基于EEG脑电信号数据的状态分类方法
摘要:
本发明提供一种基于EEG脑电信号数据的状态分类方法,包括以下步骤:S1,获取不同分类的EEG脑电信号数据、以及相应的垂直和水平眼电信号数据;S2,EEG脑电信号数据预处理;S3,基于过程的特征提取;S4,使用频‑空特征向量训练分类模型;S5,对样本空间的不同测试集数据进行分类。本发明采用多域特征提取的方法有效并最大程度上保证了提取的特征中所包含的信息量,将空间和频率两域的融合体现在了方法过程中,减少了多域特征融合后降维的步骤,提高了算法效率。
公开/授权文献
0/0