-
公开(公告)号:CN1760407A
公开(公告)日:2006-04-19
申请号:CN200510114853.9
申请日:2005-11-18
Applicant: 北京工业大学
Abstract: 本发明属材料的表面物理化学领域。现有无机材料疏水性的研究,主要是用非晶碳薄膜,但难实现良好的透明性,且化学稳定性不如氮化硼薄膜。一种透明疏水的氮化硼薄膜制备方法,其特征在于,包括以下步骤:用常规气相沉积方法在作为基底的固体表面上沉积一层氮化硼薄膜,厚度在0.2微米到2.5微米的范围;然后将真空室中充入氩气,并控制工作气压在0.2~4.0Pa,施加射频电磁场,射频功率在50~200W,利用气体分子电离所产生的离子的对薄膜表面进行刻蚀,刻蚀时间控制在5~30分钟。为了提高刻蚀效果,可充入体积百分比为15%~80%的含氟气体。本发明的氮化硼薄膜表面不仅具有良好的疏水性能,并保持良好的透明性,适用于在需要透明、防雾、防水及易清洁的固体表面处理。
-
公开(公告)号:CN100577857C
公开(公告)日:2010-01-06
申请号:CN200810056012.0
申请日:2008-01-11
Applicant: 北京工业大学
IPC: C23C14/34
Abstract: 具有超疏水性能的多孔导电纳米铜薄膜材料的制备方法属于表面技术领域。目前还没有具有超疏水性能的同时并具备导电性能的多孔纳米铜膜的报道。所采用的技术方案是在固体表面先用高功率沉积一层金属铜薄膜,然后采用小功率溅射法对金属铜薄膜表面进行小功率溅射沉积。我们的研究表明,直接先沉积的一层金属铜表面接触角在90度左右,在经过稳定的小功率溅射沉积后,接触角在155℃左右,达到超疏水性,并同时保持良好的导电性能。本发明的纳米多孔薄膜材料不但具有超疏水性,并且比其它超疏水薄膜材料拥有较好的机械性能,优良的热传导性和良好的导电性能。该薄膜材料主要应用于微流器件、生物芯片、半导体芯片表面技术等领域。
-
公开(公告)号:CN101285168A
公开(公告)日:2008-10-15
申请号:CN200810056012.0
申请日:2008-01-11
Applicant: 北京工业大学
IPC: C23C14/34
Abstract: 具有超疏水性能的多孔导电纳米铜薄膜材料的制备方法属于表面技术领域。目前还没有具有超疏水性能的同时并具备导电性能的多孔纳米铜膜的报道。所采用的技术方案是在固体表面先用高功率沉积一层金属铜薄膜,然后采用小功率溅射法对金属铜薄膜表面进行小功率溅射沉积。我们的研究表明,直接先沉积的一层金属铜表面接触角在90度左右,在经过稳定的小功率溅射沉积后,接触角在155℃左右,达到超疏水性,并同时保持良好的导电性能。本发明的纳米多孔薄膜材料不但具有超疏水性,并且比其它超疏水薄膜材料拥有较好的机械性能,优良的热传导性和良好的导电性能。该薄膜材料主要应用于微流器件、生物芯片、半导体芯片表面技术等领域。
-
公开(公告)号:CN100347343C
公开(公告)日:2007-11-07
申请号:CN200510114853.9
申请日:2005-11-18
Applicant: 北京工业大学
Abstract: 本发明属材料的表面物理化学领域。现有无机材料疏水性的研究,主要是用非晶碳薄膜,但难实现良好的透明性,且化学稳定性不如氮化硼薄膜。一种透明疏水的氮化硼薄膜制备方法,其特征在于,包括以下步骤:用常规气相沉积方法在作为基底的固体表面上沉积一层氮化硼薄膜,厚度在0.2微米到2.5微米的范围;然后将真空室中充入氩气,并控制工作气压在0.2~4.0Pa,施加射频电磁场,射频功率在50~200W,利用气体分子电离所产生的离子的对薄膜表面进行刻蚀,刻蚀时间控制在5~30分钟。为了提高刻蚀效果,可充入体积百分比为15%~80%的含氟气体。本发明的氮化硼薄膜表面不仅具有良好的疏水性能,并保持良好的透明性,适用于在需要透明、防雾、防水及易清洁的固体表面处理。
-
-
-