一种三氧化二锑-碳纳米管复合材料及其制备和应用

    公开(公告)号:CN111710532B

    公开(公告)日:2022-08-23

    申请号:CN202010432052.1

    申请日:2020-05-20

    Abstract: 本发明涉及一种三氧化二锑‑碳纳米管复合材料及其制备和应用,该制备方法包括以下步骤:(1)取碳纳米管置于容器中,加入浓H2SO4与浓HNO3的混合溶液,搅拌均匀后,水浴加热反应,所得产物洗涤至中性,干燥,即得到m‑CNTs;(2)将所得m‑CNTs分散于甲醇与乙醇的混合溶液中,再加入SbCl2,恒温水浴搅拌至完全溶解后,转移至反应釜中水热反应,待反应结束后,洗涤干燥,得到Sb/CNTs;(3)再将所得Sb/CNTs在惰性气体分为下高温煅烧,即得到目的产物。与现有技术相比,本发明制备的Sb2O3/碳纳米管复合材料具有比表面积大、孔隙度大、孔隙体积大、隧道有序等优点,可达到良好的电化学性能。

    一种Zn-Cu-Se复合材料及其制备方法与应用

    公开(公告)号:CN111326347B

    公开(公告)日:2021-12-07

    申请号:CN202010127638.7

    申请日:2020-02-28

    Abstract: 本发明涉及一种Zn‑Cu‑Se复合材料及其制备方法与应用,其制备方法包括以下步骤:(1)将可溶性锌盐、可溶性铜盐、尿素和氟化铵溶于水中,搅拌均匀后进行一次水热反应,再经离心、洗涤、干燥,得到Zn‑Cu前体;(2)将所制得的Zn‑Cu前体与亚硒酸钠溶于水中搅拌分散,加入氨水,形成均匀的悬浮液,再进行第二次水热反应,再经离心、洗涤、干燥,即得到Zn‑Cu‑Se复合材料。与现有技术相比,本发明通过两步水热合成了Zn‑Cu‑Se复合材料,该复合材料具有良好的电化学性能,且复合材料制备方法简单,环境友好,大大缩短了合成时间。

    一种Co-Mn-S复合材料及其制备方法和应用

    公开(公告)号:CN110797206A

    公开(公告)日:2020-02-14

    申请号:CN201911053422.4

    申请日:2019-10-31

    Abstract: 本发明涉及一种Co-Mn-S复合材料及其制备方法和应用,制备方法包括以下步骤:S1:制备ZIF-67;S2:将ZIF-67分散于水中,然后加入到可溶性锰盐和硫脲的混合溶液中,并放入高压釜中反应,反应后的产物洗涤、干燥,得到Co-Mn硫化物前驱体;S3:将Co-Mn硫化物前驱体在氩气条件下煅烧,得到目标产物;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明复合材料的制备方法环境友好、简单方便,便于大规模生产高纯度的Co-Mn-S复合材料,且Co-Mn-S复合材料具有高比表面积、高比电容、良好的循环性能和高能量密度,电化学性能优异,可进一步制备成工作电极,用于超级电容器。

    一种MnS@CoMn-LDH复合材料及其制备方法与应用

    公开(公告)号:CN110211812A

    公开(公告)日:2019-09-06

    申请号:CN201910517909.7

    申请日:2019-06-14

    Abstract: 本发明涉及一种MnS@CoMn-LDH复合材料及其制备方法与应用,复合材料的制备方法包括以下步骤:1)将可溶性锰盐溶于水中,之后加入硫化物,并进行一次水热反应,后经离心、洗涤、干燥,得到MnS;2)将可溶性锰盐、可溶性钴盐、氟化铵及尿素溶于水中,之后加入MnS,并进行二次水热反应,后经冷却、离心、洗涤、干燥,即得到MnS@CoMn-LDH复合材料;将复合材料制备成工作电极,用于超级电容器中。与现有技术相比,本发明通过两步水热合成了MnS@CoMn-LDH复合材料,该复合材料含有丰富的中孔和微孔,以达到良好的电化学性能,且复合材料制备方法简单,环境友好,大大缩短了合成时间,便于大规模生产高纯度的MnS@CoMn-LDH复合材料。

    一种镍钴氧化物/氮掺杂石墨烯复合材料的制备方法

    公开(公告)号:CN110189921A

    公开(公告)日:2019-08-30

    申请号:CN201910469004.7

    申请日:2019-05-31

    Abstract: 本发明涉及一种NiCo2O4/氮掺杂石墨烯复合材料的制备方法,包括以下步骤:S1:将氯化钴六水合物、氯化镍六水合物和尿素溶解在去离子水中,形成溶液;S2:将氧化石墨烯加入到乙醇中,得到氧化石墨烯分散液;S3:将S1中获得的溶液加入到S2中获得的氧化石墨烯分散液中,加入氨水使得PH到达10,得到前驱体悬浮液;S4:将S3中获得的前驱体悬浮液转移至高压釜中进行水热反应6~12h,反应结束后冷却至室温,获得反应液;S5:将S4中获得的反应液用水和乙醇洗涤,冻干,得到NiCo2O4/氮掺杂石墨烯粉末。与现有技术相比,本发明通过简单的一步水热法合成了NiCo2O4/氮掺杂石墨烯复合材料,含有丰富的中孔和微孔,具有多层分级核壳结构,粒径大小均匀,具有良好的电化学性能。

    用于超级电容器的纳米硫化镍/氮掺杂多孔碳复合材料的制备方法

    公开(公告)号:CN111333129B

    公开(公告)日:2022-08-23

    申请号:CN202010127566.6

    申请日:2020-02-28

    Abstract: 本发明涉及用于超级电容器的纳米硫化镍/氮掺杂多孔碳复合材料的制备方法,包括以下步骤:(1)取榴莲皮去掉外皮切块,洗涤干燥后研磨成粉末,过筛,高温一次煅烧;(2)取一次煅烧样品与KOH和去离子水混合,烘干后高温二次煅烧;(3)将次煅烧样品洗涤至中性后,得到多孔碳材料;(4)将六水合硝酸镍、氟化铵、尿素溶于水中,搅拌均匀后加入硫脲,再加入多孔碳材料,水热处理,冷却至室温,洗涤干燥,即得到目的产物。与现有技术相比,本发明以天然废弃物榴莲皮为碳前驱体,节约成本,廉价环保,属于绿色工艺,所制备的纳米Ni3S2/氮掺杂多孔碳复合材料增强了赝电容超级电容器的导电性、功率密度和循环稳定性,提供了优良的电化学性能。

    一种Ce-NiO@Ni-MOF复合材料及其制备方法和应用

    公开(公告)号:CN111710531B

    公开(公告)日:2022-04-05

    申请号:CN202010431802.3

    申请日:2020-05-20

    Abstract: 本发明涉及一种Ce‑NiO@Ni‑MOF复合材料及其制备方法和应用,所述制备方法包括以下制备步骤:S1:将镍源、铈源和草酸溶于有机溶剂中,混合均匀后进行水热反应,再经冷却、洗涤、干燥后,得到中间产物;S2:煅烧步骤S1中得到的中间产物,得到Ce‑NiO;S3:将步骤S2中得到的Ce‑NiO加入到1,3,5‑三甲磺酸和DMF的混合溶液中,搅拌均匀后进行水热反应,再经冷却、洗涤、干燥后,得到Ce‑NiO@Ni‑MOF复合材料。与现有技术相比,本发明的Ce‑NiO@Ni‑MOF复合材料具有高固有电导率、高比电容、高导电性以及更好的循环稳定性,制备方法采用的原料无污染,制备过程中产生的溶剂无毒。

Patent Agency Ranking