-
公开(公告)号:CN104495742A
公开(公告)日:2015-04-08
申请号:CN201410767125.7
申请日:2014-12-15
Applicant: 北京大学
IPC: B81C1/00
Abstract: 本发明公开了一种制备表面等离子体激元耦合结构纳米阵列的方法。其步骤包括:采用电子束曝光制作的纳米级刻蚀掩模对衬底进行深反应离子刻蚀,再进行金属镀膜得到所述三维“金属纳米结构阵列-纳米间隔层-金属薄膜”结构。金属纳米结构发生光子与自由电子局域电磁场共振产生很强的局域表面等离子体激元,且其衍射效应提供波矢补偿激发金属薄膜的传播型表面等离子体激元,形成局域表面等离子体激元-传播型表面等离子体激元耦合,将光束缚在纳米尺度,引发金属与介质界面非常强的表面局域近场增强。本发明制作的结构将促进表面等离子体激元的新机理探索,在超材料、超高灵敏光学生物传感等领域有着重要的应用前景。
-
公开(公告)号:CN105824228A
公开(公告)日:2016-08-03
申请号:CN201610144405.1
申请日:2016-03-15
Applicant: 北京大学
CPC classification number: G03H1/0005 , B82Y40/00
Abstract: 本发明公开了一种基于表面等离子体耦合结构的全息成像膜。采用电子束光刻,制备非对称的纳米结构层。该纳米加工技术采用Bosch工艺反应离子刻蚀工艺,利用SF6进行刻蚀,用C4F6生成聚合物,刻蚀钝化交替,其横向钻蚀形成扇贝状的侧壁形貌,最终获得介质纳米柱,在垂直于衬底方向沉积金属薄膜,获得“金属纳米结构?金属薄膜”耦合结构。该亚波长尺度耦合结构超材料在可见光光谱中表现出谐波共振和暗场激发等离子共振模式,产生多共振峰窄带共振,非对称的上层纳米结构使得反射阵列对不同入射场具有灵敏的色彩响应和高反射率,因此反射阵列能够应用于彩色全息成像的全息成像膜,可实时再现物体真实的三维图像的记录和再现,真正的空间成像、色彩鲜艳,对比度,清晰度高在商品展示、影视制作、艺术创作等领域有重要应用前景。
-
公开(公告)号:CN105347295A
公开(公告)日:2016-02-24
申请号:CN201510574495.3
申请日:2015-09-11
Applicant: 北京大学
Abstract: 本发明公开了一种利用聚焦离子束和MEMS加工工艺制备可调控超材料阵列的方法,可用于平面光学元部件构造,并应用于通信、电磁传感以及成像领域(包括毫米波、太赫兹、红外波段范围)。其优点如下:1)通过MEMS工艺加工得到悬浮型双金属谐振环超材料阵列,尺寸可控制在微米以及亚微米量级,其负折射率特性的谐振频率可在毫米波、太赫兹(THz)或红外波段;2)通过FIB辐照,在内谐振环固支端引入应力,通过控制FIB的加速电压、轰击束流、作用时间和辐照图案,可精确控制超材料每个单元中悬浮内谐振环结构的翘曲角度(-40°至+120°);3)超材料阵列的负折射率的谐振频率可调,通过选择加工参数,可精确控制电磁波的振幅、相位以及出射方向。
-
公开(公告)号:CN105259600A
公开(公告)日:2016-01-20
申请号:CN201510582970.1
申请日:2015-09-15
Applicant: 北京大学
IPC: G02B5/00
CPC classification number: G02B5/008
Abstract: 本发明公开了一种纳米超材料调色板及其制备方法。采用电子束光刻和反应离子刻蚀工艺,利用横向钻蚀效应在衬底上获得悬浮于介质层之上的亚波长尺度周期性结构阵列,在垂直于衬底方向沉积金属薄膜,形成金属纳米结构阵列-金属互补纳米结构阵列薄膜耦合结构。该亚波长尺度超材料在可见光光谱中表现出混合表面等离子共振模式,产生特殊的光学响应:多共振峰,FANO共振,角度依赖的光谱可调性,数十万倍的场增强,因此能够在结构单元获得连续可调的色彩。这种纳米超材料调色板能够产生CIE色品图中的全色域色彩,而且色彩像素缩小到一百至数百纳米。这项技术将在商品生产、高清显示、艺术创作、方位传感、光子密码及信息存储等领域有重要应用前景。
-
公开(公告)号:CN105824228B
公开(公告)日:2019-01-11
申请号:CN201610144405.1
申请日:2016-03-15
Applicant: 北京大学
Abstract: 本发明公开了一种基于表面等离子体耦合结构的全息成像膜。采用电子束光刻,制备非对称的纳米结构层。该纳米加工技术采用Bosch工艺反应离子刻蚀工艺,利用SF6进行刻蚀,用C4F6生成聚合物,刻蚀钝化交替,其横向钻蚀形成扇贝状的侧壁形貌,最终获得介质纳米柱,在垂直于衬底方向沉积金属薄膜,获得“金属纳米结构‑金属薄膜”耦合结构。该亚波长尺度耦合结构超材料在可见光光谱中表现出谐波共振和暗场激发等离子共振模式,产生多共振峰窄带共振,非对称的上层纳米结构使得反射阵列对不同入射场具有灵敏的色彩响应和高反射率,因此反射阵列能够应用于彩色全息成像的全息成像膜,可实时再现物体真实的三维图像的记录和再现,真正的空间成像、色彩鲜艳,对比度,清晰度高在商品展示、影视制作、艺术创作等领域有重要应用前景。
-
公开(公告)号:CN105244624A
公开(公告)日:2016-01-13
申请号:CN201510574493.4
申请日:2015-09-11
Applicant: 北京大学
Abstract: 本发明公开了利用聚焦离子束与MEMS工艺制备0.1THz的加脊喇叭天线的方法,适用于太赫兹通信领域。本发明的结构设计优点如下:1)通过MEMS体硅工艺加工得到喇叭天线,具有微米级尺寸,突破了传统工艺极限;2)该工艺特点为并行加工,将大大降低加工成本;3)通过喷胶和光刻工艺,将正面无需电镀的区域保护住,有效避免了金属对天线性能的干扰;3)通过定位槽的设计,有利于后续测试接口的连接;4)通过聚焦离子束刻蚀在喇叭内壁制作各类加脊结构,可以有效地调整天线性能,扩展其适用性。
-
公开(公告)号:CN105347295B
公开(公告)日:2017-03-29
申请号:CN201510574495.3
申请日:2015-09-11
Applicant: 北京大学
Abstract: 本发明公开了一种利用聚焦离子束和MEMS加工工艺制备可调控超材料阵列的方法,可用于平面光学元部件构造,并应用于通信、电磁传感以及成像领域(包括毫米波、太赫兹、红外波段范围)。其优点如下:1)通过MEMS工艺加工得到悬浮型双金属谐振环超材料阵列,尺寸可控制在微米以及亚微米量级,其负折射率特性的谐振频率可在毫米波、太赫兹(THz)或红外波段;2)通过FIB辐照,在内谐振环固支端引入应力,通过控制FIB的加速电压、轰击束流、作用时间和辐照图案,可精确控制超材料单元中悬浮内谐振环结构的翘曲角度(-40°至+120°);3)超材料阵列的负折射率的谐振频率可调,通过选择加工参数,可精确控制电磁波的振幅、相位以及出射方向。
-
公开(公告)号:CN104495742B
公开(公告)日:2017-03-22
申请号:CN201410767125.7
申请日:2014-12-15
Applicant: 北京大学
IPC: B81C1/00
Abstract: 本发明公开了一种制备表面等离子体激元耦合结构纳米阵列的方法。其步骤包括:采用电子束曝光制作的纳米级刻蚀掩模对衬底进行深反应离子刻蚀,再进行金属镀膜得到所述三维金属纳米结构阵列-纳米间隔层-金属薄膜”结构。金属纳米结构发生光子与自由电子局域电磁场共振产生很强的局域表面等离子体激元,且其衍射效应提供波矢补偿激发金属薄膜的传播型表面等离子体激元,形成局域表面等离子体激元-传播型表面等离子体激元耦合,将光束缚在纳米尺度,引发金属与介质界面非常强的表面局域近场增强。本发明制作的结构将促进表面等离子体激元的新机理探索,在超材料、超高灵敏光学生物传感等领域有着重要的应用前景。
-
公开(公告)号:CN105344387A
公开(公告)日:2016-02-24
申请号:CN201510574494.9
申请日:2015-09-11
Applicant: 北京大学
Abstract: 一种基于聚焦离子束和MEMS加工方法的纳米网孔薄膜微流控器件的设计。本发明公开了一种使用聚焦离子束加工纳米网孔微流控器件的方法。包括如下步骤:1)利用KOH腐蚀掏空衬底背腔,使制备纳米网孔的区域悬空。2)设计“初始干扰”图形,并借助FIB将其预置在所得悬浮薄膜上,以诱导瑞利不稳定性方向。进行FIB大面积扫描,通过控制FIB能量、剂量、扫描布局、扫描时间以及驻留时间,制得悬浮的光滑表面纳米网孔薄膜结构。3)在制作纳米网孔上,通过淀积、溅射工艺以及与PDMS流道的键合,制得纳米网孔微流控器件。4)通过调节金属电极两端电压,控制金属网孔外介质层表面双电层的特性,可对溶液中目标物质的控制与检测。5)通过精确控制纳米网孔尺寸参数,进一步增强器件控制与检测的能力和适用性。
-
-
-
-
-
-
-
-