基于时序交通事件的城市道路拥堵程度预测方法
Abstract:
本发明涉及一种基于时序交通事件的城市道路拥堵程度预测方法,步骤为:S1:获取城市路段的历史交通事件数据、实时交通事件数据和视频监测数据;S2:通过3D CNN识别视频数据中的交通拥堵前兆事件,结合历史交通事件进行数据时空融合;S3:确立拥堵程度分类标签,构建时序交通拥堵事件数据字典,筛选训练集、验证集和测试集;S4:建立LSTM序列数据分类模型,输入训练集,利用梯度下降法迭代更新模型参数;S5:验证集输入到参数更新后的模型,优化调整超参数,选取最优模型;S6:测试集输入到最优训练模型,检验模型的有效性,并结合实时交通监测数据进行道路拥堵预测。本发明利用LSTM建立序列数据分类模型,基于时序交通事件实现城市道路拥堵程度的预测。
Public/Granted literature
Patent Agency Ranking
0/0