一种面向物联网设备异质性的联邦学习优化方法
摘要:
本发明公开了一种面向物联网设备异质性的联邦学习优化方法,所述方法包括如下步骤:步骤一、联邦学习参与设备数据增强方法设计;步骤二、联邦学习参与者选择方法设计;步骤三、联邦学习参与设备异质性优化方法设计。本发明在不侵犯用户隐私的前提下,收集部分用户数据以及用户模型训练相关信息。利用收集的信息,增强设备数据使其符合独立同分布,缓解数据异质性带来的影响。同时,这部分信息还被用于筛选每轮训练的参与者,加快了每轮训练的完成时间,有效缓解了数据异质性带来的影响。通过上述两种优化,提高了联邦学习联合建模的效率和精度。
0/0