(公告)日:2023-07-25
申请号:CN202210577089.2
申请日:2022-05-25
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于P张量秘密共享和多个数据隐藏器的信息隐藏方法,通过压缩感知技术处理原始图像以尽可能地减小影子图像的大小,并为信息隐藏者嵌入额外信息提供了便利,且由于压缩感知能够在采样的同时对信号压缩,因此,可实现较高的嵌入率。另外,将P张量积理论应用到矩阵运算当中,使用较小维数的测量矩阵同样可以处理高维信号,避免内存浪费,且P变换的矩阵是随机矩阵,可根据需求灵活地选择,所以经过P张量积运算的结果也更加多样,可以表示的矩阵也更多。在信息隐藏阶段,我们使用多个数据隐藏器进行信息嵌入,避免因单个信息隐藏器遭到损坏而不能恢复原始图像,提高信息隐藏模型的安全性。
-
公开(公告)号:CN115002291A
公开(公告)日:2022-09-02
申请号:CN202210577089.2
申请日:2022-05-25
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于P张量秘密共享和多个数据隐藏器的信息隐藏方法,通过压缩感知技术处理原始图像以尽可能地减小影子图像的大小,并为信息隐藏者嵌入额外信息提供了便利,且由于压缩感知能够在采样的同时对信号压缩,因此,可实现较高的嵌入率。另外,将P张量积理论应用到矩阵运算当中,使用较小维数的测量矩阵同样可以处理高维信号,避免内存浪费,且P变换的矩阵是随机矩阵,可根据需求灵活地选择,所以经过P张量积运算的结果也更加多样,可以表示的矩阵也更多。在信息隐藏阶段,我们使用多个数据隐藏器进行信息嵌入,避免因单个信息隐藏器遭到损坏而不能恢复原始图像,提高信息隐藏模型的安全性。
-
公开(公告)号:CN114065193A
公开(公告)日:2022-02-18
申请号:CN202111393890.3
申请日:2021-11-23
Applicant: 北京邮电大学
Abstract: 本发明公开了一种应用于边缘云环境下图像任务的深度学习安全方法,包括以下步骤:对AMP‑Net+模型进行训练,将AMP‑Net+应用于深度学习安全模型的图像重建过程;训练完成后整个AMP‑Net+通过结构化多重哈希映射对网络模型进行压缩减小后部署到边缘云网络设备中;当第三方用户需要获得边缘云上的数据时,第三方用户发出数据请求,通过用户认证后与边缘云建立通信;而后根据数据请求,通过提前部署的网络模型来恢复获得原始数据。本发明引入结构化多重散列方法对训练好的AMP‑Net+网络模型压缩,同时提出了一个新的用户认证和隐私保护安全协议,深度学习安全模型保证在图像任务中边缘云系统安全性的同时,在不影响图像恢复质量的前提下进一步降低了边缘云网络设备的开销。
-
-
-
-
-
-
-
-
-