-
公开(公告)号:CN109324504B
公开(公告)日:2021-08-10
申请号:CN201811470352.8
申请日:2018-12-04
Applicant: 东北大学
IPC: G05B13/02
Abstract: 本发明提出基于全局积分滑模的三阶严反馈混沌比例投影同步方法,包括以下步骤:步骤1:根据三阶严反馈混沌系统的状态方程建立驱动系统和响应系统,并建立比例投影同步误差系统;步骤2:设计全局积分滑模面和自适应指数趋近律;步骤3:设计全局积分滑模控制器对比例投影同步误差系统进行控制,形成闭环系统,该闭环控制系统能实现驱动系统和响应系统的比例投影同步控制。通过Lyapunov稳定性理论对闭环系统的稳定性进行证明。在建模不确定和外部干扰信号的情况下,只采用单一的全局积分滑模控制器实现了不同初始状态同构或异构三阶严反馈混沌的比例投影同步控制。实验仿真结果表明了该方法的有效性,并具有很好的鲁棒性和可靠性。
-
公开(公告)号:CN108762093B
公开(公告)日:2021-06-01
申请号:CN201810757081.8
申请日:2018-07-11
Applicant: 东北大学
IPC: G05B13/04
Abstract: 本发明提供一种改进极点配置的同维混沌全局混合投影同步方法,包括步骤1:根据维数相同的驱动系统和响应系统状态方程,建立全局混合投影同步误差系统;步骤2:将极点配置方法和自适应滑模控制器相结合,设计自适应率对建模不确定和外部干扰信号的上界进行估计,设计控制器对全局混合投影同步误差系统进行控制;通过Lyapunov稳定性理论证明,全局混合投影同步误差渐进收敛到零,能够实现驱动系统和响应系统的全局混合投影同步。本发明中对于维数相同的任意混沌都适用,具有响应速度快、很好的鲁棒性和很高的可靠性。投影同步的速度非常快,在建模不确定和外部干扰信号下,实现不同初始状态驱动系统和响应系统的全局混合投影同步。
-
公开(公告)号:CN108646570B
公开(公告)日:2021-06-01
申请号:CN201810757912.1
申请日:2018-07-11
Applicant: 东北大学
IPC: G05B13/04
Abstract: 本发明提出一种改进极点配置的混沌轨迹跟踪方法,属于自动控制技术领域。具体包括:根据混沌系统的状态方程和期望轨迹,建立轨迹跟踪误差系统;将极点配置方法和自适应滑模控制器相结合设计控制器,并设计自适应率对建模不确定和外部干扰信号的上界进行估计,所述控制器对轨迹跟踪误差系统进行控制。通过自适应率对建模不确定和外部干扰信号的上界进行估计,设计控制器对不同初始状态混沌进行轨迹跟踪控制,既发挥极点配置方法的优点,又克服建模不确定和外部干扰信号的影响,具有很好的鲁棒性和很高的可靠性。通过Lyapunov稳定性理论证明轨迹跟踪误差渐进收敛到零,能实现混沌系统轨迹跟踪。本发明中对于所有的混沌系统都适用,轨迹跟踪的速度非常快。
-
公开(公告)号:CN110018636A
公开(公告)日:2019-07-16
申请号:CN201910406246.1
申请日:2019-05-16
Applicant: 东北大学
IPC: G05B13/02
Abstract: 本发明属于自动控制技术领域,尤其涉及一种饱和约束下三阶严反馈混沌比例投影同步方法,包括如下步骤:S1、根据驱动系统方程和响应系统方程建立比例投影同步误差系统方程;S2、采用改进的全局滑模面方程和组合趋近律方程建立全局滑模控制器方程,并采用饱和约束下的全局滑模控制器方程对比例投影同步误差系统方程进行平衡控制;其中,组合趋近律方程为采用双幂次趋近律方程和等速趋近律方程建立的组合方程。本发明提供的比例投影同步方法,采用改进的全局滑模面和组合趋近律建立全局滑模控制器方程,在饱和约束下的全局滑模控制器方程对比例投影同步误差系统方程进行平衡控制,实现驱动系统和响应系统的比例投影同步控制。
-
公开(公告)号:CN109298636A
公开(公告)日:2019-02-01
申请号:CN201811389100.2
申请日:2018-11-21
Applicant: 东北大学
IPC: G05B13/04
Abstract: 本发明提出了一种改进的积分滑模控制方法,流程包括:对于二阶非线性系统,设计改进的积分滑模面,并采用该滑模面和指数趋近律设计滑模控制器;该单一的滑模控制器对二阶非线性系统进行平衡控制,形成闭环系统,该闭环系统实现二阶非线性系统的平衡控制,通过Lyapunov稳定性理论对闭环系统的稳定性进行证明,对建模不确定和外部干扰信号具有鲁棒性。为了削弱抖振的影响,在滑模控制器中采用饱和函数代替符号函数。在建模不确定和外部干扰信号的情况下,所设计的滑模控制器能够实现不同初始状态二阶非线性系统的平衡控制。实验仿真结果表明该方法具有非常快的收敛速度,并具有很好的鲁棒性和可靠性。
-
公开(公告)号:CN101569569A
公开(公告)日:2009-11-04
申请号:CN200910011998.4
申请日:2009-06-12
Applicant: 东北大学
IPC: A61F2/72
Abstract: 微功率无线通讯模式下人脑-机械手接口系统,属于生物医学工程和机械电子工程的交叉领域,包括信号采集设备、由计算机完成的信号分析模块和无线通讯模块,其中信号采集设备采集脑电信号,脑电信号进入计算机,信号分析模块采用功率谱密度分析,检测脑电信号A,B,C三个频率点功率谱密度,A,B,C三点频率在2~30Hz,当频率点的功率谱密度在[2,50]微伏之间,取该频率点特征信息为1,否则为0;脑电信号形成由三个二进制数值组成的特征信息,特征信息通过无线通讯模块发送给机械手。本发明采用多通道的脑电数据获取方式,无线方式可以更好的解决这一问题,且方便使用者佩戴该设备。
-
公开(公告)号:CN109298636B
公开(公告)日:2021-08-10
申请号:CN201811389100.2
申请日:2018-11-21
Applicant: 东北大学
IPC: G05B13/04
Abstract: 本发明提出了一种改进的积分滑模控制方法,流程包括:对于二阶非线性系统,设计改进的积分滑模面,并采用该滑模面和指数趋近律设计滑模控制器;该单一的滑模控制器对二阶非线性系统进行平衡控制,形成闭环系统,该闭环系统实现二阶非线性系统的平衡控制,通过Lyapunov稳定性理论对闭环系统的稳定性进行证明,对建模不确定和外部干扰信号具有鲁棒性。为了削弱抖振的影响,在滑模控制器中采用饱和函数代替符号函数。在建模不确定和外部干扰信号的情况下,所设计的滑模控制器能够实现不同初始状态二阶非线性系统的平衡控制。实验仿真结果表明该方法具有非常快的收敛速度,并具有很好的鲁棒性和可靠性。
-
公开(公告)号:CN109212961B
公开(公告)日:2021-08-10
申请号:CN201811389096.X
申请日:2018-11-21
Applicant: 东北大学
IPC: G05B13/02
Abstract: 本发明提出一种不同维数混沌系统的全局混合投影同步方法,流程包括:驱动系统的维数为n,响应系统的维数为m,根据驱动系统和响应系统的状态方程建立全局混合投影同步误差系统;设计滑模面;设定指数趋近律;将极点配置方法和滑模控制方法相结合,设计控制器;所述控制器对全局混合投影同步误差系统进行平衡控制,形成闭环系统,该闭环系统实现不同维数混沌系统的全局混合投影同步控制;通过Lyapunov稳定性理论证明全局混合投影同步误差渐进收敛到零,能够实现不同维数混沌系统的全局混合投影同步。实验仿真结果表明了该方法的有效性,全局混合投影同步的速度非常快,对建模不确定和外部干扰信号具有鲁棒性。
-
公开(公告)号:CN109062034B
公开(公告)日:2021-08-10
申请号:CN201811136566.1
申请日:2018-09-28
Applicant: 东北大学
IPC: G05B13/02
Abstract: 本发明提出一种改进双幂次趋近律滑模的三阶严反馈系统控制方法,属于自动控制技术领域,流程包括:定义三阶严反馈系统的状态方程;基于三阶严反馈系统,设计滑模面和改进的双幂次趋近律;设计滑模控制器;使用所述滑模控制器对三阶严反馈系统进行平衡控制,形成闭环系统,该闭环系统能够实现三阶严反馈系统的平衡控制。提出了改进的双幂次趋近律,改进双幂次趋近律中的参数随时间进行动态调整,通过改进的双幂次趋近律设计了滑模控制器,采用该滑模控制器进行不同初始状态三阶严反馈系统的平衡控制,能够降低控制输入的幅值,对滑模控制器的工程应用具有重要的实际意义。
-
公开(公告)号:CN108873690B
公开(公告)日:2021-06-01
申请号:CN201810996273.4
申请日:2018-08-29
Applicant: 东北大学
IPC: G05B13/02
Abstract: 本发明提供一种二阶严反馈混沌系统的轨迹跟踪方法,涉及自动控制技术领域。本发明包括以下步骤:步骤1:通过带有建模不确定和外部干扰信号的受控二阶严反馈混沌系统和期望轨迹,建立轨迹跟踪误差系统;步骤2:设计非奇异快速终端滑模面和自适应指数趋近律;步骤3:设计自适应率对建模不确定和外部干扰信号的上界进行估计,设计非奇异快速终端滑模控制器对二阶严反馈混沌进行轨迹跟踪控制,形成闭环系统,实现二阶严反馈混沌系统的轨迹跟踪控制,通过Lyapunov稳定性理论对闭环系统稳定性进行证明。本发明在建模不确定和外部干扰信号的情况下,非奇异快速终端滑模控制器实现不同初始状态二阶严反馈混沌系统的轨迹跟踪控制,并具有很好的鲁棒性。
-
-
-
-
-
-
-
-
-