US11596084B2
A thermal module with a heat pipe configured with a first portion configured for contact with an edge of a plurality of fins in a fin stack, a second portion configured for contact with a side of one fin in the fin stack and a sharp angled bend is formed between the first portion and the second portion to fluidly isolate the first portion from the second portion. The first portion comprises a usable length of the heat pipe that efficiently transfers heat based on phase transitioning by the fluid. The second portion is formed from at least some of the unusable length of the heat pipe. By configuring the heat pipe such that more fins contact the usable length of the heat pipe, heat transfer from the heat pipe to the fin stack is increased.
US11596083B2
Systems and methods are disclosed for a liquid cooling module for an information handling system that may include a mounting card configured to mount the liquid cooling module to a card slot proximate to a graphics card; a radiator inlet configured to receive a heated liquid from a pump of the graphics card; a radiator inlet tube configured to transfer the heated liquid from the graphics card to the liquid cooling module; a radiator configured to receive the heated liquid via a radiator inlet; a blower configured to direct a surrounding air flow across the radiator to cool the heated liquid; a radiator outlet configured to receive the cooled liquid from the radiator; and a radiator outlet tube configured to transfer the cooled liquid from the liquid cooling module to the graphics card.
US11596079B2
Tools and techniques are described to automate commissioning of physical spaces. Controllers have access to databases of the devices that are controlled by them, including wiring diagrams and protocols, such that the controller can automatically check that each wire responds correctly to stimulus from the controller. Controllers also have access to databases of the physical space such that they can check that sensors in the space record the correct information for device activity, and sensors can cross-check each other for consistency. Once a physical space is commissioned, incentives can be sought based on commissioning results.
US11596071B2
An apparatus for producing a printed circuit board on a substrate, has a table for supporting the substrate, a function head configured to effect printing conductive and non-conductive materials on the substrate, a positioner configured to effect movement of the function head relative to the table, and a controller configured to operate the function head and the positioner to effect the printing of conductive and non-conductive materials on the substrate. The apparatus optionally has a layout translation module configured to convert PCB files or multilayer PCB files to printing data for controlling the function head to print conductive material and nonconductive material onto the substrate. The apparatus has a testing head to verify conductors which operates automatically. The translation module also prints nonconductive material component alignment areas and nonconductive material substrate stiffeners.
US11596070B2
An apparatus is used in preparing a printed circuit board (PCB). The apparatus can include a common chassis, an inkjet printer mounted on the common chassis, and a pattern exposer mounted on the common chassis. The inkjet printer can selectively print unexposed photosensitive patterns on a PCB substrate with a photosensitive ink. The pattern exposer can expose said photosensitive patterns to radiation thereby defining exposed patterns. A photosensitive ink for use in an ink jet printer can include a photoresist, a solvent, a humectant, a surfactant, an adhesion promoter, and a basic solution. The adhesion promoter is operative to increase anisotropy of a wet etching process of a copper component on which said photosensitive ink is printed.
US11596068B2
The application discloses a dual-layer display assembly and a display device. The dual-layer display assembly includes a first display screen, a second display screen, a first print circuit board, a second print circuit board and a fixing structure, where the second display screen is arranged in layers with the first display screen; the first print circuit board drives the first display screen; the second print circuit board drives the second display screen; and the fixing structure connects and fixes the first print circuit board and the second print circuit board.
US11596067B2
An apparatus having stacked circuit boards has been disclosed. The apparatus includes a main circuit board and a sub circuit board disposed over the main circuit board. A plurality of sub components disposed on a bottom face of the sub circuit board penetrates through main circuit board and extends towards a bottom face of the main circuit board. In this say, a compact apparatus is produced.
US11596054B2
Embodiments are directed to a method of manufacturing the printed circuit board. The PCB is a multi-layer component, including a dielectric material and an intermediate or second layer adjacently positioned with respect to the dielectric material. The intermediate layer or second layer includes a conductor and fiberglass strands, with the fiberglass strands having an associated orientation. When assembled, the fiberglass and the conductor have a matching orientation and separation distance from a source to a destination.
US11596051B2
An apparatus may include a drift tube assembly, arranged to transmit an ion beam. The drift tube assembly may include a first ground electrode; an RF drift tube assembly, disposed downstream of the first ground electrode; and a second ground electrode, disposed downstream of the RF drift tube assembly. The RF drift tube assembly may define a triple gap configuration. The apparatus may include a resonator, where the resonator comprises a toroidal coil, having a first end, connected to a first RF drift tube of the RF drift tube assembly, and a second end, connected to a second RF drift tube of the RF drift tube assembly.
US11596048B2
A broadband light source is disclosed. The broadband light source includes a rotatable gas containment structure. The broadband light source includes a rotational drive system configured to rotate the rotatable gas containment structure about the horizontal axis of rotation of the rotatable gas containment structure. The broadband light source includes a pump source configured to generate pump illumination and a reflector element configured to direct a portion of the pump illumination into the gas to sustain a plasma. The reflector is configured to collect a portion of broadband light emitted from the plasma.
US11596046B2
A luminaire controller includes a controller housing, a user interface panel, a power interface, a load interface, a power control module and an illumination control module. The user interface panel, power interface and load interface extend from the controller housing. The power interface and load interface are disposed within the controller housing, and are electrically coupled to the user interface panel. The power control module is configured to electrically connect the load interface to the power interface upon receipt of a connect signal from the user interface panel, and electrically isolate the load interface from the power interface upon receipt of a disconnect signal from the user interface panel. In accordance with a light characteristic signal that is received from the user interface panel, the illumination control module is configured to wirelessly control a characteristic of light emitted by a luminaire that is electrically coupled to the load interface.
US11596043B2
Systems and techniques are provided for sensor device. A sensor device may include a housing, a lens inserted into a first opening of the housing, a metal mask covering a portion of the interior of the lens, a passive infrared (PIR) sensor underneath the lens and the metal mask, and a light pipe around the PIR sensor, the lens, and the metal mask. Part of the light pipe may be positioned above an activation mechanism for a button. An airflow gasket may be around the PIR sensor. A filter circuit board may be under the PIR sensor and connected to leads of the PIR sensor. A control circuit board may include the activation mechanism for the button. A backplate may include a slot for attachment to a snap of a magazine in the housing of the sensor device.
US11596038B2
A load regulation device for controlling the amount of power delivered to an electrical load may be able to calibrate the magnitude of an output voltage of the load regulation device in order to control the magnitude of a load voltage across the electrical load to a predetermined level. The load regulation device may receive the feedback from a calibration device adapted to be coupled to load wiring near the electrical load. The feedback may indicate when the magnitude of the load voltage across the electrical load has reached a predetermined level. The load regulation device may gradually adjust the magnitude of the output voltage, receive the feedback from the calibration device, and then use the feedback to determine the magnitude of the output voltage corresponding to when the magnitude of the load voltage across the electrical load has reached the predetermined level.
US11596036B2
The present disclosure relates to an illumination apparatus, an illumination system and an illumination control method. The illumination apparatus comprises: a first light emitting assembly configured to generate a first radiated light having a first color temperature and a first light intensity, wherein the first light intensity is adjustable; a second light emitting assembly configured to generate a second radiated light having a second color temperature and a second light intensity, wherein the second light intensity is adjustable and the second color temperature is lower than the first color temperature; and a third light emitting assembly configured to generate a third radiated light having a preset color and a third light intensity, wherein the preset color and the third light intensity are adjustable; wherein a color temperature of a radiated light generated by the illumination apparatus is configured to be adjusted by adjusting at least one of the first light intensity and the second light intensity.
US11596035B2
A dimming control circuit for an LED driver, can include: an adjusting circuit configured to generate an adjusting signal in accordance with a PWM dimming signal; and where a switching state of a power transistor of the LED driver is adjusted in accordance with the adjusting signal and a constant current control signal. A dimming control method for an LED driver, can include: determining a first threshold in accordance with a frequency of the PWM dimming signal and a frequency range of audio noise; generating an adjusting signal having a first duty cycle when a duty cycle of a PWM dimming signal is not greater than the first threshold; and controlling, by the adjusting signal, a switching state of a power transistor in the LED driver, where the first duty cycle is greater than the duty cycle of the PWM dimming signal.
US11596034B2
A light-emitting module includes a light-emitting plate including a light-irradiating surface including a plurality of striped-pattern light-emitting units, and a reflecting member including a reflecting surface to reflect light emitted from the light-irradiating surface of the light-emitting plate toward a target surface of an object. Light at a peak luminous intensity in a light distribution in a first region of the light-irradiating surface is sent to a first region of the target surface via a first region of the reflecting surface. Light at a peak luminous intensity in a light distribution in a second region of the light-irradiating surface is sent to a second region of the target surface via a second region of the reflecting surface.
US11596030B2
A method for identifying cookware on an induction cooktop having coils, includes the steps: (a) acquire a coverage factor matrix; (b) set a present level at a maximum value of the matrix; (c) count closed iso-level curves corresponding to the present level and save the result; (d) decrease the level by an amount; (e) count closed curves corresponding to the decreased level; (f) when the number of closed curves at the present level is not lower than that from the previous level, update the saved result with the present level; (g) when the number of closed curves at the present level is lower than that from the previous level, keep the previously saved result; (h) repeat steps (d) to (h), until the number decreases; (i) assign coils inside the curve to a distinct cluster; and (j) use the clustering to estimate a position, shape, size, and orientation of the cookware.
US11596014B2
A multimode base station and a system. The multimode base station includes a wireless transceiver module, a first processing module, a second processing module, a selection and configuration module, and a network connection module. The first processing module is connected to the wireless transceiver module. The second processing module is connected to the network connection module. The first processing module is connected to the second processing module. The multimode base station operates in base mode, DM mode, or dual mode. The selection and configuration module is configured to receive a mode setting instruction from a user, and set an operating mode of the multimode base station. The multimode base station in base mode is equivalent to a base station. The multimode base station in DM mode is equivalent to a DECT manager. The multimode base station in dual mode is equivalent to a base station and a DECT manager.
US11596013B2
The present invention utilizes an application which is loaded onto the mobile devices of attendees who will be attending festivals, concerts, etc, where the large crowds attending the event will create wireless and mobile network congestion. Additionally, there is an control station which controls a wireless emitters, detectors and wireless access stations throughout the venue. The device applications and the control stations will coordinate to manage connections between the attendees device and the wireless access stations so that network congestion does not occur.
US11596009B2
An embodiment of the present disclosure may provide an inter-MeNB handover method in a small cell system, including: making, by a source MeNB and/or target MeNB, a determination as to whether to maintain a SeNB when handover is performed; and triggering different handover processes according to a result of the determination as to whether to maintain the SeNB. Another embodiment of the present disclosure may further provide an inter-MeNB handover device in a small cell system. With the inter-MeNB handover method and device in a small cell system provided by the present disclosure, unnecessary deletion and re-establishment of the bearers at the SeNB for the UE may be reduced. False bearer deletion may be avoided and data forwarding may be reduced. Furthermore, the SeNB may be maintained according to network deployment and SGW re-selection may be supported. Therefore, system capacity and transmission speed of the data may be improved.
US11596008B2
Embodiments are disclosed that allow encrypted data to be sent between a Bluetooth enabled device and a virtual device associated with a corresponding physical device. In particular, a Bluetooth implementation on the physical device may include one or more raw interfaces to facilitate endpoint to endpoint secure Bluetooth cryptography. Using these raw interfaces, an encrypted Bluetooth channel may be established directly between the virtual device and the Bluetooth enabled device using the radio of the physical device, where data may be encrypted and decrypted at an endpoint of the Bluetooth communication channel (such as at the virtual device or the Bluetooth enabled device) and passed through a Bluetooth implementation on the physical device without any additional encryption or decryption being performed on that data.
US11596007B2
A social distance determination system includes a first electronic device. The first electronic device is configured to establish a first communication link with a wireless base station, detect the first communication strength of the first communication link, generate a first conversion vector according to the first communication strength, and perform a similarity calculation on the first conversion vector and a second conversion vector to obtain a similarity result.
US11596006B2
There is provided a Bluetooth system including multiple slave devices. When a first slave device among the multiple slave devices changes its connection to a different master device, the first slave device actively informs other slave devices among the multiple slave devices to connect to said different master device to realize the Bluetooth connection synchronization between the multiple slave devices.
US11596004B2
Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for dynamically activating and deactivating random-access channel (RACH) occasions (ROs). A base station may configure one or more ROs on which a user equipment (UE) can transmit RACH messages. If higher priority signaling (e.g., downlink signaling or uplink signaling) overlaps in time with the ROs, the base station may deactivate one or more ROs to decrease the likelihood of self-interference or cross-link interference (e.g., if the UE or the base station are operating in full duplex mode). The base station may deactivate or activate ROs by indicating indices for one or more ROs, indices for one or more synchronization signal blocks (SSBs), a pattern of ROs, some or all ROs within a time period, some or all ROs until a next downlink signal updates the RO configuration or activates ROs, or any combination thereof.
US11596003B2
A UE may receive, from a base station/TRP, a configuration for a beam pair including an UL beam and a DL beam and transmit a RACH message via the UL beam while receiving DL information via the DL beam. The UE and/or the base station/TRP may be configured to operate in a FD mode. In aspects, the UE may transmit a RACH preamble based on a first mode of transmission. After a threshold time delay measured from the transmission of the RACH preamble, the UE may retransmit the RACH preamble based on a second mode of transmission. The second mode of transmission may be a same mode of transmission or a different mode of transmission from the first mode of transmission. Each mode of transmission may be based on one or more of TDM, FDM, or SDM.
US11596000B2
A first base station receives, from a second base station, cell information of a second cell of the second base station. The cell information indicates a subcarrier spacing associated with the second cell. Based on the cell information, configuration parameters are determined for a random access channel of a first cell of the first base station. The first base station transmits configuration parameters to a wireless device.
US11595984B2
A scheduling method includes: transmitting a scheduling signaling to a terminal, wherein the scheduling signaling includes indication information for indicating a plurality of transmission units that are discontinuous in a time domain, and the terminal is configured to receive the scheduling signaling and determine the plurality of transmission units that are discontinuous in the time domain according to the indication information; and exchanging data with the terminal through the plurality of transmission units.
US11595981B2
A method for transmitting information, includes: transmitting on one carrier wave according to at least one of a preset transmission mode and a transmission mode indicated by a base station eNB when agreed transmission time of two or more physical uplink shared channels PUSCH overlaps.
US11595980B2
The present specification proposes a discontinuous reception operation method characterized by: in a wireless communication system, a terminal in which a plurality of cells are configured performing a physical downlink control channel (PDCCH) monitoring on-duration; receiving bandwidth part (BWP) setting information, wherein the BWP setting information informs a specific BWP; receiving a PDCCH on the basis of the PDCCH monitoring, wherein the PDCCH includes dormant indication information for a specific cell from among the plurality of cells of the terminal; and activating the specific BWP on the basis of the dormant indication information indicating non-dormancy.
US11595973B2
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method for processing uplink control information (UCI) and a terminal. The method for processing UCI includes: determining the UCI which overlaps with a Physical Uplink Shared Channel (PUSCH) resource in time domain according to the PUSCH resource; determining whether to transmit the UCI, and performing corresponding processing based on a determination result. The present disclosure realizes effective transmission of UCI to be transmitted, and improves transmission efficiency.
US11595967B2
A wireless device receives a downlink control information (DCI) comprising a first field indicating a transition of a cell to a dormant state and a second field indicating a hybrid automatic repeat request (HARQ) feedback timing. The wireless device transmits, in response to the DCI indicating the transition and via a physical uplink control channel resource, a positive acknowledgement of a reception of the DCI at a time interval based on the HARQ feedback timing.
US11595963B2
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).
The present disclosure provides a method for allocating Physical Uplink Control Channel (PUCCH) resources, including: a User Equipment (UE) detects a Physical Downlink Control Channel (PDCCH) scheduling a Physical Downlink Shared Channel (PDSCH) in a configured control resource set; the UE analyzes the detected PDCCH, correspondingly receives PDSCH, and determines PUCCH resources feeding back Hybrid Automatic Repeat request-ACK (HARQ-ACK) information; the UE transmits the HARQ-ACK information by using the determined PUCCH resources. By adopting the method in the present disclosure, a method for allocating PUCCH resources is provided. An upper-limit resource utilization is improved. And a method for indicating PUCCH resources in Downlink Control Information (DCI) is put forward, thereby reducing bit overheads of DCI.
US11595949B2
One embodiment is directed to a method comprising generating at least one symbol of a subframe for control information based on a first subcarrier spacing; generating at least one data symbol of the subframe based on a second subcarrier spacing; and transmitting the subframe comprising the at least one symbol for control information and at least one data symbol. Another embodiment is directed to a method comprising receiving a subframe comprising at least one symbol for control information and at least one data symbol; decoding the at least one symbol for control information based on a first subcarrier spacing; and obtaining from the decoded at least one symbol information regarding a second subcarrier spacing used on the at least one data symbol.
US11595944B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a physical broadcast channel (PBCH) communication from a base station (BS). The UE may identify, based at least in part on a determination that the PBCH communication indicates a reference signal that is to be transmitted prior to transmission of a remaining minimum system information (RMSI) physical downlink control channel (PDCCH) communication, one or more radio resources in which the reference signal is to be transmitted. The UE may monitor for the reference signal, from the BS, in the one or more radio resources prior to reception of the RMSI PDCCH communication. Numerous other aspects are provided.
US11595938B2
A user equipment (UE) receives assistance data for positioning that includes relative position information for anchor points, such as base stations and/or sidelink UEs. The relative position information may include, for example, distances or angles between anchor points. The UE performs positioning measurements for reference signals received from the anchor points. The UE performs outlier rejection of the positioning measurements using the relative position information. Positioning measurements selected by the UE using the relative position information are provided to a location server. The location server may perform UE-assisted positioning using the selected position measurements and the actual locations of the anchor points. Accordingly, the outlier rejection of the position measurements may be off loaded from the location server to the UE while maintaining confidentiality of the actual locations of the anchor points.
US11595934B2
Methods and systems for localization within an environment include determining a topology estimate of nodes located in a dynamic indoor environment, based on distances measured between the nodes. Rigid k-core sub-graphs of the topology estimate are generated to determine relative localizations of the nodes. Relative localizations are transformed into absolute localizations to generate a map of positions of the nodes within the environment. A feature of the map is deployed to a device in the environment.
US11595924B2
A method of wireless communication includes, in response to a trigger event detected at a first base station, performing, by the first base station, a scan of a plurality of frequencies for a synchronization signal block (SSB) transmission from a second base station. The plurality of frequencies correspond to a plurality of global synchronization channel numbers (GSCNs) associated with the first base station and the second base station. The first base station is associated with a first coverage area that is at least partially within a second coverage area associated with the second base station. The method further includes transmitting, by the first base station, one or more SSBs having an SSB configuration that is based on a result of the scan.
US11595913B2
This disclosure generally relates to systems, devices, apparatuses, products, and methods for wireless communication. For example, a communication system may include a repeater that relays communications between communication devices. The repeater determines a downlink gain value to use for one or more downlink initial access messages received at the repeater. The repeater determines an uplink gain value to use for one or more downlink initial access messages received at the repeater. The uplink gain value is based on the downlink gain value and a noise level related to a channel between the communication device and the repeater. The repeater receives a downlink initial access message, and applies the downlink gain value to the downlink initial access message. The repeater receives an uplink initial access message, and applies the uplink gain value to the uplink initial access message.
US11595911B2
The disclosure relates to a communication method and a system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
US11595904B2
A user terminal according to one aspect of the present invention is characterized by having a receiving section that receives a power control ID, a control section that controls transmit power according to a transmit power parameter set specified by the power control ID, and a transmitting section that transmits a signal corresponding to an object set specified by the power control ID, using the transmit power. According to one aspect of the invention, it is possible to suppress a reduction in communication throughput, even in the case of using beam specific transmit power control.
US11595901B2
A mobile device allows transmission of additional outgoing application data requests in response to occurrence of receipt of data transfer from a remote entity, user input in response to a prompt displayed to the user, and a change in a background status of an application executing on the mobile device. Additional outgoing application data requests are foreground application requests.
US11595886B2
An electronic apparatus includes a wireless communication section configured to perform wireless communication and a processing section configured to perform communication control for the wireless communication section. The processing section performs control for causing the wireless communication section to operate as an internal access point that acquires, from a terminal device having a history of connecting to an external access point, through the wireless communication section, frequency information used for the connection to the external access point and performs the wireless communication using a frequency based on the acquired frequency information and, with the internal access point, directly connecting to the terminal device.
US11595885B2
A method, computer program product and a user equipment (UE) are provided for assisting a user equipment (UE) in selecting a network function. A first message is received from the UE. The first message includes UE request capabilities. A second message is sent to the UE. The second message includes an indication that promotes the UE attempting to connect to a particular Public Land Mobile Network (PLMN) using a network function belonging to the particular PLMN.
US11595880B2
A base station distributed unit transmits at least one system information block to a wireless device. The at least one system information block indicates a first public land mobile network (PLMN) and a second PLMN. The base station distributed unit receives a radio resource control message from the wireless device. The radio resource control message indicates at least one PLMN of the first PLMN and the second PLMN. The base station distributed unit determines, by based on the at least one PLMN, at least one base station central unit from: a first base station central unit of the first PLMN; and a second base station central unit of the second PLMN. The base station distributed unit transmits the radio resource control message to the at least one base station central unit.
US11595877B2
A base station for a wireless communication network comprising a plurality of logical radio access networks, wherein the base station is configured to communicate with a plurality of users to be served by the base station for accessing one or more of the logical radio access networks, and the base station is configured to selectively control the physical resources of the wireless communication network assigned to the logical radio access networks and/or to control access of the users or user groups to one or more of the logical radio access networks, wherein, during a first operation mode of the wireless communication network, the base station is configured to allow access of users or user groups of one or more of the logical radio access networks (e.g., eMBB, URLLC, eMTC), and wherein, during a second operation mode of the wireless communication network, the base station is configured to adaptively limit access of users or user groups to one or more of the logical radio access networks, and/or adaptively reduce a number of enabled logical radio access networks.
US11595869B2
A method, a system, and a non-transitory storage medium are described which provide for generating, by a wireless station of a multi-radio access technology (RAT) radio access network (RAN) that includes a new radio (NR) RAN and a RAN of a Long Term Evolution (LTE) network, a non-system information block (SIB) message that includes cell reselection priority information and NR stand-alone (SA) neighboring cell information, wherein an order of priority configures an end device attached to the LTE RAN to reselect to a first radio frequency (RF) channel of a first NR SA neighboring cell; and broadcasting the non-SIB message to the end device.
US11595860B2
An accessory device may dynamically determine to transition a cellular connection between mobile-initiated communication only (MICO) mode and non-MICO mode based on a variety of factors. The accessory device may be configured to communicate through a non-cellular network in addition to the cellular network. The accessory device may transition from MICO to non-MICO mode based on one or more of: loss of the non-cellular connection; location of the accessory device; a call, data, or SMS request failure over the non-cellular network; or other factors.
US11595858B2
A method by which a first device (100) performs sidelink transmission and an apparatus for supporting same are presented. The method comprises the steps of: receiving information about a first resource pool set on the basis of a first slot format; reserving a first resource for the sidelink transmission on the basis of the information about the first resource pool; receiving information about a second resource pool set on the basis of a second slot format, after reserving the first resource; and performing the sidelink transmission on the basis of the information about the second resource pool.
US11595853B2
Systems and methods for redirecting Radio Resource Control (RRC) messages in a wireless system that uses Central Unit (CU)/Distributed Unit (DU) splitting and either network sharing or network slicing are disclosed. In some embodiments, a method performed by a shared Distributed Unit (DU) comprises receiving a RRC message from a User Equipment (UE) and sending a first DU-to-Central Unit (CU) message to a first CU, where the first DU-to-CU message comprises the RRC message. The method further comprises either obtaining an indication that the first CU is a wrong CU for the RRC message or determining that the first CU is a wrong CU for the RRC message. The method further comprises sending another DU-to-CU message to a second CU, where the other DU-to-CU message comprises the RRC message or a RRC message related to the RRC message.
US11595851B1
Embodiments are directed towards systems and methods for user plane function (UPF) and network slice load balancing within a 5G network. Example embodiments include systems and methods for load balancing based on current UPF load and thresholds that depend on UPF capacity; UPF load balancing using predicted throughput of new UE on the network based on network data analytics; UPF load balancing based on special considerations for low latency traffic; UPF load balancing supporting multiple slices, maintaining several load-thresholds for each UPF and each slice depending on the UPF and network slice capacity; and UPF load balancing using predicted central processing unit (CPU) utilization and/or predicted memory utilization of new UE on the network based on network data analytics.
US11595848B2
The disclosure relates to a communication technique for combining an IoT technology with a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety-related services, and the like) on the basis of 5G communication technologies and IoT-related technologies.
US11595845B2
A method in a network node comprises: detecting a Quality of Service (QoS) Violated Event in respect of a particular QoS flow of a Protocol Data Unit (PDU) session; and sending a corresponding QoS violated event report to any one or more of: a Session Management Function (SMF) of the network; a Policy Control Function (PCF) of the network; an Application Function (AF) of the network; and a third party service provider.
US11595844B2
A plant system includes: an access node connected to a network; a plurality of controllers configured to perform distributed control on a plurality of field devices provided in a plant; and a wireless communication unit provided in each group of a plurality of groups into which the plurality of controllers are grouped and connected to each controller in the corresponding group via a wired connection, and configured to connect each controller to the access node via a wireless connection.
US11595842B2
Embodiments of the present disclosure provide a method and an apparatus for transmitting channel state information. The method includes: receiving, by a first terminal device, downlink control information DCI transmitted by a network device; determining, by the first terminal device, according to the DCI, whether it is necessary to report CSI; and when the first terminal device determines that it is necessary to report the CSI, transmitting, by the first terminal device, the CSI of the first terminal device to the network device. The first terminal device may be triggered to report the CSI according to the DCI transmitted by the network device, and thus the terminal device may report its own CSI.
US11595841B2
Embodiments of the disclosure generally relate to interference measurement. A device determines an interference measurement pattern indicating distribution of resource elements allocated for interference measurement. Then, the device determines, based on the interference measurement pattern, an interference type for measuring interference on the resource elements.
US11595840B2
According to certain embodiments, a method is disclosed for use in a network node. The method comprises determining at least one parameter N per carrier frequency. The parameter N indicates a maximum number of beams to be used by a wireless device for signal measurements in a cell. The method comprises communicating the parameter(s) N to the wireless device.
US11595828B2
A system, in an active reflector device, adjusts a first amplification gain of each of a plurality of radio frequency (RF) signals received at a receiver front-end from a first equipment via a first radio path of an NLOS radio path. A first phase shift is performed on each of the plurality of RF signals with the adjusted first amplification gain. A combination of the plurality of first phase-shifted RF signals is split at a transmitter front-end. A second phase shift on each of the split first plurality of first phase-shifted RF signals is performed. The plurality of RF signals as a directed beam is transmitted to a second equipment via a second radio path of the NLOS radio path.
US11595822B2
A method performed by a resolver in a core network of a wireless communication system, where the method comprise: receiving, from a requester in the core network, a request to resolve a provided identifier that is one of a subscription identifier and a pseudonym identifier serving in the core network as a pseudonym for the subscription identifier; and transmitting, to the requester as a response to the request, a resolved identifier that is the other of the subscription identifier and the pseudonym identifier.
US11595821B2
A device for detecting nefarious communication signals in a vehicle includes a detection support logic, a nefarious logic, a filtering circuit, and a microcontroller. The device receives a measurement signal from the detection support logic. The device determines a characteristic of an alternating current (AC) signal during communication at a first time on a wiring harness of the vehicle based on the measurement signal. The device determines the characteristic of the AC signal at a second time based on the measurement signal. The device determines that the characteristic measured during the first time differs from the characteristic measured during the second time. The device transmits a blocking signal to the nefarious logic to filter a frequency band of a communication conductor of the wiring harness in response to the determination that the characteristic measured during the first time differs from the characteristic measured during the second time.
US11595820B2
Systems and methods for managing concurrent secure elements on a mobile device to coordinate with an application or “app” running on the mobile device and an appropriate communications protocol for conducting transactions using the mobile device include: informing, by the processor, the reader device of a preferred app and a communication protocol usable by the preferred app; receiving, by the processor, information about which apps and communication protocols are supported by a reader for processing a transaction; locating, by the processor, a secure element supporting an app and a communication protocol supported by the reader; channeling the communication protocol for the specific configuration of the app and the supporting secure element; activating the secure element that supports the app; and processing, with the activated secure element, using the supported app and communication channel, the transaction with the reader.
US11595815B2
According to one or more of the embodiments herein, systems and techniques for using satellite diversity for enhancing communication confidentiality are provided. In particular, a system in accordance with the techniques herein enhances the security of encrypted messages transmitted over a secure channel, specifically through the use of satellite communications diversity to securely deliver secret messages from a sender to a recipient, ensuring message confidentiality. That is, the techniques herein provide secure message communication over satellites, particularly with additional message security in the presence of an eavesdropping adversary party by segmenting the message and sending the various message segments over different diverse paths.
US11595810B2
An information processing method includes: obtaining, by a data analytics network element, terminal behavioral information of a plurality of terminals; determining, by the data analytics network element, network-side expected terminal behavioral information based on the terminal behavioral information; and sending, by the data analytics network element, the network-side expected terminal behavioral information to a user data management network element.
US11595790B2
Systems and methods for automated routing and rating of communication data.
US11595777B2
A system for determining the presence of an individual at a particular spot within a location preferably based on the strength of signals received from beacons assigned to the particular spot by a software application (“App”) running on an electronic device of the individual. In one embodiment, certain presence calculations are performed by the App. In another embodiment, the App forwards information regarding the received beacon signals to an electronic identification and location tracking system and the presence calculations are performed by the system.
US11595774B2
A system for enabling spatializing audio data is provided. The system analyzes audio data to identify when to generate spatialized audio data. The system can receive incoming audio data including a plurality of channel-based audio signals as well as object-based audio. The system performs an analysis of the audio data and/or metadata associated with the audio data to determine when to generate the spatialized audio data. The system can identify one or more categories associated with the audio data (e.g., stereo, mono, game effect, . . . ) and use the category to determine whether to spatialize the audio data or not spatialize the audio data.
US11595764B2
A method for tuning filter parameters of a noise cancellation enabled audio system with an ear-mountable playback device comprising a speaker and a feedback noise microphone located in proximity to the speaker comprises provision of acoustic transfer functions between the speaker and the feedback noise microphone, between the speaker and an eardrum, between an ambient sound source and the eardrum and between the ambient sound source and the feedback noise microphone. The parameters of a feedback filter function, which is designed to process a feedback noise signal, are tuned. A noise cancellation performance of the audio system at the eardrum is determined based on each of the acoustic transfer functions and on the feedback filter function.
US11595762B2
A wearable multifunction device or earpiece or a pair of earpieces includes one or more processors, at least one microphone coupled to the one or more processors, a biometric sensor coupled to the one or more processors, and a memory coupled to the one or more processors, the memory having computer instructions causing the one or more processors to perform the operations of sensing a remaining battery life and based on the sensing, prioritizing one or more of the functions of always on recording, biometric measuring, biometric recording, sound pressure level measuring, voice activity detection, key word detection, key word analysis, personal audio assistant functions, transmission of data to a tethered phone, transmission of data to a server, transmission of data to a cloud device.
US11595760B2
The present disclosure relates to a bone conduction speaker and its compound vibration device. The compound vibration device comprises a vibration conductive plate and a vibration board, the vibration conductive plate is set to be the first torus, where at least two first rods inside it converge to its center; the vibration board is set as the second torus, where at least two second rods inside it converge to its center. The vibration conductive plate is fixed with the vibration board; the first torus is fixed on a magnetic system, and the second torus comprises a fixed voice coil, which is driven by the magnetic system. The bone conduction speaker in the present disclosure and its compound vibration device adopt the fixed vibration conductive plate and vibration board, making the technique simpler with a lower cost; because the two adjustable parts in the compound vibration device can adjust both low frequency and high frequency area, the frequency response obtained is flatter and the sound is broader.
US11595756B2
A sound collecting apparatus includes a base of a substantially spherical body and a plurality of microphones provided on the base, a number of the microphones having a predetermined constraint, the plurality of microphones being alternately arranged vertically relative to a horizontal plane including a center of the substantially spherical body in order to improve resolution in a horizontal direction.
US11595755B1
Techniques are described for an in-ear audio system that delivers high quality sound into an ear canal of the user using two or more waveguides. Each of the waveguides may deliver sound output by individual drivers to a consolidation zone. The sound may be mixed at the consolidation zone and delivered to the ear canal of the user.
US11595754B1
Audio processing for a headworn device can include obtaining ear geometry of a user. A frequency response or transfer function can be determined, based on the ear geometry of the user and a model of the headworn device, where the frequency response or transfer function characterizes an effect of a path between a speaker of the headworn device and an ear canal entrance of the user on sound. An equalization filter profile can be generated based on the based on the frequency response or transfer function. The equalization filter profile can be applied to an audio signal, and the audio signal can be used to drive the speaker of the headworn device.
US11595753B2
Techniques are provided for generating sound using a speaker mounted to an enclosure (e.g., speaker cabinet) wherein a gas pressure level (e.g., air pressure level) inside the enclosure is lower than an ambient air pressure level outside the enclosure. The reduced gas pressure level within the enclosure provides an environment with a reduced pressure level at a back side of a speaker cone of the speaker, which enhances a low frequency response for a given speaker size, while also minimizing resonant frequencies and phase cancellation issues which could otherwise occur with conventional speaker systems in which acoustic sound waves are generated at the back side of the speaker cone. A pressure compensation system is utilized counteract a force applied to the front side of the speaker cone as a result of the gas pressure level inside the enclosure being lower than the ambient air pressure level outside the enclosure.
US11595741B2
A camera for detecting an object in a detection zone is provided that has an image sensor for recording image data, a reception optics having a focus adjustment unit for setting a focal position, a distance sensor for measuring a distance value from the object, and a control and evaluation unit connected to the distance sensor and the focus adjustment unit to set a focal position in dependence on the distance value, and to determine a distance value with the distance sensor via a variable measurement duration that is predefined in dependence on a provisional distance value such that a measurement error of the distance value and thus, on a recording of image data of the object, a focus deviation of the set focal position from an ideal focal position remains small enough for a required image sharpness of the image data.
US11595722B2
Systems and methods are described for a media guidance application (e.g., implemented on a user device) that explains sports terminology to a user accessing content that corresponds to a sporting event. The media guidance application may detect terms used in the content, determine the terms are unique to the sport, and display definitions and explanations alongside the terms.
US11595718B2
In one example, real-time text (RTT) communications are integrated with video services. For instance, one method for integrating RTT communications with video services includes receiving a real time text call intended for a recipient in a home network, forwarding the real time text call to a first device in the home network, receiving a signal to redirect the real time text call to a second device in the home network that is different from the first device, and forwarding the real time text call to the second device, in response to the signal.
US11595713B2
A system is provided for dynamic scheduling and channel creation based on external data. Audience-based parameters comprising demographics data, targeted audience data, device type data, and trending information that includes media items based on current trend in social network platform are received from external data source. A media item to be inserted in first media feed of first channel is determined based on a plurality of pre-encoded media content, metadata, audience-based parameters and defined parameters. The plurality of pre-encoded media content is segmented into a plurality of media segments, each corresponding to different quality level and content encryption mode. A second channel is generated from first channel based on audience-based parameters, insertion of media item, and second programming schedule. The second programming schedule is generated from modification of first programming schedule based on audience-based parameters. The media item is delivered, in viewable format, in second media feed to consumer device.
US11595712B2
A broadcasting system that automatically generates broadcast transmission progress data generates and provides broadcast transmission progress data for real-time broadcast images including product information, discount information, and delivery information related to real-time broadcast images.
US11595705B2
Provided are methods and systems for controlling data such as content and/or application data transmitted to one or more user devices. One method can comprise receiving a request for first content and generating, in response to the request for the first content, a first transport stream comprising the first content and application data relating to a first application. At least a portion of the first transport stream is transmitted to a recipient device. An interruption in the transmission of the first transport stream is detected and a determination is made that only a first portion of the application data has been transmitted to the recipient device. A second transport stream including second content and a second portion of the application data is generated and transmitted.
US11595704B2
A reception device is provided. The reception device includes a high definition multimedia interface configured to receive first video data of a first high dynamic range video and first characteristic information for an electro-optical conversion of the first video data, the first characteristic information including a first value for the electro-optical conversion of the first video data when a first high dynamic range curve is to be indicated and a second value for the electro-optical conversion of the first video data when a second high dynamic range curve is to be indicated. The reception device includes reception circuitry configured to receive second video data of a second high dynamic range video and second characteristic information for electro-optical conversion of the second video data. The reception device further includes a video decoder, electro-optical conversion circuitry, and a display.
US11595690B2
Method and apparatus for encoding and decoding prediction residues in a video coding system also disclosed. At the decoder side, a Rice parameter for the target transform coefficient is determined based on a local sum of absolute levels of neighboring transform coefficients of the target transform coefficient. A dependent quantization state is determined and a zero-position variable is determined based on the dependent quantization state and the Rice parameter. One or more coded bits associated with a first syntax element for the target transform coefficient in a transform block are parsed and decoded using one or more codes including a Golomb-Rice code with the Rice parameter, where the first syntax element corresponds to a modified absolute level value of the target transform coefficient. An absolute level value of the target transform coefficient is derived according to the zero-position variable and the first syntax element.
US11595686B2
Aspects of the disclosure provide methods and apparatuses for video decoding. In some examples, an apparatus includes processing circuitry. The processing circuitry decodes prediction information of a current block from a coded video bitstream. The prediction information is indicative of an intra block copy mode. Then, the processing circuitry determines, according to the intra block copy mode, a first portion of a resolution syntax. The resolution syntax is unified of a same semantic for block vectors in the intra block copy mode and motion vectors in an inter picture merge mode. Further, the processing circuitry decodes a second portion of the resolution syntax from the coded video bitstream, and determines a block vector according to a resolution that is indicated by a combination of the first portion and the second portion. Then, the processing circuitry reconstructs at least one sample of the current block according the block vector.
US11595678B2
A method, computer program, and computer system is provided for coding video data. Video data including one or more blocks is received. A current block coded in intra block copy mode or string matching mode is predicted from among the one or more blocks based on a coded block vector or a string offset vector corresponding to one or more spatial neighboring or non-neighboring blocks from among the one or more blocks. The video data is decoded based on the predicted current block.
US11595675B2
The entropy coding of a current part of a predetermined entropy slice is based on, not only, the respective probability estimations of the predetermined entropy slice as adapted using the previously coded part of the predetermined entropy slice, but also probability estimations as used in the entropy coding of a spatially neighboring, in entropy slice order preceding entropy slice at a neighboring part thereof. Thereby, the probability estimations used in entropy coding are adapted to the actual symbol statistics more closely, thereby lowering the coding efficiency decrease normally caused by lower-delay concepts. Temporal interrelationships are exploited additionally or alternatively.
US11595673B2
In some aspects, the disclosure is directed to methods and systems for reducing memory utilization and increasing efficiency during affine merge mode for versatile video coding by utilizing motion vectors stored in a motion data line buffer for a prediction unit of a second coding tree unit neighboring a first coding tree unit to derive control point motion vectors for the first coding tree unit.
US11595672B2
Systems, methods and apparatus for processing image data are described. One example method includes performing a conversion between a visual media file and a bitstream. The visual media file comprises image items each comprising a sequence of one or more pictures according to a media file format, and the bitstream comprises access units each comprising one or more pictures each belonging to a layer according to a video coding format. The video coding format defines multiple profiles. The media file format specifies that the bitstream is represented in a file having a specific brand, and that one or more profiles used for representing the video in the bitstream are agnostic of the specific brand.
US11595667B2
When encoding/decoding a current block of a current picture using intra block copy (“BC”) prediction, the location of a reference block is constrained so that it can be entirely within an inner search area of the current picture or entirely within an outer search area of the current picture, but cannot overlap both the inner search area and the outer search area. In some hardware-based implementations, on-chip memory buffers sample values of the inner search area, and off-chip memory buffers sample values of the outer search area. By enforcing this constraint on the location of the reference block, an encoder/decoder can avoid memory access operations that are split between on-chip memory and off-chip memory when retrieving the sample values of the reference block. At the same time, a reference block close to the current block may be used for intra BC prediction, helping compression efficiency.
US11595666B2
A method of performing intra prediction of a current block of a picture of a video sequence, includes determining whether a first flag indicates that an intra prediction mode corresponding to the current block is a directional mode, and based on the first flag being determined to indicate that the intra prediction mode corresponding to the current block is the directional mode, determining an index of the intra prediction mode in an allowed intra prediction modes (AIPM) list, and performing the intra prediction of the current block, using the intra prediction mode corresponding to the determined index in the AIPM list.
US11595661B2
A coding amount estimation device includes: a feature vector generation unit that generates a feature vector on the basis of a feature map generated by an estimation target image and at least one filter set in advance; and a coding amount evaluation unit that evaluates a coding amount of the estimation target image on the basis of the feature vector.
US11595660B2
A decoding apparatus performs an image decoding method by receiving a bit stream including prediction information of a current block; deriving motion information of the current block on the basis of a merge candidate indicated by a candidate flag of the current block in a merge candidate list; deriving a MVD of the current block on the basis of MVD information of the current block and whether or not integer sample precision or fractional sample precision is used in the motion information; deriving modified motion information of the current block on the basis of the motion information and the MVD; and performing prediction of the current block on the basis of the modified motion information.
US11595655B2
A method and a device for encoding/decoding images are disclosed. The method for encoding images comprises the steps of: deriving a scan type of a residual signal for a current block according to whether or not the current block is a transform skip block; and applying the scan type to the residual signal for the current block, wherein the transform skip block is a block to which transform for the current block is not applied and is specified on the basis of information indicating whether or not transform for the current block is to be applied.
US11595646B2
Disclosed herein are related to a device and a method of remotely rendering an image. In one approach, a device divides an image of an artificial reality space into a plurality of slices. In one approach, the device encodes a first slice of the plurality of slices. In one approach, the device encodes a portion of a second slice of the plurality of slices, while the device encodes a portion of the first slice. In one approach, the device transmits the encoded first slice of the plurality of slices to a head wearable display. In one approach, the device transmits the encoded second slice of the plurality of slices to the head wearable display, while the device transmits a portion of the encoded first slice to the head wearable display.
US11595630B2
Techniques to facilitate compression of depth data and real-time reconstruction of high-quality light fields. A parameter space of values for a line, pairs of endpoints on different sides of the line, and a palette index for each pixel of a pixel tile of a depth image is sampled. Values for the line, the pairs of endpoints, and the palette index that minimize an error are determined and stored.
US11595628B2
A system and method for the projection of virtual 3-D images onto a surface with perspective shifting viewing capability including: a source of data for at least two different paired left-right view sets of one subject, an image reflecting surface, and a projector capable of simultaneously projecting pairs of left-right view sets, and capable of changing projected left-right view sets of images from a first set to a second set to create a stereopsis effect in which content of a complete projected image appears to move in perspective.
US11595622B2
System and methods are provided for distributed microscopy. A plurality of microscopes may capture images and send them to a media server. The microscopes and the media server may be part of a local area network. The microscopes may each have a distinct network address. The media server may communicate with an operations console, which may be used to view images captured by the microscopes. The operations console may also accept user input which may be used to selectively control the microscopes.
US11595619B1
A teleoperations system may be used to selectively override conditions detected by an autonomous vehicle to enable the autonomous vehicle to effectively ignore detected conditions that are identified as false positives by the teleoperations system. Furthermore, a teleoperations system may be used to generate commands that an autonomous vehicle validates prior to executing to confirm that the commands do not violate any vehicle constraints for the autonomous vehicle. Still further, an autonomous vehicle may be capable of dynamically varying the video quality of one or more camera feeds that are streamed to a teleoperations system over a bandwidth-constrained wireless network based upon a current context of the autonomous vehicle.
US11595617B2
Generally this disclosure describes a video communication system that replaces actual live images of the participating users with animated avatars. A method may include selecting an avatar; initiating communication; detecting a user input; identifying the user input; identifying an animation command based on the user input; generating avatar parameters; and transmitting at least one of the animation command and the avatar parameters.
US11595616B1
The present disclosure describes techniques for facilitating a collaborative work environment. The techniques comprise creating at least one virtual room accessible by the plurality of users, wherein at least one subset of users are associated with the at least one virtual room, the at least one virtual room enables real-time communications among the at least one subset of users, and the at least one subset of users communicate with each other in the at least one virtual room through a first communication channel; receiving a request from a first user to communicate with at least a second user separately from the first communication channel; and establishing a first sub-communication channel between the first user and the at least a second user while the first communication channel remains accessible to the first user and the at least a second user.
US11595615B2
The present disclosure provides a conference device, a method of controlling the conference device, and a computer storage medium. The conference device includes a display, an image sensor, a holographic projector, and a controller configured to identify, by using an image data from the image sensor, a modification action performed at a target location for a holographic image projected by the holographic projector, modify holographic projection data based on the modification action, and convert modified holographic projection data into modified two-dimensional imaging data.
US11595614B1
Intelligent reframing techniques are described in which content (e.g., a movie) can be generated in a different aspect ratio than previously provided. These techniques include obtaining various video frames having a first aspect ratio. Various objects can be identified within the frames. An object having the highest degree of importance in a frame can be selected and a focal point can be calculated based at least in part on that object. A modified version of the content can be generated in a second aspect ratio that is different from the first aspect ratio. The modified version can be generated using the focal point calculated based on the object having the greatest degree of importance. Using these techniques, the content can be provided in a different aspect ratio while ensuring that the most important features of the frame still appear in the new version of the content.
US11595610B2
A solid-state imaging device includes a pixel region in which shared pixels which share pixel transistors in a plurality of photoelectric conversion portions are two-dimensionally arranged. The shared pixel transistors are divisionally arranged in a column direction of the shared pixels, the pixel transistors shared between neighboring shared pixels are arranged so as to be horizontally reversed or/and vertically crossed, and connection wirings connected to a floating diffusion portion, a source of a reset transistor and a gate of an amplification transistor in the shared pixels are arranged along the column direction.
US11595609B2
Row-by-row pixel read-out is executed concurrently within respective clusters of pixels of a pixel array, alternating the between descending and ascending progressions in the intra-cluster row readout sequence to reduce temporal skew between neighboring pixel rows in adjacent clusters.
US11595606B2
A photoelectric conversion apparatus includes a pixel array having pixels arranged to form rows and columns and column signal lines configured to output noise signals and optical signals of the pixels, a driver configured to drive the pixels so that the optical signal is output following the noise signal from each pixel, A/D converters configured to perform A/D conversion to convert the noise signals output to the column signal lines into noise data and to subsequently perform A/D conversion to covert the optical signals output to the column signal lines into optical data, a data hold circuit, and a transmitter configured to transmit the noise data converted by the A/D converters to the data hold circuit and to subsequently transmit the optical data converted by the A/D converters to the data hold circuit.
US11595605B2
An image sensor having rows and columns of image pixels may include row control circuitry that controls voltages that are sent to each row of the image pixels. The row control circuitry may include booster circuitry that converts a positive power supply voltage (such as 2.8V) to voltages that are negative or otherwise less than the positive power supply voltage and/or greater than the positive power supply voltage. The booster circuitry may have a plurality of switches that control an input to an amplifier, thereby allowing the circuitry to produce any desired voltage in a given range. The booster circuitry output may be shared between multiple rows of the image pixels, and the produced boosted circuitry may be fed to any desired one or more of the rows of image pixels.
US11595602B2
Methods and systems for quantizing a physical quantity, such as light, are provided. In one example, an apparatus comprises an analog-to-digital (A/D) converter configured to generate raw digital outputs based on performing at least one of: (1) a first quantization operation to quantize a physical stimulus within a first intensity range based on a first A/D conversion relationship, or (2) a second quantization operation to quantize the physical stimulus within a second intensity range based on a second A/D conversion relationship; and a raw output conversion circuit configured generate a refined digital output based on a raw digital output obtained from the A/D converter and at least one predetermined conversion parameter. The at least one conversion parameter compensates for a discontinuity between the first A/D conversion relationship and the second A/D conversion relationship.
US11595588B2
An image capturing method and a terminal device are provided. The method includes entering a camera application to start a lens and display a viewfinder interface, converting an original image captured by the lens into a red-green-blue (RGB) image, and decreasing luminance of the RGB image to be less than first luminance or increasing the luminance of the RGB image to be greater than second luminance, to obtain a first image; converting the RGB image into N frames of high-dynamic-range (HDR) images, and fusing color information of pixels in any same location on the first image and the N frames of HDR images to obtain a final image.
US11595587B2
A method performed by a vision control system for supporting in low light conditions in surroundings of a moving vehicle, object detection by at least a first on-board rearward- and/or sideward-facing image capturing device. The vision control system captures a surrounding located rearward and/or sideward of the moving vehicle with support from the at least first image capturing device. The vision control system further determines light conditions in the surrounding. Moreover, the vision control system provides with support from at least a first light source, when the light conditions fulfill insufficient light criteria, a light output illuminating a ground region of the surrounding to facilitate object detection by the at least first image capturing device. The disclosure also relates to a vision control system, a vehicle comprising such a vision control system, and a respective corresponding computer readable storage medium.
US11595582B2
Various embodiments include a dynamic flex circuit that may be used in a camera with a moveable image sensor. The dynamic flex circuit may include one or more fixed end portions, a moveable end portion, and an intermediate portion. In some embodiments, the fixed end portion may be connected to another flex circuit of the camera. The moveable end portion may be coupled with the moveable image sensor. The intermediate portion may be configured to allow the moveable end portion to move with the moveable image sensor. Some embodiments include a reinforcement arrangement that reinforces one or more portions of the dynamic flex circuit.
US11595581B2
A camera module actuator includes: a magnet disposed on a lens barrel; a driving coil disposed opposite to the magnet; and a driving device including a comparer that calculates an error value by comparing a target position of the lens barrel with a current position of the lens barrel, a controller IC that generates a control signal by applying control gains to the error value, and a driving circuit that generates a driving signal in response to the control signal. The controller IC determines the control gains based on a friction coefficient between a guide groove guiding movement of the lens barrel and a ball bearing contacting the guide groove. The controller IC provides a detection signal having a gradually increasing level to the driving coil, and determines the friction coefficient based on a level of the detection signal at a point in time of movement of the lens barrel.
US11595580B2
The present disclosure provides systems and methods that use and/or generate image files according to a novel microvideo image format. For example, a microvideo can be a file that contains both a still image and a brief video. The microvideo can include multiple tracks, such as, for example, a separate video track, audio track, and/or one or more metadata tracks. As one example track, the microvideo can include a motion data track that stores motion data that can be used (e.g., at file runtime) to stabilize the video frames. A microvideo generation system included in an image capture device can determine a trimming of the video on-the-fly as the image capture device captures the microvideo.
US11595577B2
Embodiments of the present disclosure include apparatuses and methods for sensor blocking. In a number of embodiments, a method can include operating a sensor block of an apparatus in a first mode to allow a sensor to receive inputs, and operating the sensor block in a second mode to inhibit the sensor from receiving the inputs. A sensor block can be used to prevent a sensor, such as an image sensor, from receiving an input, such as a light source input, to capture image data. A sensor block can be used to prevent a sensor from capturing image data even when an application causing to the sensor to operate, such as when applications have access to the sensor, but the user of a device is unaware that an application is using the sensor. The sensor block can be used to prevent the sensor from capturing useful images and the sensor can only capture a black image of the sensor block and not the surroundings of the device.
US11595565B2
An image capturing apparatus performs automatic image capturing of a subject by using an image capturing unit, controls a plurality of images acquired by the automatic image capturing to be recorded in a recording unit, selects deletion candidate images from among the plurality of images recorded in the recording unit, based on a predetermined deletion condition, automatically deletes the deletion candidate images, and performs control so that information about images other than the deletion candidate images, among the plurality of images recorded in the recording unit and including the deletion candidate images before being automatically deleted, is transmitted to an external apparatus via a communication unit before the deletion candidate images are deleted so that the information is displayed on the external apparatus.
US11595563B2
An imaging apparatus according to the present invention includes a first camera and a second camera, and performing photography using the first camera and the second camera, and generating a composite image from a plurality of images acquired by the photography, the imaging apparatus comprising at least one memory and at least one processor which function as: an acquiring unit configured to acquire two images by performing a first photography and a second photography, which is performed after a time lag from the first photography; and a generating unit configured to generate a composite image having a visual field range of 360 degrees by compositing a first image acquired by performing photography for a first range in the first photography and a second image acquired by performing photography for a second range in the second photography.
US11595556B2
Embodiments of a live broadcast lighting system are disclosed. In one example embodiment, the live broadcast lighting system includes a light emitting apparatus, a control box being connected to the light emitting apparatus, and a device holder coupled to the control box. The device holder can be configured to releasably retain a video recording device. The control box can include an electronic control circuit configured to control rotation of the light emitting apparatus. The device holder can be configured to be rotatable independent of the rotation of the light emitting apparatus.
US11595555B2
A sensor module includes a base member and a sensor, wherein the base member is a molded component on which pattern wiring is directly formed, wherein the base member includes at least a principal surface, a first side wall orthogonal to the principal surface, and a second side wall orthogonal to the principal surface and the first side wall, and wherein a larger one of a width of the first side wall and a width of the second side wall in a first direction perpendicular to the principal surface is larger than a width of the principal surface in the first direction.
US11595553B2
A camera module comprises: an AF driving part, a shake-correcting driving part, a first position detection part, a second position detection part, and a drive control part configured to perform driving control of the AF driving part based on detection results of the first position detection part and the second position detection part. The drive control part includes a correction part configured to correct the position of the AF movable part in the optical axis direction that is calculated based on the detection result of the first position detection part in accordance with preliminarily set correction data. The correction part corrects the detection result of the first position detection part in consideration of displacement of the AF movable part in the optical axis direction due to sway of the shake correction movable part.
US11595546B1
An image forming apparatus, detection method, and image forming system are provided. The apparatus includes a communication interface, a detector, and a notification interface. The communication interface communicates with a wireless tag at a connection position where a sheet conveyance path is formed between the apparatus and a retrofit device equipped with the wireless tag. The detector detects a connection state between the retrofit device and the apparatus based on a communication result of the communication interface. The notification interface provides a notification based on the connection state detected by the detector. The detection method includes detecting a connection state between the retrofit device and the apparatus based on a communication result of the communication interface, and providing a notification based on the connection state detected in the detection. The image forming system includes an apparatus and a retrofit device provided with a wireless tag.
US11595543B2
An image forming apparatus generates embedded information for uniquely identifying a page, for each page of a document, prints the document while embedding the embedded information into the document, and registers a set of pieces of the embedded information in a blockchain service. The image forming apparatus thereby verifies whether the printed product is a correct printed product.
US11595538B2
An image forming apparatus includes a sensor configured to detect a length of a sheet, which is placed on a platen, in a predetermined direction and a controller. The controller is configured to convert an image signal based on a conversion condition, control the image forming unit to form an image based on the converted image signal, and execute calibration in which the conversion condition is generated. The controller is configured, in a case in which the calibration is to be executed, to acquire information related to a size of a sheet on which a test chart is to be formed, select a sheet based on the information, form the test chart on the selected sheet acquire reading data output from the reader, and generate the conversion condition based on the reading data.
US11595528B2
An AI based moderator system for an electronic conference. The moderator scores users based on ratings and diversity, and attempts to keep a high rating person talking while maintaining diversity.
US11595522B2
Techniques for workforce management in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for workforce management in a contact center system comprising generating historical workforce data regarding an agent workforce capacity of the contact center system, and initiating an increase or decrease to an agent workforce of the contact center system based at least in part on the historical workforce data to increase an amount of choice among available agents or waiting contacts.
US11595520B2
Initiating a conference call includes receiving a conference call request message from an initiating user specifying a plurality of other users and determining an availability of the other users to receive conference call invitations. A conference call is initiated between the initiating user and one or more of the other users that are determined to be available. The availability of one or more of the other users determined to be unavailable is monitored and interaction with a conference call invitation by one or more of the other users determined to be unavailable is enabled upon their monitored availability changing from unavailable to available. The interaction with the conference call invitation by the other users is conditioned on whether the conference call is still in progress.
US11595506B2
Embodiments relate to a cellphone self-standing device that allows any cellphone to stand in position and angles that are more suited for selfie and two way video communication. The device of this invention integrates with the cellphone such that it can be carried around easily, the same way that cellphones are; store with the cellphone in where cellphones are normally stored; and operate on demand with minimal set up, to facilitate ease of use.
US11595505B2
A mobile terminal and a control method therefor are disclosed. The mobile terminal includes a body, a display coupled to the body to vary a display region viewed from a front of the body according to switching between an enlarged display mode and a reduced display mode, an input unit configured to sense user input, and a controller. The controller controls switching of the display to the enlarged display mode according to first input.
US11595495B2
A method for routing requests to a plurality of server clusters is disclosed. The method comprises establishing a first server cluster responding to requests concerning a first software via a first version of that software and to requests concerning a second software via a first version of that software, and a second server cluster responding to requests concerning the first software via a second version of that software and to requests concerning the second software via a second version of that software. A gateway router initially routes requests concerning the first and second software by default to the first server cluster. Upon receiving a request to change default routing of requests, a configuration of the gateway router is updated. Subsequent requests concerning the first software are routed to the second server cluster while subsequent request concerning the second software remain routed to the first server cluster.
US11595488B2
The present disclosure relates to systems and methods for providing cloud-based services securely to on-premises networks or other infrastructure. More particularly, the present disclosure relates to systems and methods for enriching first-party data (e.g., data collected directly by an on-premises server) stored within on-premises networks by enabling the on-premises networks to retrieve and process third-party data stored on cloud-based networks. As a technical benefit, cloud-based services can be performed on the first-party data within the on-premises networks.
US11595484B2
A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.
US11595479B2
A system comprises a web-cloud security subsystem that hosts, manages, and analyzes data related to a plurality of hosted applications that provide at least one of physical access control, surveillance, alarm management, visitor management, and elevator management; at least one physical security subsystem that exchanges data with a corresponding hosted application of the web-cloud security subsystem; and a real-time control and monitoring device that provides secure access of the web-cloud security subsystem.
US11595467B2
Method of dynamically assigning storage locations starts with the processor updating first user's home location data. Processor selects communication session between first user and second user and determines second user's home location data. Processor determines a session location data that indicates current storage location that stores data of communication session received from first and second client devices. Processor identifies available data storage locations based on first user and second user's home location data and determines whether to update the session location data based on an average of a distance over network fiber using the first user and second user's home locations, current storage location, and available storage locations. In response to determining to update the session location data, processor updates session location data to indicate one of the available storage locations, and causes transfer of data of communication session to one of the available storage locations. Other embodiments are described.
US11595462B2
A near end device is in a call (voice or video) over a communication link with a far end device. The near end device monitors constraints of the near end device, such as environmental noise at the near end device, latency between sequential data packets, signal strength or quality over the communication link, and energy level. The near end device detects when the near end device is having or is soon to have communication difficulty with the call due to one or more of the constraints. In response to detecting that the near end device is having or is soon to have communication difficulty with the call, the near end device communicates one or both of audible feedback and visual feedback to the far end device, notifying the far end device that the near end device is having or is soon to have communication difficulty with the call.
US11595448B1
A mirrored gallery view is provided of a breakout room in an online meeting user interface associated with a videoconferencing session with a session view established in a videoconferencing system. The mirrored gallery view displays video feeds of meeting participants on their respective participant computers. The video feeds are camera-captured views of each of the meeting participants, The videoconferencing system creates a breakout room within the videoconferencing session for a subset of the meeting participants, thereby allowing the subset of the meeting participants to engage with one another within the breakout room during the videoconferencing session. A video processor automatically creates mirrored views of the video feed of each of the subset of meeting participants in the breakout room whose video feed in the videoconferencing session is not currently mirrored. The videoconferencing system generates instructions for a gallery view of the breakout room in the online meeting user interface using only mirrored views of the video feeds of the subset of meeting participants in the breakout room, including the mirrored views created by the video processor, and transmits instructions to display the gallery view of the breakout room in the online meeting user interface to all meeting participants in the breakout room on their respective participant computers. In this manner, all of the meeting participants in the breakout room are displayed as mirrored views of their respective video feeds. A similar process occurs with conversation groups in a virtual space view in an online meeting user interface associated with a videoconferencing session established in a videoconferencing system.
US11595444B2
A method for dynamically establishing a communication path for a requestor by assessing an authenticity of the requestor and a communication request is provided. The method may include, in response to receiving the communication request, dynamically determining whether to establish a communication path for the requestor to a destination though a communication network by assessing the requestor based on one or more authentication rules, wherein the one or more authentication rules are based on first information associated the communication network, second information about the requestor, and third information from the requestor. The method may further include, in response to determining that the requestor satisfies the one or more authentication rules, dynamically establishing the communication path for the requestor on the communication network according to one or more communication attributes associated with the requestor.
US11595441B2
In one embodiment, a method includes determining a secure path through a first plurality of network nodes within a network and determining an alternate secure path through a second plurality of network nodes within the network. The method also includes routing network traffic through the first plurality of network nodes of the secure path and detecting a failure in the secure path using single-hop BFD authentication. The method further includes rerouting the network traffic through the second plurality of network nodes of the alternate secure path.
US11595439B2
Certain embodiments of this disclosure describe techniques for detecting a spoofed network device and preventing the serving of content, such as advertisements, to the spoofed network device. In certain embodiments, a network security system is provided. The network security system can include hardware and/or software programmed to prevent the provision of content to a spoofed client device. The network security system can provide a mechanism for certifying to content providers, such as advertisers, whether or not a client is a legitimate mobile device or a spoofed device. Accordingly, content providers can prevent the delivery of content to fraudulent devices instead of relying on imprecise solutions that detect fraudulent activity after it has occurred.
US11595433B2
Embodiments provide system and methods for a DDoS service using a mix of mitigation systems (also called scrubbing centers) and non-mitigation systems. The non-mitigation systems are less expensive and thus can be placed at or near a customer's network resource (e.g., a computer, cluster of computers, or entire network). Under normal conditions, traffic for a customer's resource can go through a mitigation system or a non-mitigation system. When an attack is detected, traffic that would have otherwise gone through a non-mitigation system is re-routed to a mitigation system. Thus, the non-mitigation systems can be used to reduce latency and provide more efficient access to the customer's network resource during normal conditions. Since the non-mitigation servers are not equipped to respond to an attack, the non-mitigation systems are not used during an attack, thereby still providing protection to the customer network resource using the mitigation systems.
US11595431B2
Efficient virus detection and removal are realized by changing a mode of collecting logs in accordance with a network usage status. A configuration includes a processing monitoring unit that executes processing of monitoring a data communication network, and the processing monitoring unit includes a system load monitoring unit that monitors an available bandwidth of a network and a virus monitoring unit that collects log information corresponding to a communication message and performs virus detection. The virus monitoring unit changes a mode of collecting log information in accordance with information regarding the available bandwidth of the network acquired by the system load monitoring unit. In a case where a virus is detected and the available bandwidth is neither equal to nor larger than a predetermined threshold, only limited log information corresponding to a high-priority communication message is collected.
US11595430B2
A method, system and computer-usable medium for using pseudonyms to identify entities and their corresponding security risk factors is disclosed. In certain embodiments, a computer-implemented method for identifying security risks associated with a plurality of different entities is disclosed, wherein the method comprises: receiving a stream of events, the stream of events comprising a plurality of events associated with the plurality of different entities; pseudonymizing events of the plurality of events by replacing entity names in the plurality of events with corresponding entity pseudonyms to thereby provide a plurality of pseudonymized events; executing security analytics operations on the plurality of pseudonymized events to identify user behaviors presenting security risks; and using the entity pseudonyms to anonymously identify entities engaging in security risk related behaviors.
US11595427B2
A system for determining an entity's security rating may include a ratings engine and a security database. The security database may include a manifest and a distributed index containing security records. Each of the security records may have a key (e.g., a network identifier of a network asset) and a value (e.g., security information associated with the network asset identified by the key). The keyspace may be partitioned into multiple key ranges. The manifest may contain references to segments of the distributed index. Each segment may be associated with a key range and may index a group of security records having keys within the key range. The manifest and the segments may be stored in an object storage system. The ratings engine may determine the security rating of an entity based on security records of the entity's network assets, which may be retrieved from the database.
US11595421B2
A computation is divided into computation tasks that are sent to worker nodes and distributed results are received in response. A redundant subtask is sent to each of the worker nodes, the redundant subtask being a random linear combination of the computation tasks sent to others of the worker nodes. The worker nodes perform the redundant subtasks to produce redundant results. The redundant result of each worker node is combined with distributed results of others of the worker nodes to determine whether one or more of the worker nodes are acting maliciously. Optionally, the worker nodes can be initially evaluated for trustworthiness using a homomorphic hash function applied to an initial computation task and applied to results of the initial tasks. If the results of both hash functions match, then the worker nodes are considered trustworthy and can be used for subsequent computations with redundant subtasks as described above.
US11595417B2
The present disclosure relates generally to the field of data processing and electronic messaging systems, and, more particularly, to systems and methods for mediating a user's access to a resource to thereby prevent potential security breaches, including phishing and impersonation, malware, and security issues, particularly with respect to websites and electronic communications.
US11595415B2
Described embodiments provide systems and methods for anomaly detection and root cause analysis. A root cause analyzer receives a plurality of data samples input to an anomaly detection engine, and a corresponding plurality of anomaly labels output from the anomaly detection engine. The root cause analyzer trains a classification model using the plurality of data samples and the corresponding plurality of anomaly labels. The root cause analyzer determines, using the trained classification model and the plurality of data samples, relative contributions of anomalous features in a data sample of the plurality of data samples, to a prediction that the data sample is anomalous. The root cause analyzer provides the relative contributions of anomalous features to a device, to determine an action in response to the prediction that the data sample is anomalous.
US11595411B2
A system for data protection includes a first computing device comprising a security module; and a storage device coupled to the first computing device via a network interface. The security module comprises at least one of Software Root of Trust (SRoT) and Hardware Root of Trust (HRoT). The security module is further configured to: establish a trust channel between the first computing device and the storage device or storage service; monitor the first computing device and the storage device; create and enforce multi-dimensional data access control by tightly binding data access and permissions to authorized computing devices, users, applications, system services, networks, locations, and access time windows; and take over control of the storage device or storage service in response to a security risk to the system.
US11595408B2
A web server operating in a container has resource and network limits applied to add an extra layer of security to the web server. If a monitor detects that the container's resource usage is approaching one or more of these limits, which may be indicative of a DDoS attack, (step 210) or identifies traffic sources exhibiting suspicious behaviour, such as frequently repeated requests from the same address, or from a related set of addresses, a restrictor function caps the resources allowed by the original Webserver container to allow it to recover from buffer overflow and protect servers running in other containers from overwhelming any shared resources. A duplicator function starts up replica containers with the same resource limits to take overflow traffic, and a load balancing function then directs incoming traffic to these overflow containers etc. Traffic from suspicious sources is directed by the load balancer to one or more specially-configured attack-assessment container(s) where a ‘dummy’ web server operates. The behaviour of these sources is analysed by a behaviour monitoring function over some time to determine if they are legitimate or malicious, which can control a firewall to block addresses identified as generating malicious traffic.
US11595407B2
Plural Internet of Things (IoT) gateways detect, secure against and remediate malicious code with an autonomous communication of tokens between the IoT gateways on a time schedule. Detection of an invalid token or a token communication outside of a scheduled time indicates that malicious code may have interfered with token generation or communication. Once malicious code is verified on an IoT gateway, the failed gateway is remediated to an operational state, such as with a re-imaging by another IoT gateway through an in band communication or a re-imaging by a server information handling system through an out of band communication.
US11595401B2
A method for workload security rings that includes receiving a plurality of workloads, each associated with respective security criteria and scheduled for execution on a distributed computing system divided into a plurality of security rings each associated with a respective subset of computing devices of the distributed computing system that is physically isolated from the other security rings. For each respective workload, the method includes determining, using the respective security criteria, a security level of the respective workload and identifying, using the security level of the respective workload, one or more of the plurality of security rings that are eligible for executing the respective workload. The method also includes executing the respective workload on one or more computing devices selected from one of the respective subsets of computing devices associated with the identified one or more of the plurality of security rings eligible for executing the respective workload.
US11595393B2
In some examples, an access control policy controller in a computer network may receive a request to create an access control policy that permits a role to perform one or more functions in the computer network. The access control policy controller may determine one or more operations performed on one or more objects in the computer network to perform the one or more functions based at least in part on tracking performance of the one or more functions in the computer network. The access control policy controller may create the access control policy for the role that permits the role to perform the one or more operations on the one or more objects in the computer network.
US11595388B2
Example methods and systems are provided for location-aware service request handling. The method may comprise: generating and sending location information associated with virtualized computing instance to a service node or a management entity for transmission to the service node. The location information may identify logical element(s) to which the virtualized computing instance is connected. The method may further comprise: in response to detecting, from the virtualized computing instance, a service request for a service from the service node, generating a modified service request by modifying the service request to include the location information associated with the virtualized computing instance; and sending the modified service request towards the service node.
US11595387B2
A wireless access point receives data from a data appliance and transfers the data to a distributed ledger function. The distributed ledger function stores the data in a distributed ledger database, determines additional network access for the data appliance, and transfers an instruction indicating the additional network access to the wireless access point. The wireless access point receives the network access instruction, schedules the additional network access for the data appliance per the network access instruction, wirelessly transfers a network access schedule to the data appliance, wirelessly receives additional data from the data appliance per the network access schedule, and transfers the additional data to the distributed ledger function. The distributed ledger function stores the additional data in the distributed ledger database, determines future network access for the data appliance, and transfers another access instruction indicating the future network access for the data appliance to the wireless access point.
US11595379B2
This disclosure describes a computer implemented method for receiving authentication credentials identifying a user; identifying computing systems for which the user is authorized access to; and transmitting tokens granting access to the identified computing systems. In some embodiments, no two tokens of the transmitted tokens grants access to the same one of the identified computing systems. The user typically has access to a management tool configured to manage the transmission of the received tokens to the corresponding computing systems, thereby granting the user the ability to have seamless access to any of the computing systems associated with the user's authenticated identity.
US11595378B2
Systems and methods providing authentication in a microservice system. In some embodiments, the method comprises receiving, from the user interface application, a user interface response corresponding to the user interface request; and sending the user interface response to the client computer. Some embodiments comprise when no cache entry corresponding to the user interface session token is present in the user interface session cache, directing the user interface request to a login service. Some embodiments comprise when the login service receives valid login credentials from the client computer, sending a new user interface session token to the client computer. Some embodiments comprise invalidating the cache entries in the user interface session cache according to a cache expiry policy; and determining whether the cache entry corresponding to the particular user interface session token is valid. In some embodiments, the user interface request session token consists of a single value.
US11595376B2
A method of setting a surveillance camera includes the steps of recognizing a readable object in an image captured by the surveillance camera, updating a set value of one or more set items of the surveillance camera associated with the readable object, and transmitting the set value of an at least one set item to an external device in response to receiving a request therefrom.
US11595371B2
A secure programming system and method for provisioning and programming a target payload into a programmable device mounted in a programmer. The programmable device can be authenticated before programming to verify the device is a valid device produced by a silicon vendor. The authentication process can include a challenge-response validation. The target payload can be programmed into the programmable device and linked with an authorized manufacturer. The programmable device can be verified after programming the target payload by verifying the silicon vendor and the authorized manufacturer. The secure programming system can provision different content into different programmable devices simultaneously to create multiple final device types in a single pass.
US11595365B1
A protocol that is managed by a coordinating network element or third-party intermediary or peer network elements and utilizes tokens prohibits any subset of a union of the coordinating network element or third-party intermediary, if any, and a proper subset of the processors involved in token generation from substantively accessing underlying data. By one approach, processors utilize uniquely-held secrets. By one approach, an audit capability involves a plurality of processors. By one approach, the protocol enables data transference and/or corroboration. By one approach, transferred data is hosted independently of the coordinating network element. By one approach, the coordinating network element or third-party intermediary or a second requesting network element is at least partially blinded from access to tokens submitted by a first requesting network element. By one approach, a third-party intermediary uses a single- or consortium-sourced database. By one approach, network elements provisioned with tokens jointly manage the protocol.
US11595354B2
At least one of a measure of trust or a measure of spoofing risk associated with a sender of a message is determined. A measure of similarity between an identifier of the sender of the message and an identifier of at least one trusted contact of a recipient of the message is determined. The measure of similarity is combined with at least one of the measure of trust or the measure of spoofing risk to at least in part determine a combined measure of risk associated with the message. Based at least in part on the combined measure of risk associated with the message, a verification action is performed including by automatically providing an inquiry message that requests a response to be provided.
US11595343B2
A computer-implemented method of posting content to a social medium comprises receiving content posted by a user along with an associated posting time which indicates when the user selected an option to post the content to the social medium; determining that publication of the content posted by the user is dependent on a trigger; and in response to determining that publication of the content is dependent on the trigger, storing the content with the associated posting time and suspending publication of the content until the trigger is satisfied such that the posting time published with the content indicates a time prior to transmission of the content from an electronic device to a server for publishing.
US11595342B1
In one embodiment, a method includes receiving a user request from a client system associated with a user, generating a response to the user request which references one or more entities, generating a personalized recommendation based on the user request and the response, wherein the personalized recommendation references one or more of the entities of the response, and sending instructions for presenting the response and the personalized recommendation to the client system.
US11595340B2
A method and system for providing a communication stream for associating messages are described. A communication stream receives various message types including messages, posts, events, tasks, and comments, and presents them to users. Private messages relating to one or more messages may be sent between and among one or more users.
US11595338B2
While texting, a user is able access, share, and control rich media without leaving the texting application. The rich media are provided directly within the executing texting application. The texting application includes an embedded widget for controlling the rich media. Rich media includes, among other things, video clips, streaming audio, a map application, a movie-time application, a social movie-site application, a dynamically controllable image, or promotional media. Different mobile devices executing the texting applications communicate through a server that allows additional functionality, such as syncing the play of video clips and hosting and pushing the promotional media.
US11595336B2
A system for detection of email risk automatically determines that a first party is considered by the system to be trusted by a second party, based on at least one of determining that the first party is on a whitelist and that the first party is in an address book associated with the second party. A message addressed to the second party from a third party is received. A risk determination of the message is performed by determining whether the message comprises a hyperlink and by determining whether a display name of the first party and a display name of third party are the same or that a domain name of the first party and a domain name of the third party are similar, wherein similarity is determined based on having a string distance below a first threshold or being conceptually similar based on a list of conceptually similar character strings. Responsive to determining that the message poses a risk, a security action is automatically performed comprising at least one of marking the message up with a warning, quarantining the message, performing a report generating action comprising including information about the message in a report accessible to an admin of the system, and replacing the hyperlink in the message with a proxy hyperlink.
US11595325B2
Systems and methods provide a conversational website or native application. The conversational website or native application includes an interface that enables a network device to exchange one or more messages with a bot or a terminal device (operated by a live agent) during a communication session. The interface may include a communication area (e.g., a portion of the screen) and a dynamic content area (e.g., another portion of the screen). The content of a message received from the network device may be used to select dynamic content to display in the dynamic content area. Dynamic updating of content displayed in the dynamic content area occurs continuously as messages are exchanged during the communication session.
US11595320B1
Electronic communications received via a network from a plurality of electronic devices may include signals of device interactions or data changes that correspond to process performances by process-performing resources, signals of conditions of loads, or signals of processes associated with the process-performing resources and the loads. Data composites may be formed from the electronic communications, with data portions collected and mapped to resource profile records and load profile records that may be updated with the collected data portions. For each load, at least one of the one or more resource profile records and/or the one or more load profile records may be used to map the process-performing resources to the load. Content nodes may be linked in a network of content nodes, including respective linked content, resource specifications or load specifications. Access to the network of content nodes may be allowed via a control interface.
US11595317B2
A processor is configured to receive, from a first device, a plurality of first-direction packets belonging to a flow of communication, pass the first-direction packets to a second device, receive, from the second device, a plurality of second-direction packets belonging to the flow, pass the second-direction packets to the first device, calculate, after receiving each of at least some of the second-direction packets, an estimated in-flight number, by assuming that the second-direction packet acknowledges receipt of a number of the first-direction packets that is based on an estimated average number of received first-direction packets acknowledged by the second-direction packets, the estimated in-flight number being an estimated volume of payload data, contained at least partly in the first-direction packets, that has been passed by the processor to the second device but has not yet been received by the second device, and to regulate the flow, based on the estimated in-flight number.
US11595312B2
Mobile management method and system. The method includes receiving from an application on a client a DNS query for a host name; retrieving reputation data associated with the host name from a local cache on the client; determining whether a policy associated with the host name and the reputation data associated with the host name exists; and one of: sending network flows one of: through a VPN tunnel to a server or out a local proxy on the client to a private or public network; or blocking the network flow based on the determined policy for the host name.
US11595311B2
Aspects of the present disclosure involve systems, methods, computer program products, and the like, for controlling a congestion window (CWND) value of a communication session of a CDN. In particular, a content server may analyze a request to determine or receive an indication of the type of content being requested. The content server may then set the initial CWND based on the type of content being requested. For example, the content server may set a relatively high CWND value for requested content that is not particularly large, such as image files or text, so that the data of the content is received at the client device quickly. For larger files or files that a have a determined smaller urgency, the initial CWND may be set at a lower value to ensure that providing the data of the content does not congest the link between the devices.
US11595308B2
A system for closed loop prefix management for white boxes includes a network device, a route reflector coupled to the network device, a software defined network controller coupled to the route reflector and the network device, and a prefix usage analyzer in the software defined network controller. The prefix usage analyzer determines usage attributes of prefixes and identifies the prefixes with a predetermined usage attribute. The software defined network controller instructs a network controller in the network device to store the prefixes with the predetermined usage attributes in a table in the network device.
US11595307B1
Systems and methods are provided to use a custom tuple definition to route packets of network traffic. Each packet can correspond to a different custom tuple definition based on the custom tuple definitions provided. Each custom tuple definition may be applied to a subset of network traffic based on certain parameters. A stateful network routing service may intercept packets and determine a tuple value for the packet based on a corresponding tuple definition and information from the packet. The stateful network routing service may route the packet based on the tuple value of the packet to a network appliance. Further, subsequent packets associated with the same tuple value may be routed to the same network appliance. In some embodiments, the custom tuple definition may be used to determine multiple tuple values for a subset of network traffic.
US11595297B2
A system, method, and computer-readable medium for performing a traffic routing operation. The traffic routing operation includes: establishing a plurality of virtual private network (VPN) connections within an information handling system; obtaining a configuration policy for each of the plurality of VPN connections, the configuration policy for each of the plurality of VPN connections comprising an indication of at least one type of supported link of a plurality of links; configuring a plurality of queues for packets being communicated via the plurality of virtual private network connections, the plurality of queues being greater than the plurality of VPN connections; creating a tunnel indication for each of the plurality of VPN connections; mapping the tunnel indication for each of the plurality of VP connections to a respective queue of the plurality of queues; and, mapping each queue of the plurality of queues to a link of a particular VPN connection.
US11595296B2
A network system that uses a cluster of edge nodes to send and receive multicast traffic is provided. The network system is a network virtualization environment that includes one or more distributed routers, each distributed router implemented by virtualization software running on one or more host machines. The network system also includes a cluster of edge nodes for sending data from the one or more distributed routers to one or more uplink/upstream physical routers outside of a datacenter and for receiving data from the physical routers to the distributed routers. One of the edge nodes is a designated edge node that queries for membership information for one or more multicast groups to be received by at least two edge nodes of the cluster of edge nodes. The cluster of edge nodes forwards multicast traffic to and from the distributed routers according to the received membership information.
US11595294B1
Systems and methods are disclosed for identifying a set of internal edges on a representation of a network that satisfy a set of demands on the network. The disclosed systems and methods perform a multi-step process of selecting the internal edges. In a first step, an initial set of internal edges can be selected using a clique graph (or in another suitable manner). In a second step, a second set of internal edges can be selected using stream graph(s) (or in another suitable manner). The second set of internal edges can be used when determining network paths that satisfy the demands. When the representation of the network has a cut of two, the disclosed systems and methods can identify a set of internal edges providing a degree of protection against link failure.
US11595289B2
Embodiments described herein describe a network tester that is configured to perform packet modification at an egress pipeline of a programmable packet engine. A packet stream is received at an egress pipeline of an output port of the programmable packet engine, wherein the output port includes a packet modifier. Packets of the packet stream are modified at the packet modifier. The packet stream including modified packets is transmitted through an egress pipeline of the output port.
US11595282B2
A cloud network is a complex environment in which hundreds and thousands of users or entities can each host, create, modify, and develop multiple virtual machines. Each virtual machine can have complex behavior unknown to the provider or maintainer of the cloud. Technologies disclosed include methods, systems, and apparatuses to monitor the complex environment to detect network anomalies using machine learning techniques. In addition, techniques to modify and adapt to user feedback are provided allowing the developed models to be tuned for specific use cases, virtual machine types, and users.
US11595274B1
Disclosed is a technique that can be performed by a server computer system. The technique can include obtaining data from each of multiple endpoint devices to form global data. The global data can be generated by the endpoint devices in accordance with local instructions in each of the endpoint devices. The technique further includes generating global instructions based on the global data and sending the global instructions to a particular endpoint device. The global instructions configure the particular endpoint device to perform a data analytic operation that analyzes events. The events can include raw data generated by a sensor of the particular endpoint device.
US11595272B2
Disclosed embodiments are directed at systems, methods, and architecture for operating a control plan of a microservices application. The control plane corresponds with data plane proxies associated with each of a plurality of APIs that make up the microservices application. The communication between the data plane proxies and the control plane enables automatic detection of service groups of APIs and automatic repair of application performance in real-time in response to degrading service node conditions.
US11595260B2
A cloud management server and method for performing automatic placement of clients in a distributed computer system uses a list of compatible clusters to select an affinity cluster to place the clients associated with an affinity constraint. As part of the placement method, a cluster that cannot satisfy any anti-affinity constraint associated with the clients and the affinity constrain is removed from the list of compatible clusters. After the affinity cluster has been selected, at least one cluster in the distributed computer system is also selected to place clients associated with an anti-affinity constraint.
US11595258B2
Systems and methods include obtaining a catalog for a “to” software release and details of a controller of a network element operating a “from” software release, wherein the software releases are associated with the network element, and wherein the controller has a file system associated therewith; determining a delivery technique for a software load of the “to” software release based on the catalog and the details of the controller; and causing delivery of the software load to the file system based on the determined delivery technique, wherein the causing is one of automatic and subsequent to a user command. The delivery technique can be one of i) a full delivery, including all files in the catalog, ii) a minimal delivery, including only files in the catalog needed based on modules present in the network element, and iii) a hybrid delivery, between the full and minimal delivery.
US11595256B2
A system for dynamically adjusting a configuration of an intra-train communication network includes an electronic device and a computer-readable storage medium. The computer-readable storage medium has one or more programming instructions that, when executed, cause the electronic device to receive one or more parameters values associated with a train consist, determine whether a potentially adverse condition that would affect intra-train communication for the train consist is anticipated based on at least a portion of the received parameters, in response to determining that the potentially adverse condition is anticipated, identify one or more updated network parameter settings that will assist in maintaining intra-train communication of the train consist during an occurrence of the potentially adverse condition by executing a machine learning model, and implement the identified one or more updated network parameter settings.
US11595252B2
Techniques discussed herein relate to providing composable edge devices. In some embodiments, a user request specifying a set of services to be executed at a cloud-computing edge device may be received by a computing device operated by a cloud computing provider. A manifest may be generated in accordance with the user request. The manifest may specify a configuration for the cloud-computing edge device. Another request can be received specifying the same or a different set of services to be executed at another edge device. Another manifest which specifies the configuration for that edge device may be generated and subsequently used to provision the request set of services on that device. In this manner, manifests can be used to compose the platform to be utilized at any given edge device.
US11595247B1
Architectures and techniques are presented that provide an improved mechanism for a subscriber entity to report to a network provider a network issue that affects the performance of an application that uses a service provided by the network provider. The improved mechanism can enable fine granularity with respect to the network issue by identifying the issue on a per-session basis. In response to feedback data that is reported by the subscriber entity, the network provider can perform self-healing or other upgrade techniques to rapidly remedy the network issue.
US11595246B2
Restoration procedures in a Multimedia Broadcast Multicast Service (MBMS) network (also referred to as evolved MBMS (eMBMS) network) in case of a path failure.
US11595235B2
An integrated receiver supports adaptive receive equalization. An incoming bit stream is sampled using edge and data clock signals derived from a reference clock signal. A phase detector determines whether the edge and data clock signals are in phase with the incoming data, while some clock recovery circuitry adjusts the edge and data clock signals as required to match their phases to the incoming data. The receiver employs the edge and data samples used to recover the edge and data clock signals to note the locations of zero crossings for one or more selected data patterns. The pattern or patterns may be selected from among those apt to produce the greatest timing error. Equalization settings may then be adjusted to align the zero crossings of the selected data patterns with the recovered edge clock signal.
US11595231B2
Example implementation relates to a method for establishing a dynamic VPN tunnel between branch gateway devices based on metric data. A branch orchestrator receives metric data from VPNC device. The metric data includes data center bandwidth and processor utilization of the VPNC device. The metric data is derived from the traffic being routed via the VPNC device. When the metric data associated with traffic between a first branch gateway device and a second branch gateway device is above a Service Level Agreement (SLA), a dynamic branch to branch VPN tunnel is established to route the traffic between the first branch gateway device and the second branch gateway device. The VPN tunnel between the branch gateways can be teared when the load at the VPNC device reduces.
US11595225B2
Systems and methods are provided for implementing a device-independent scene in a home automation environment. One embodiment is a method comprising receiving information regarding a home-independent home automation scene, the information identifying a zone property and an identified zone type; identifying, in the designated home, a zone corresponding to the identified zone type; identifying at least one home automation device capable of affecting the zone property in the identified zone; for each of the identified devices, identifying a device state of the respective device that contributes to the zone property; storing a home-automation scene for the designated home, wherein the home-automation scene comprises information identifying the at least one identified devices and the respective identified device states of those devices; and in response to user selection of the stored home-automation scene, causing the at least one identified device to perform the respective identified actions.
US11595219B2
Disclosed in some examples are methods, systems, devices, and machine-readable mediums that provide an ability for an entity to independently commence, advance, and complete a resource allocation offer in a matter of minutes as opposed to weeks or months after an automated resource pre-committal process. The system, using and incorporating machine learning techniques and algorithms, may have several phases, including a setup phase, resource pre-committal phase, an import phase, a processing phase, a verification phase, a resource allocation offer phase, and a resource allocation phase in which the system allocates resources to a vendor.
US11595213B2
Aspects of the present disclosure relate to an apparatus comprising first interface circuitry to communicate with relying party circuitry, the first interface circuitry being configured to receive, from the relying party circuitry, an attestation request in respect of a processing operation requested by attester circuitry to be performed by the relying party circuitry; second interface circuitry to communicate with the attester circuitry, the second interface circuitry being configured to: transmit the attestation request to the attester circuitry; and receive, from the attester circuitry, evidence data associated with the processing operation, and third interface circuitry to communicate with verifier circuitry, the third interface circuitry being configured to: transmit the evidence data to the verifier circuitry; and receive, from the verifier circuitry, attestation result data indicative of a verification of the evidence data, wherein the first interface circuitry is configured to transmit the attestation result data to the relying party circuitry.
US11595210B2
A facility for performing accurate and real-time privacy-preserving biometrics verification in a client-server environment is described. The facility receives the user's biometrics data such as face, voice, fingerprint, iris, gait, heart rate, etc. The facility then processes and applies various privacy-preserving techniques to this data to complete enrollment and authenticate users, including but not limited to: encrypting data with a key using homomorphic encryption techniques and sending the encryption to the server; the server computes directly on the encryption and returns the result, which is also encrypted under the same key, to the client; the client optionally performs post-processing and decryption (in any order) and obtains the enrollment or authentication result. The facility may repeat this process to increase security level, resulting in more than 1 round trip between the client and the server. Lastly, the facility employs methods that generalize to other privacy-preserving applications beyond biometrics verification.
US11595205B1
A distributed database encrypts a table using a table encryption key protected by a client master encryption key. The encrypted table is replicated among a plurality of nodes of the distributed database. The table encryption key is replicated among the plurality of nodes, and is stored on each node in a respective secure memory. In the event of node failure, a copy of the stored key held by another member of the replication group is used to restore a node to operation. The replication group may continue operation in the event of a revocation of authorization to access the client master encryption key.
US11595202B1
An apparatus and method for mapping user-associated data to an identifier. The apparatus includes a processor configured to store a plurality of user identifiers. User identifiers may be determined by way of user or by machine-learning modules or the like. Apparatus receives user-associated data from a user to be stored in a resource data storage system. User-associated data may include a plurality of data sets to be mapped to an identifier. Mapping a data set to an identifier may be user determined or use a machine-learning module. Apparatus is configured to update the immutable sequential listing associated with the data set with the mapped identifier.
US11595201B2
Systems and methods of generating a software module, including: receiving a cryptographic key identification (ID) and a cryptographic operation type from at least one executable program, generating a software module configured to perform the cryptographic operation with a cryptographic key, sending the software module to the at least one executable program, and performing the operation having the cryptographic operation type with the software module, wherein the software module is generated based on at least one of: a transformation of the cryptographic key corresponding to the received cryptographic key ID, and the received cryptographic operation.
US11595200B2
A system and method for securely distributing quantum keys in a network are disclosed. The method includes receiving request for generating pair of quantum keys between source quantum node and target quantum node. Further, the method includes generating first pair of quantum keys based on the request. The method includes transmitting the first pair of quantum keys to the intermediate quantum node using a first quantum link. The method further includes generating intermediate pair of quantum key based on events detected at the intermediate quantum node. The method further includes interleaving the intermediate pair of quantum key with the first pair of quantum keys. Also, the method includes generating a second pair of quantum keys comprising interleaved intermediate pair of quantum key and first pair of quantum keys. Further, the method includes encoding and transmitting the second pair of quantum keys to target quantum node using second quantum link.
US11595198B2
In aspects of quantum-based security for hardware devices, a computing device includes a processor for application processing in a trusted execution environment, and includes a quantum random number generator to generate quantum random numbers sourced by multiple hardware devices in the computing device. The computing device also includes an embedded secure element that manages connection security of the multiple hardware devices, and is a single root of trust as a secure controller of the quantum random number generator. The computing device also includes a secure switch controlled by the embedded secure element, the secure switch being switchable to connect at least one of the multiple hardware devices to obtain a quantum random number from the quantum random number generator. The secure switch may be a virtualized secure switch implemented in the embedded secure element.
US11595195B2
Various embodiments relate to a method for masked decoding of a polynomial a using an arithmetic sharing a to perform a cryptographic operation in a data processing system using a modulus q, the method for use in a processor of the data processing system, including: subtracting an offset δ from each coefficient of the polynomial a; applying an arithmetic to Boolean (A2B) function on the arithmetic shares of each coefficient ai of the polynomial a to produce Boolean shares âi that encode the same secret value ai; and performing in parallel for all coefficients a shared binary search to determine which of coefficients ai are greater than a threshold t to produce a Boolean sharing value {circumflex over (b)} of the bitstring b where each bit of b decodes a coefficient of the polynomial a.
US11595192B2
A Computing environment is described to enable an information handling system (IHS) to receive a public encryption key from another IHS; and decrypt with a public encryption key one or more encrypted symmetric encryption keys, encrypted via a private encryption key, to obtain one or more symmetric encryption keys respectively associated with one or more memory address ranges. The IHS may physically receive a memory device that was utilized by the other IHS to store information in an encrypted fashion. The IHS may further decrypt, with a first encryption key of the one or more symmetric encryption keys associated with a first address range of the one or more address ranges, first encrypted data stored by the at least one non-volatile memory medium to obtain first data.
US11595188B2
A method for storing a data file (DF) on a storage entity (SE) includes receiving, by a proxy (PE) and from a computing entity (CE), a plurality of hash values corresponding to a plurality of blocks of the DF. The PE may check whether the plurality of blocks of the DF are stored in the SE based on the plurality of hash values. Based on determining that at least a subset of the plurality of blocks of the DF are not being stored in the SE, the PE may compute a secret associated with an encryption key. The PE may transmit, to the CE, the secret. The PE may receive, from the CE, information including storage locations of the subset of the plurality of blocks within the SE and one or more hash values, of the plurality of hash values, associated with the subset of the plurality of blocks.
US11595185B2
Computation efficiency of distributed secure implementation of the computation of a (sum of) products of values Vi, Wi from different servers on a distributed computing system is improved by generation of coefficients of a first and second polynomials P, Q by a first server. The first polynomial P has all numbers Xi from a first data set on the first server as roots. The second polynomial Q has values Q(Xi)=Vi for the numbers Xi from the first data set. The first server transmits coefficients of the polynomials to a second server in encrypted form. The second sever computes encrypted values
and of the polynomials for a number Xi′ in a second set from the encrypted coefficients. The second server computes an encrypted binary value from the encrypted value .
US11595180B2
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for receiving information on a number N of a code block group defined for one transport block from a base station through an upper layer signal, receiving a first transport block including a plurality of code blocks from the base station through a physical layer channel, and transmitting HARQ-ACK payload including HARQ-ACK information on the first transport block to the base station. Preferably, a code block-based CRC is attached to each of the code blocks, a transport block-based CRC is attached to the first transport block, and the HARQ-ACK payload includes a plurality of HARQ-ACK bits corresponding to M code block groups for the first transport block.
US11595179B2
Disclosed are a method for processing multi-transmission reception point (TRP) data, a base station, a terminal, and a storage medium, used for solving the problem in the prior art of low reliability of data transmission when data is transmitted by using multiple TRPs. The method includes a base station generates a resource allocation instruction and a quasi-co-location (QCL) instruction according to the mapping relations between a transmission coding block of data to be transmitted and multiple TRPs, and the QCL instruction is used for indicating the associations between an allocated resource and the QCL identifiers of the multiple TRPs, and the allocated resource comprises a time-frequency resource or a demodulation reference signal (DMRS) port resource; and sends downlink control information (DCI) to a user terminal, the DCI comprising at least the resource allocation instruction and the QCL instruction as well as a data merging and detection instruction.
US11595176B2
Methods, systems, and devices for wireless communications are described in which beamforming may be configured at a user equipment (UE) for narrowband communications. The UE may be a narrowband UE that may provide an indication to a base station that the UE is capable of performing beamforming communication for a unicast channel transmission. Such an indication may be provided in response to the UE receiving a non-beamformed broadcast channel transmission from the base station via a first carrier. The base station may receive the indication and configure the UE with a beamformed narrowband communications scheme. Such a beamformed formed narrowband communications scheme may be used for narrowband downlink shared channel communications, narrowband downlink control channel communications, or combinations thereof. In some cases, beamformed communications may be configured on a different carrier than the first carrier. The base station and UE may then communicate using beamformed transmissions.
US11595165B2
A node for a radio communication network is described, said node being arranged for a communication mechanism comprising the reception of a first transmission and the subsequent sending of a second transmission in response to said first transmission, wherein said node is furthermore arranged to perform a selecting process for selecting a relative timing for sending said second transmission from among a plurality of predetermined relative timing choices.
US11595154B1
A cellular modem processor can include dedicated processing engines that implement specific, complex data processing operations. To implement PDCCH decoding, a cellular modem can include a pipeline having multiple processing engines, with the processing engines including functional units that execute instructions corresponding to different stages in the PDCCH decoding process. Flow control and data synchronization between instructions can be provided using a hybrid of firmware-based flow control and hardware-based data dependency management.
US11595147B2
The present disclosure provides a data transceiving method, a data transceiving device, a wavelength configuration method and a wavelength configuration device. The data transceiving method includes that a first optical module receives control information sent by a second optical module; the first optical module adjusts transmission and receiving wavelengths according to the control information; and the first optical module executes transmission and receiving of data with the second optical module according to the adjusted transmission and receiving wavelengths.
US11595142B2
A reception apparatus of a time division multiple access (TDMA) system for performing intermittent reception by a reception period of a time slot and a non-reception period of a predetermined number of time slots which follow the reception period and in which reception is suspended includes a symbol clock controller configured to perform symbol synchronization at a timing at which a synchronous word included in the reception period after the non-reception period, and correct a symbol clock frequency of a symbol clock based on a number of time slots and a symbol count value during a previous reception period and the non-reception period following the previous reception period; and a reception period controller configured to correct, after detection of the synchronous word, a reception termination timing of the reception period in which the synchronous word is detected based on the symbol clock with the corrected symbol clock frequency.
US11595134B2
A power over fiber system includes a power sourcing equipment, a powered device, an optical fiber cable, a measurer and a control device. The power sourcing equipment includes a semiconductor laser that oscillates with electric power, thereby outputting feed light. The powered device includes a photoelectric conversion element that converts the feed light into electric power. The optical fiber cable transmits the feed light from the power sourcing equipment to the powered device. The measurer measures a distance from the power sourcing equipment to the powered device. The control device controls the power sourcing equipment to output the feed light by changing a laser wavelength thereof for the distance from the power sourcing equipment to the powered device measured by the measurer.
US11595133B2
A quantum device includes a non-reciprocal transmission structure, wherein the transmission structure is designed such that for first waves traversing the transmission structure in a forward direction the phases of the first waves are at least partially conserved, and for second waves traversing the transmission structure in a backward direction, the phases of the second waves are at least partially replaced by random ones, such that the phase conservation is more pronounced in the forward direction than in the backward direction.
US11595128B2
A method for performing ONU Management and Control Interface (OMCI) synchronization includes receiving an OMCI message containing a OLT-G entity identifying OLT's vendor identification (ID) and version. The method also includes determining if an OLT vendor identification (ID) matches with a current vendor ID and if an Optical Line Terminal (OLT) version is compatible with current OMCI handlers. When the OLT vendor ID fails to match with the current vendor ID, automatically performing a OMCI handler switching process. The OMCI handler switching process includes setting a current OLT vendor as a new OLT vendor ID, deleting a OMCI configuration previously stored in the flash memory after setting the new OLT vendor ID, and rebooting the ONT to allow the ONT to initialize a OMCI configuration using a new OMCI profile.
US11595123B2
A data communication network includes a plurality of network nodes and a processor. The network nodes each include an optical link and a reflectometry analyzer. The reflection analyzers provide reflectometry results that each provide a characterization of physical and operational properties of the associated optical link. The processor receives the reflectometry results from the reflectometry analyzers, and, for each optical link, analyzes the reflectometry results to determine a fingerprint of the physical and operational properties of the associated optical link. The processor further determines a status for each of the optical links based upon the associated fingerprints, and determines a first path between a first one of the network nodes and a second one of the network nodes based upon a first status of a first optical link in the first path and a second status of a second optical link in the path.
US11595120B2
A function of detecting an unused path through which actual data is not transmitted in a long-distance redundant network is realized at low cost. In an optical transmission system 20, each of the optical transceivers 21a and 21b that are connected to each other by an optical fiber cable 22 and disposed separately includes a protocol IC unit 35. The protocol IC unit 35 transmits an idle signal A1 with empty data using an optical signal P1 to an unused path of the optical fiber cable 22. At the time of this transmission, the protocol IC unit 35 outputs, to the transmission unit 33, a control signal C1 for performing, at a fixed modulation period, ON/OFF modulation on the optical signal P1 on which the idle signal A1 is superimposed. Also, the protocol IC unit 35 transmits an OAM signal O1 at an OAM period that is a period different from a modulation period, and performs control to turn ON the control signal C1 at the time of this transmission. The protocol IC unit 35 performs control to set the QAM period T2 as a period longer than or equal to a plurality of modulation periods T1. The transmission unit 33 is configured to perform ON/OFF modulation on the optical signal P1 using the control signal C1, and transmits the modulated optical signal P1.
US11595117B2
A system and method are disclosed for synchronizing timing for a terminal in a satellite communication system. Upon detecting a service interruption, first timing markers are extrapolated from timing information received prior to the service interruption. Second timing markers are also extrapolated from timing information received subsequent to the service interruption. Timing for the terminal is then synchronized with the gateway based on a timing difference between the first timing markers and the second timing markers.
US11595116B2
A satellite communication system leverages the carrier offset detection capability of the demodulator contained in an on-board modem of M&C channel. The modem detects the frequency error Δf, introduced in the signal path from the output of the base station at ground to the output of baseband conversion on the satellite, by analyzing the baseband signal at the baseband conversion to estimate the received carrier f′c and subtracting it the from the expected frequency (fc).
US11595115B2
An aircraft based satellite communication (SATCOM) terminal includes a broadband aperture configured to communicate through non-geostationary orbit (NGSO) satellites for broadband communications, a management aperture configured to receive NGSO satellite management information from a geostationary orbit (GSO) satellite, and at least one processor that performs operations. The operations receive the NGSO satellite management information from the GSO satellite, where the NGSO satellite management information indicates positions and associated time of a set of the NGSO satellites. The operations acquire a second communication link with a second NGSO satellite among the set using the NGSO satellite management information during handoff switching from using a first communication link that was previously acquired with a first NGSO satellite to using the second communication link being acquired with the second NGSO satellite. The operations then perform broadband communications through the broadband aperture and the second communication link with the second NGSO satellite. Related ground-based control centers are disclosed.
US11595098B2
A method performed by a wireless device (510, 700, 1100) is disclosed. The wireless device obtains (601) a configuration for a sub-band channel quality indicator (CQI) granularity and a sub-band precoding matrix indicator (PMI) granularity for the wireless device. The wireless device determines (602) channel state information (CSI) feedback according to the configured sub-band CQI granularity and the sub-band PMI granularity. The sub-band PMI granularity corresponds to a first sub-band size and the sub-band CQI granularity corresponds to a second sub-band size. The first sub-band size is smaller than the second sub-band size. The wireless device transmits (603), to a network node (560, 1000), the determined CSI feedback.
US11595092B2
A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
US11595086B2
A calibration circuit 2 according to the present disclosure is a calibration circuit 2 in a radio base station system 1 including a remote unit part 10 and a plurality of distributed antenna parts 20 connected to the remote unit part 10 through a plurality of respective cables, the calibration circuit 2 including: a detection unit 2a configured to detect a plurality of local oscillation signals that are output from a local oscillator 13 of the remote unit part 10 and are respectively reflected from the plurality of distributed antenna parts 20 through the plurality of cables; and a phase adjustment unit 2b configured to adjust a phase of each of the plurality of local oscillation signals output through the plurality of respective cables from the remote unit part 10 based on a result of the detection.
US11595082B2
A device includes a first circuit that includes a near-field emission circuit, a second circuit, and a hardware connection linking the first circuit to the second circuit. The hardware connection is dedicated to a priority management between the first circuit and the second circuit. In addition, priority management information can be communicated between a near-field emission circuit and a second circuit. The communicating occurs between a dedicated hardware connection connecting the near-field emission circuit to the second circuit.
US11595081B2
A circuit for a communication device and a method for switching a communication device are disclosed. In an embodiment, a method includes activating at least one first antenna and at least one second antenna of a near-field communication (NFC) device for switching the NFC device between first field detection phases and second card detection phases.
US11595076B2
The systems and methods described herein are directed to techniques for improving battery life performance of end devices in resource monitoring systems which transmit data using low-power, wide area network (LPWAN) technologies. Further, the techniques include providing sensor interfaces in the end devices configured to communicate with multiple types of metrology sensors. Additionally, the systems and methods include techniques for reducing the size of a concentrator of a gateway device which receives resource measurement data from end devices. The reduced size of the concentrator results in smaller, more compact gateway devices that consume less energy and reduce heat dissipation experienced in gateway devices. The concentrator may comply with modular interface standards, and include two radios configured for transmitting 1-watt signals. Lastly, the systems and methods include techniques for fully redundant radio architecture within a gateway device, allowing for maximum range and minimizing downtime due to transmission overlap.
US11595065B2
Systems and methods are described to perform wireless communication. The device includes a pre-distortion circuit configured to pre-distort an input signal based on a parameter set including a plurality of coefficients and generate a pre-distorted signal, a power amplifier configured to amplify the pre-distorted signal and generate an output signal, and a parameter obtaining circuit configured to perform an iterative approximation operation based on the output signal and the pre-distorted signal, which change over time, according to an indirect training structure configured to minimize a difference between an intermediate signal obtained based on the output signal and the pre-distorted signal, and obtain the parameter set.
US11595060B2
A method for decoding a low-density parity-check (LDPC) code, performed by a communication apparatus, includes: updating a variable node; determining n minimum values based on a min-sum algorithm (MSA); determining n indices based on the n minimum values; updating a check node using the n indices; calculating a log-likelihood ratio (LLR) value when the update of the check node is completed; and determining an information bit based on the LLR value.
US11595056B2
The present technology relates to an encoding device and method, a decoding device and method, and a program, which are adapted to be capable of improving convenience.
The decoding device is provided with: a decoding unit that decodes audio data including an object audio, the audio data being included in an encoded bit stream, and reads metadata of the object audio from an area in which arbitrary data of the encoded bit stream can be stored; and an output unit that outputs the decoded audio data on the basis of the metadata. The present technology can be applied to the decoding device.
US11595051B2
Disclosed is a frequency dividing circuit, a frequency dividing method and a phase locked loop. The frequency dividing circuit comprises: a clock selection unit outputting a first clock signal, select a second clock signal lagging behind the first clock signal by (½-1/M) of one phase; an integer frequency dividing unit performing frequency division on the first clock signal to provide a frequency-divided clock signal; a trigger unit triggering the frequency-divided clock signal according to the second clock signal to obtain a modulation clock signal; a switching signal unit providing a switching signal according to the modulation clock signal and a preset target output frequency. The clock selection unit selects and further outputs a third clock signal as the first clock signal according to the target phase selection information, to adjust the frequency of the frequency-divided clock signal, reduce noise and improve loop bandwidth of the phase locked loop.
US11595050B2
Systems and methods are provided for a cascade phase locked loop. A first phase locked loop receives a reference clock signal having a first frequency and generates a high frequency clock signal that is phase aligned with the reference clock signal. A first divider divides the high frequency clock signal to generate a middle frequency clock signal, and a second divider divides the middle frequency clock signal to generate a low frequency reference clock signal. A second phase locked loop receives the low frequency reference clock signal and generates an output signal, compares the output signal to the low frequency reference clock signal to generate a frequency increasing (UP) signal that indicates a phase difference between the output signal and the low frequency reference clock signal. A delay locked loop receives the middle frequency clock signal and the frequency increasing (UP) signal and delays the middle frequency clock signal based on the frequency increasing (UP) signal to generate the realignment clock signal. The second phase lock loop receives the realignment clock signal and adjusts the phase difference between the output signal and the low frequency reference clock signal based on the realignment clock signal.
US11595049B1
In some examples, a digital frequency locked loop (DFLL) device includes a phase frequency detector (PFD) configured to receive a reference clock signal and an indicator of a primary clock signal and to determine differences between periods of the reference clock signal and the indicator. The DFLL also includes a controller coupled to the PFD. The controller is configured to store digital signals indicating a first and a second of the differences determined by the PFD, determine a period error by subtracting the second difference from the first difference, and compare the period error to a programmed threshold. The DFLL also includes a digitally controlled oscillator (DCO) coupled to the controller, the DCO configured to provide the primary clock signal having a frequency adjusted based on the comparison.
US11595048B1
A digital phase-locked loop (DPLL) includes a time-to-digital converter (TDC) to generate a multi-bit code based on a phase error between a reference clock and a feedback clock, a digital loop filter (DLF) coupled to the TDC, a digitally-controlled oscillator (DCO) circuit coupled to the DLF and to generate an output signal that is convertible to the feedback clock, and a logic component coupled to an input of the DCO circuit. The logic component is to: trigger, in response to detecting a power on of the DPLL circuit, a switch to decouple the DLF from the DCO circuit; determine, from the reference clock, a target frequency; measure a frequency of the feedback clock; and iteratively generate, based on the frequency during each iteration, a set of digital bits to the input of the DCO circuit that successively causes the frequency to converge towards the target frequency.
US11595044B2
An input circuit includes an input buffer circuit using a first node as an input and a second node as an output, an N-type transistor having a source coupled to the input terminal, a drain coupled to the first node, and a gate coupled to a power supply, and a pull-up circuit provided between the first node and the power supply. The pull-up circuit is configured to make the power supply and the first node conducive with each other for a predetermined period when the input signal transitions from low to high and not to make the power supply and the first node conductive with each other when the input signal transitions from high to low.
US11595043B2
Technologies and techniques for operating an appliance. A command button of an operating part is actuated, the actuation of the command button being detected by a microcontroller using measuring instruments. The read-in measured values are evaluated such that it is determined whether the measuring signal has a regular form for actuating the command button, or an irregular form. A function associated with the actuated command button is implemented if it is established that the measuring signal has a regular form. When a regular form is identified, optionally an acoustic, haptic or optical acknowledgement signal is emitted, and when an irregular form is identified, an acoustic, haptic or optical fault signal is emitted.
US11595034B2
A load switch includes a switch input, a switch output, a first field-effect transistor (FET), and a second FET. The switch input is adapted to be coupled to a controller output of a controller. The switch output is adapted to be coupled to a controller input of the controller. The first FET has a gate and a source. The gate of the first FET is coupled to the switch input. The second FET has a gate and a source. The gate of the second FET is coupled to the source of the first FET. The source of the second FET is coupled to the switch output.
US11595029B2
A switch circuit of an embodiment includes a high frequency switch, a first charge pump circuit, a boost signal generation circuit, and a second charge pump circuit. The high frequency switch switches transmission and reception of a high frequency signal. The first charge pump circuit generates a first voltage and a second voltage biased to the high frequency switch. When an edge of an input signal is detected, the boost signal generation circuit generates a first boost signal for temporarily increasing drive capacity of the first charge pump circuit. When the first boost signal is input, the second charge pump circuit operates to temporarily increase the drive capacity of the first charge pump circuit.
US11595018B2
A film bulk acoustic wave resonator (FBAR) comprises a recessed frame region including an undulating perimeter.
US11595015B2
An acoustic wave resonator includes a resonating part disposed on and spaced apart from a substrate by a cavity, the resonating part including a membrane layer, a first electrode, a piezoelectric layer, and a second electrode that are sequentially stacked. 0 Å≤ΔMg≤170 Å may be satisfied, ΔMg being a difference between a maximum thickness and a minimum thickness of the membrane layer disposed in the cavity.
US11595011B2
A differential input stage of a circuit includes a first transistor, a second transistor, a third transistor, and a fourth transistor. Drains of the first and third transistors couple together at a first node, and drains of the second and fourth transistors couple together at a second node. A first slew boost circuit includes a fifth transistor and a first current mirror. A gate of the fifth transistor couples to the second node. A source of the fifth transistor couples to the first node. The first current mirror couples to the fifth transistor and to the second node. A second slew boost circuit includes a sixth transistor and a second current mirror. A gate of the sixth transistor couples to the first node. A source of the sixth transistor couples to the second node. The second current mirror couples to the sixth transistor and to the first node.
US11595006B2
Apparatus and methods for envelope tracking systems with automatic mode selection are provided herein. In certain configurations, a power amplifier system includes a power amplifier configured to provide amplification to a radio frequency signal and to receive power from a power amplifier supply voltage, and an envelope tracker including a signal bandwidth detection circuit configured to generate a detected bandwidth signal based on processing an envelope signal corresponding to an envelope of the radio frequency signal. The envelope tracker further includes a switch bank configured to receive a plurality of regulated voltages, a filter configured to filter an output of the switch bank to generate the power amplifier supply voltage, and a mode control circuit configured to control a filtering characteristic of the filter based on the detected bandwidth signal.
US11595002B2
This method for detecting a poor module-mounting-state in a concentrator photovoltaic apparatus includes: photographing a surface of an array by an imaging device; obtaining an image in which a virtual image, magnified through a condenser lens, of a light receiving portion including a cell and a vicinity thereof is formed, and a collection of pixels of the virtual image forms a composite virtual image of an entirety of the light receiving portion, the composite virtual image being projected over a plurality of modules; and detecting a poor module-mounting-state based on a form of the composite virtual image.
US11595000B2
A high efficiency configuration for a string of solar cells comprises series-connected solar cells arranged in an overlapping shingle pattern. Front and back surface metallization patterns may provide further increases in efficiency.
US11594998B1
Mounting a solar panel system includes installing a skirt to a roof in a predetermined position, the predetermined position guiding an alignment for additional components installed in the solar panel system; integrating a solar panel with a flange of the skirt, wherein the skirt supports a portion of the solar panel; determining if a width of the solar panel system will be increased; installing an additional skirt to which an additional solar panel is attached in response to determining that the width of the solar panel system will be increased; determining if a length of the solar panel system will be increased; and integrating an additional solar panel with a flange of a previously installed solar panel via a mount interface in response to determining that the length of the solar panel system will be increased.
US11594995B2
The invention relates to a system 1 for controlling a voltage converter comprising a plurality of high-side switches forming a high group and a plurality of low-side switches forming a low group, the control system 1 comprising: a module 10 for measuring a voltage V of the DC voltage source B, a module 11 for comparing the measured voltage V with a first safety threshold OV1, a control module 12 for controlling a first group of switches so as to close chosen from the high group or the low group, if the comparison module 11 indicates that the measured voltage V is higher than the first safety threshold OV1.
US11594993B2
A controller includes: a connection switch that switches a connection state of a winding of a synchronous motor during a rotating operation of the synchronous motor; a current detector that detects a rotary machine current flowing in the synchronous motor; a position/speed estimator that estimates a magnetic pole position and speed of a rotor; a voltage applicator that applies a voltage to the synchronous motor; and a control circuitry that generates a voltage command given to the voltage applicator on the basis of the magnetic pole position and the speed, and outputs a switching operation command for switching the connection state to the connection switch. The control circuitry generates the voltage command to bring the rotary machine current close to zero before the connection state of the winding is switched.
US11594986B2
Various implementations of the invention correspond to an improved vortex flux generator. In some implementations of the invention, the improved vortex flux generator includes a magnetic circuit configured to produce a magnetic field; a quench controller configured to provide a variable current; a vortex material configured to form and subsequently dissipate a vortex in response to the variable current, wherein upon formation of the vortex, a magnetic field density surrounding the vortex is urged to decrease, and wherein upon subsequent dissipation of the vortex, the urging to decrease ceases and the magnetic field density increases prior to a reformation of the vortex, and wherein the decrease of the magnetic field density and the increase of the magnetic field density correspond to a modulation of the magnetic field; an inductor disposed in a vicinity of the vortex such that the modulation of the magnetic field induces an electrical current in the inductor; and a dissipation superconductor electrically disposed in parallel with the vortex material and configured to carry, without quenching, an entirety of the variable current during dissipation of the vortex in the vortex material.
US11594983B2
A vibration type motor includes a limiter configured to limit a distance between a movable guide member and a fixed guide member. The limiter has first, second, and third limiting areas. The first limiting area is disposed between a first roll member and a second roll member in one direction. The second limiting area is disposed on the same side as the second roll member with respect to the first roll member and distant from the second roll member in the one direction. The third limiting area is disposed on an opposite side of the second roll member with respect to the first roll member in the one direction. A length of the first limiting area in another direction orthogonal to the one direction is equal to or longer than that of each of the second limiting area and the third limiting area in the one direction.
US11594980B2
Technologies for alternating current regulation controller include a controller configured to determine a voltage duty cycle based on a target voltage, and to determine a delay time based on the voltage duty cycle. The controller is coupled to input phases of an alternating current generator having multiple phases. Each phase is coupled to a silicon controlled rectifier. For each phase, the controller identifies a rising edge asserted on the input phase, waits the delay time after identifying the rising edge, and asserts an output pulse on an output driver coupled to the silicon controlled rectifier coupled to the input phase in response to waiting the delay time. Other embodiments are described and claimed.
US11594973B2
A bidirectional DC-DC converter with three or more ports is described along with a method of operation thereof. The converter utilizes a common transformer for all ports and allows for power transfer from any port to any or all of the remaining ports. The converter may utilize a controller which implements variable-frequency control, delay-time control, and/or phase-delay control to achieve power transfer as desired between the converter ports. In some cases, power transfer between ports can operate similar to a series-resonant converter or a dual active bridge converter.
US11594972B2
A power converter having a parallel resonant circuit, includes an inverter, a resonant circuit, a transformer comprising a primary circuit and a secondary circuit, control means for the inverter, the inverter being connected to the resonant circuit, which is intended to be connected to an output load via the transformer, the power converter wherein the inverter comprises a first half-bridge and a second half-bridge in parallel with the first half-bridge, a first inductor between the first half-bridge and the resonant circuit, a second inductor between the second half-bridge and the resonant circuit, and in that the first and second inductors have the same inductance and are coupled in the opposite direction to one another.
US11594963B2
According to one embodiment, a switching power circuit compares a reference voltage with a feedback voltage of an output voltage, and controls the output voltage in accordance with the reference voltage, in which in a case where the output current is greater than a predetermined set current, the voltage of the reference voltage is decreased.
US11594960B2
A controller includes a phase frequency detection circuit which has a first input coupled to receive a reference clock input, a second input coupled to receive a high-side active output, and an output configured to provide a PFD output. The controller includes a control loop filter which has a first input coupled to receive a slew rate input, a second input coupled to receive the PFD output, and an output configured to provide a high-side length output. The controller includes a pulse generation circuit which has a first input coupled to receive the high-side active output, a second input coupled to receive the high-side length output, and an output configured to provide a fine pulse output. The controller includes a latch configured to provide the high-side active output responsive to a comparison output and the fine pulse output.
US11594953B1
A method for operating a multi-level bridge power converter of an electrical power system connected to a power grid includes providing a plurality of switching devices of the power converter in one of a neutral point clamped topology or an active neutral point clamped topology, the plurality of switching devices including a first group and a second group of switching devices. The method also includes providing a multi-state deadtime for the first and second groups of switching devices that changes based on different state transitions of the power converter. Further, the method includes operating the first and second groups of switching devices according to the multi-state deadtime to allow the first group to switch differently than the second group during the different state transitions, thereby decreasing voltage overshoots on the first group during one or more of the different state transitions and providing safe transition between commutation states of the power converter.
US11594952B2
An auxiliary power supply device for an inverter with a plurality of power modules connected in parallel is disclosed. The auxiliary power supply device includes: a plurality of soft-start circuits, each coupled to a DC port of a corresponding power module; a plurality of distributed auxiliary power supplies, each having an input terminal coupled to the DC port of the corresponding power module; and a centralized auxiliary power supply having an input terminal coupled to an AC side of the inverter, and an output terminal coupled to a DC side of the inverter. By replacing auxiliary power supplies on the AC sides of all power modules with the centralized auxiliary power supply and omitting soft-start circuits on the AC sides of all power modules, the present invention improves system performance in cost, volume, loss, and electromagnetic compatibility.
US11594949B2
A power converter assembly comprises a plurality of power converter channels each arranged to provide a three-phase output to an electrical machine having a multiple of three-phase windings. The power converter assembly further comprises control means arranged to provide a torque demand signal to the plurality of power converter channels to provide, together, a desired torque output to drive the machine and a temperature sensing means to detect temperature in the power channels and/or at the windings of the machine. The control means is arranged to determine the proportion of the desired torque output to be provided by each channel based on the detected temperature.
US11594947B2
Improved magnetic rotor assemblies are provided. In one embodiment, a magnetic rotor assembly includes two or more rotor disks. The rotor disks may each contain corresponding sets of permanent magnets, which may be circumferentially disposed around the disks. The disks may then positioned near one another such that the disks are magnetically coupled. In certain instances, the N-poles of the permanent magnets may face one another. In other instances, the S-poles of the permanent magnets may face one another.
US11594946B2
An axial gap motor is configured such that: a rotor includes a plurality of rotor cores fixed along the circumferential direction of a rotor pedestal, and a plurality of magnets; and a stator includes a plurality of stator cores fixed along the circumferential direction of a stator pedestal, and coils wound around the stator cores. A first divided surface of each rotor core faces an N-pole of a corresponding magnet, and a second divided surface of the each rotor core faces an S-pole of a corresponding magnet. Respective divided surfaces of the rotor cores are placed to face respective divided surfaces of the stator cores across the magnets.
US11594942B2
A control apparatus is provided for controlling drive of a rotating electric machine that has coils of two or more phases. The control apparatus includes a first inverter to be connected with first ends of the coils, a second inverter to be connected with second ends of the coils, and a controller. The first inverter has a plurality of first switching elements each corresponding to one of the coils. The second inverter has a plurality of second switching elements each corresponding to one of the coils. The controller includes a first operation circuit configured to generate a first control signal for control of the first inverter and a second operation circuit configured to generate a second control signal for control of the second inverter. Moreover, the control apparatus is configured so that switching timings are synchronized, based on synchronization information, between the first and second inverters.
US11594937B1
A system includes an electric generator, a power electronics system, and a heat exchanger. The electric generator includes a turbine wheel, a rotor, and a stator. The turbine wheel is configured to receive process gas and rotate in response to expansion of the process gas flowing into an inlet of the turbine wheel and out of an outlet of the turbine wheel. The rotor is configured to rotate with the turbine wheel. The electric generator is configured to generate electrical power upon rotation of the rotor within the stator. The power electronics system is configured to convert the electrical power to specified power characteristics. The heat exchanger includes a first side in fluid communication with the process gas and a second side in fluid communication with a fluid stream from a second system. The heat exchanger is configured to cool the fluid stream using the process gas.
US11594934B2
Disclosed in one embodiment is a busbar comprising: an insulating body; a plurality of neutral terminals arranged in the insulating body; and a plurality of first driving terminals, second driving terminals, and third driving terminals arranged in the insulating body, wherein the plurality of neutral terminals, first driving terminals, second driving terminals, and third driving terminals are electrically insulated, respectively, and the shape of the plurality of the first driving terminals, the second driving terminals, and the third driving terminals are the same.
US11594926B2
A method of manufacturing a rotary electric machine armature that includes a cylindrical armature core in which a plurality of slots that extend in an axial direction are disposed in a circumferential direction and a coil wound around the armature core, the slots having respective radial openings that open in a radial direction, and the coil being formed by joining a plurality of segment conductors to each other.
US11594921B2
A rotor assembly for an electric machine, e.g., of an electrified powertrain, includes a rotor having inner and outer diameter surfaces, and a rotor shaft connected to and surrounded by the rotor. The rotor has equally-spaced rotor magnetic poles each having a quadrature-axis (“q-axis”) and a pair of direct-axes (“d-axes”). At each of magnetic pole of the rotor, the rotor defines at least three arcuate notches, including a center notch bisected by the q-axis and a pair of additional arcuate notches symmetrically flanking the center notch. The rotor may include embedded permanent magnets, which may be arranged in a dual V-shaped configuration. Each additional notch may be positioned within a sweep of a top-layer opening angle of the magnets. The center notch and/or the pair of additional notches may define tangentially-continuous fillets which smoothly transition the notch into the outer diameter surface.
US11594915B1
A method of operating a power and data transfer system includes determining, by a wireless transmission system, presence of a wireless receiver system. The method further includes starting wireless power and data transfer via the wireless transmission system, if presence of the wireless receiver system is detected. The method further includes determining if power at a load associated with the wireless receiver system exceeds a threshold for out of band communications. The method further includes, if the power at the load exceeds the threshold for out of band communications, handing over wireless data transfer to an out of band communications system that is in operative communication with the wireless transmission system.
US11594914B2
In a method for producing a system for inductively transmitting energy to a mobile part, and a device for performing the method: a stepped bore is introduced into a floor; a sealing element is introduced into the stepped bore; a ring frame is held in place in the stepped bore with the aid of an alignment unit supported on the surface of the floor, the upper edge of the ring frame in particular being aligned with the height of the floor or with the surface of a floor covering applied to the floor, i.e. the upper edge in particular being brought to the same height position as the surface of the floor or the floor covering; the ring frame is set apart from the floor so that a gap region exists between the ring frame and the floor; casting compound is filled into the gap region; the alignment unit is removed; and a primary part is accommodated in the ring frame, in particular connected with the aid of screws.
US11594912B2
An energy management system for an off-electric-grid solar house includes a battery pack that outputs a voltage based on load and has a linear relationship between output voltage and remaining capacity, and a solar energy power source that supplies electric power to be stored in the battery pack. One or more electric devices connected to the battery pack produce the load by drawing electric power from the battery pack. One or more sensors monitor conditions in the house. A control circuit is configured to control the one or more electric devices based on the monitored conditions and the remaining capacity in the battery pack, as the battery pack is charged by electricity from the solar energy power and discharged by load from the electric devices. The control circuit manages priority among the electric devices for changing operating status depending on remaining battery capacity.
US11594905B2
An apparatus for defining an AC power source having a predetermined amperage rating and for use with a pallet truck or fork lift lifting device. The apparatus includes a pair of terminal banks, a battery, a converter adapted to change DC to AC power, a relay, a controller, and a base adapted for engagement by the lifting device for transport of the apparatus. The apparatus is shaped so that it can be transported by the lifting device through a doorway. A pair of terminal banks, battery, converter, relay and controller are coupled to one another and configured for selective operation in a standalone configuration or a stacked configuration.
US11594901B2
A multifunctional charging station is provided. The multifunctional charging station includes a housing, an alarm clock, an AC input connector, an AC output interface, a DC output interface, a luminous display screen, a wireless charging system, a controller and a managing circuit. The multifunctional charging station is configured to optimally supply electrical power to AC and DC electric devices, while wirelessly charging electric devices at the same time, and functions as an alarm clock and lighting system (e.g., a nightlight).
US11594898B2
An apparatus and method for preventing overcharge of a secondary battery that prevents the overcharge of a Starting Lighting Ignition (SLI) battery, which can be applied to both a regulated system with a voltage regulator and an unregulated system without a voltage regulator, by regulating the voltage applied to the cell assembly.
US11594892B2
Systems and methods are described for managing charging and discharging of battery packs. In one or more aspects, a system and method are provided to minimize overcharging of battery cells of specific battery chemistries while still enabling fast charging cycles. In other aspects, a buck converter may be used to reduce a voltage of power used to charge the cells. In further aspects, a fast overcurrent protection circuit is described to address situations involving internal short circuits of a battery cell or battery pack. In yet further aspects, a bypass circuit is provided in series-connected battery packs to improve the charging of undercharged battery packs while also increasing the efficiency of the overall charging process. In other aspects, a circuit is provided that permits a controller to determine a configuration of battery packs. In yet further aspects, a system may determine a discharge current for a collection of battery packs based on each battery pack's state of health (SOH) and forward that determination to an external device.
US11594868B1
A power module is configured to accept power from a cable, wherein the power module may be inserted into a standard wall cavity via a small hole. A processor module coupled to the power module comprises a processor and is configured to accept power from the cable for the processor, wherein the processor module may be inserted into the standard wall cavity via the small hole. A sensor module coupled to the processor module, comprises a sensor and is configured to accept input from the sensor for the processor, wherein the sensor module may be inserted into the small hole.
US11594862B2
The present disclosure provides an apparatus for generating fiber delivered laser-induced white light. The apparatus includes a package case enclosing a board member with an electrical connector through a cover member and a laser module configured to the board member inside the package case. The laser module comprises a support member, at least one laser diode device configured to emit a laser light of a first wavelength, a set of optics to guide the laser light towards an output port. Additionally, the apparatus includes a fiber assembly configured to receive the laser light from the output port for further delivering to a light head member disposed in a remote destination. A phosphor material disposed in the light head member receives the laser light exited from the fiber assembly to induce a phosphor emission of a second wavelength for producing a white light emission substantially reflected therefrom for various applications.
US11594860B2
An array layout of VCSELs is intentionally mis-aligned with respect to the xy-plane of the device structure as defined by the crystallographic axes of the semiconductor material. The mis-alignment may take the form of skewing the emitter array with respect to the xy-plane, or rotating the emitter array. In either case, the layout pattern retains the desired, row/column structure (necessary for dicing the structure into one-dimensional arrays) while reducing the probability that an extended defect along a crystallographic plane will impact a large number of individual emitters.
US11594843B2
A docking station includes a base and a first cable. The base has a plurality of ports. One end of the first cable connects to the base and the other end of the first cable connects to a first lock set.
US11594826B2
Provided is a cable connector which includes: a housing; and a cable holder capable of holding one end side of the cable. The cable holder includes at least three first to third engagement portions on each of opposing outer side surfaces, in a direction along a lead-out direction where the cable held on the one end side by the cable holder is led out from the cable holder, the first engagement portion is placed on a side far from the cable lead-out side of the cable holder, the second engagement portion is placed on a side near the lead-out side, and the third engagement portion is placed between the first engagement portion and the second engagement portion, the housing includes at least three first to third corresponding engagement portions capable of engaging respectively with the first to third engagement portions, on each of opposing inner side surfaces, it is configured in such a manner that, upon the first to third engagement portions engaging with the first to third corresponding engagement portions, respectively, the cable holder is capable of being placed at least at a first engagement position and a second engagement position with respect to the housing, at the first engagement position, the first and second engagement portions are in engagement with the first and second corresponding engagement portions, respectively, while the third engagement portion has not yet engaged with the third corresponding engagement portion, and at the second engagement position, all the first to third engagement portions are in engagement with the first to third corresponding engagement portions, respectively.
US11594825B2
An Insulation Displacement Contact Compliant connector system (IDCC) which includes a housing, header pins, and a Printed Circuit Board (PCB). Each header pin has at least a single barb to be retained into the housing. Each pin has a blade for contacting a wire. A compliant feature on the pin retains itself into holes in the PCB. The housing has a negative space similarly shaped to the pin. The housing includes a strain relief which provides a lead-in for a wire. When the system is fully assembled, the pins reside in the housing, and exit through the housing and into and through respective holes in the PCB. A wire can be inserted into the housing once the pins reside in the housing. There are several options for the assembly process including a) a pin-to-housing insertion process; b) a housing assembly-to-PCB process or a connector-to-PCB process; and c) a wired housing assembly-to-PCB assembly process or a wire harness-to-PCB assembly process.
US11594818B2
An electronic apparatus includes a display module including a display area through which an image is displayed and a non-display area adjacent to the display area and provided with a through hole through which a signal is transmitted, which is defined in the display area, an electronic module disposed under the display module, overlapping the through hole, and transmitting or receiving the signal, and an antenna module disposed on the display module and including a first portion through which an opening corresponding to the through hole is defined and a second portion extending from the first portion and inserted into the through hole.
US11594817B2
Disclosed herein is a dual band patch antenna that includes a first feeding part, first and second radiation conductors, a first feeding conductor having one end connected to the first feeding part and other end connected to the first radiation conductor, a second feeding conductor having one end connected to the first feeding part and other end connected to the second radiation conductor, a first open stub having one end connected to the first feeding conductor and other end opened, and a second open stub having one end connected to the second feeding conductor and other end opened.
US11594812B2
Disclosed are devices, systems and methods employing a directional antenna with a single rotational degree of freedom and using multiple signal-quality measurements to define best orientation with respect to a remote communication point and to align the antenna along the highest-signal-quality path. This simplifies alignment upon installation and facilitates higher signal levels, resulting in more reliable communication and higher data throughput.
US11594804B2
Disclosed is an antenna on glass (AOG) device having an air cavity at least partially formed in a photosensitive glass substrate. An air cavity structure is at least partially encloses the air cavity and wherein the air cavity structure at least partially formed from the photosensitive glass substrate. An antenna is formed from portion of a top conductive layer disposed on a top surface of the air cavity structure and at least partially overlapping the air cavity. A metallization structure is provided having a bottom conductive layer disposed on a bottom surface of the air cavity structure, wherein the bottom conductive layer is electrically coupled to the top metal layer by a conductive pillar disposed through the photosensitive glass substrate. In addition, the AOG device may integrate one or more MIM capacitors and/or inductors that allow for RF filtering and impedance matching.
US11594803B2
An inflatable tracking antenna assembly may include an inflatable antenna. The inflatable antenna may be configurable in a packed configuration and a deployed configuration. In the deployed configuration the inflatable antenna may be generally spherical in shape. The assembly may include an antenna support structure. The support structure may include a plurality of support arms that couple with lateral sides of the inflatable antenna. The support structure may include a base that is coupled with each of the plurality of support arms. The base may include an azimuth actuator that adjusts an azimuth position of the inflatable antenna and an elevation actuator that adjusts an elevation angle of the inflatable antenna. The support structure may include a plurality of support legs that extend outward from the base.
US11594798B1
A transmission line has a first conductor layer extending in a first direction, a second conductor layer disposed on a side of a first surface of the first conductor layer via a first dielectric layer, the second conductor layer extending in the first direction, and a third conductor layer disposed on a side of a second surface of the first conductor layer opposite to the first surface, via a second dielectric layer, the third conductor layer extending in the first direction, wherein a width, in a second direction intersecting the first direction, of each of the second conductor layer and the third conductor layer is different at a plurality of locations in the first direction, and the first conductor layer, the second conductor layer, and the third conductor layer at least partially overlap each other in a plan view from a normal direction of the first surface.
US11594789B2
A secondary battery is provided with first and second electrode assembly bodies and first and second negative electrode tab groups. The first and second negative electrode tab groups respectively have collected foil portions each constituted by a plurality of collected tab portions and extension portions. The extension portions of the respective tab groups have portions-to-be-welded and step portions. In the step portions, the plurality of tabs are laminated in a state that the end portions thereof are shifted in a step-like manner. The secondary battery is provided with an overlapped portion where the step portions of the first negative electrode tab group and the second negative electrode tab group are overlapped with each other in the lamination direction of the negative electrode tabs.
US11594786B2
An aspect of the present invention achieves a nonaqueous electrolyte secondary battery laminated separator which has excellent heat resistance and exhibits an excellent initial battery characteristic when used in a nonaqueous electrolyte secondary battery. A nonaqueous electrolyte secondary battery laminated separator in accordance with an aspect of the present invention includes: a polyolefin porous film; and a porous layer which (i) is disposed on at least one surface of the polyolefin porous film and (ii) includes a heat resistant filler, the porous layer having a surface which has cracks, a ratio of a total area of the cracks to a surface area of the porous layer being 0.15% to 10%.
US11594777B2
The present disclosure relates to a dual energy storage system that includes a lithium ion battery electrically coupled in parallel with a lead acid battery, where the lithium ion battery and the lead-acid battery are electrically coupled to a vehicle bus, where the lithium ion battery open circuit voltage (OCV) partially matches the lead-acid battery OCV such that the lead-acid battery OCV at 100% of the lead-acid battery state of charge (SOC) is about equal to the lithium ion battery OCV at 50% of the lithium ion battery SOC.
US11594772B2
A battery module and a method of assembling a battery module are provided. The method includes selectively applying a light-cure adhesive to recesses in a first side of a carrier layer and inserting battery cells into respective recesses. The method further includes exposing the first side of the carrier layer to light to at least partially cure the light-cure adhesive with the carrier layer in a first orientation, moving the carrier layer into a second orientation, and exposing a second opposite side of the carrier layer to light to fully cure the light-cure adhesive. The recesses may include a sidewall having crush points spaced apart along the sidewall and a bottom portion having an opening between a pair of crush points, where adhesive is not disposed between the pair of crush points.
US11594761B2
An electrolyte solution containing at least one selected from a compound represented by the following formula (1-1) (wherein Rf111s are the same as or different from each other and are each a C2-C4 fluorinated alkenyl group), a compound represented by the following formula (1-2) (wherein R121 is a C1-C4 alkyl group; and Rf121 is a C2-C4 fluorinated alkenyl group), and a compound represented by the following formula (1-3) (wherein Rf131 is a C1-C3 fluorinated alkyl group; and R131 is a C6-C12 aryl group):
US11594749B2
A flow battery system includes a first tank including a hydrogen reactant, a second tank including a bromine electrolyte, and at least one cell including a first electrolyte side operably connected to the first tank and a second electrolyte side operably connected to the second tank. The battery system further includes a direct connection line directly connecting the first tank and the second tank and configured such that the hydrogen reactant passes between the first tank and the second tank.
US11594744B2
A hybrid dehydrogenation reaction system includes: an acid aqueous solution tank having an acid aqueous solution; an exothermic dehydrogenation reactor including a chemical hydride of a solid state and receiving the acid aqueous solution from the acid aqueous solution tank for an exothermic dehydrogenation reaction of the chemical hydride and the acid aqueous solution to generate hydrogen; an LOHC tank including a liquid organic hydrogen carrier (LOHC); and an endothermic dehydrogenation reactor receiving the liquid organic hydrogen carrier from the LOHC tank and generating hydrogen through an endothermic dehydrogenation reaction of the liquid organic hydrogen carrier by using heat generated from the exothermic dehydrogenation reactor.
US11594742B2
Fuel cell system with a combined fuel evaporation and cathode gas heater unit, and its method of operation A fuel cell system, in which the cathode gas heater and the evaporator are combined in a single compact first heat exchange unit which includes a first housing inside which thermal energy is transferred from the first coolant to both the cathode gas and the fuel.
US11594738B2
Modular pressurized hotbox for use and substitution in a variety of pressurized electrochemical applications to include reversible solid oxide electrolyzer and fuel cells, energy storage systems, renewable fuel production, solid-state hydrogen pumping and liquefaction, and oxygen transport membranes. This is enabled by mixed electronic and ionic conducting compositions of vanadia-yttria and vanadia-calcia stabilized zirconia and a dry powder method of manufacture for ceramic core stacks.
US11594736B2
A solid oxide fuel cell includes a support of which a main component is a metal, a mixed layer that is provided on the support and includes a metallic material and a ceramics material, an intermediate layer that is provided on the mixed layer and includes an electron conductive ceramics material, and an anode that is provided on the intermediate layer and includes an oxygen ion conductive ceramics material and Ni. A ratio of a metal component in the intermediate layer is smaller than a ratio of the metallic material in the mixed layer.
US11594734B2
As a novel vinylidene fluoride polymer and its use, provided are a binder composition, an electrode mixture, an electrode, and a non-aqueous electrolyte secondary battery including the vinylidene fluoride containing the vinylidene fluoride polymer. The vinylidene fluoride polymer includes a first structural unit derived from vinylidene fluoride and a second structural unit derived from a monomer other than vinylidene fluoride. The monomer to be the second structural unit is a primary amine, a secondary amine, or a tertiary amine having at least one of a hydroxyl group and a carboxyl group, and the content of the second structural unit is from 0.05 to 20 mol % when the total of structural units derived from all the monomers constituting the vinylidene fluoride polymer is 100 mol %.
US11594732B2
Disclosed is an electrode active material that has a large charge discharge capacity, a high initial efficiency, as well as excellent cycle characteristics and rate characteristics and is favorably used in a non-aqueous electrolyte secondary battery. An organo sulfur-based electrode active material contains sodium and potassium in a total amount of 100 ppm by mass to 1000 ppm by mass; an electrode for use in a secondary battery, the electrode containing the organo sulfur-based electrode active material as an electrode active material; and a non-aqueous electrolyte secondary battery including the electrode. Preferably, the organo sulfur-based electrode active material further contains iron in an amount of 1 ppm by mass to 20 ppm by mass. Preferably, the organo sulfur-based electrode active material is sulfur-modified polyacrylonitrile, and the amount of sulfur in the organo sulfur-based electrode active material is 25 mass % to 60 mass %.
US11594729B2
Provides is a cathode active material comprising particles each containing a lithium composite oxide, a coating layer containing an ammonium phosphate compound containing a metal other than lithium. The coating layer coats each of the particles. The metal other than lithium includes at least one selected from the group consisting of manganese, nickel, and cobalt.
US11594728B2
A positive electrode includes a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder, wherein the positive electrode active material contains any one among Li(Nix1Mny1Coz1)O2 (0.55
US11594726B2
A positive electrode active material for obtaining a lithium ion secondary battery, wherein capacity, electron conductivity, durability, and heat stability at the time of overcharge are improved, durability and heat stability being achieved at a high level, and including: a lithium nickel manganese composite oxide composed of secondary particles, in which a plurality of primary particles are flocculated, wherein the composite oxide is represented by a general formula (1): LidNi1-a-b-cMnaMbTicO2 (wherein, M is at least one kind of element selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr and Ta, 0.05≤a≤0.60, 0≤b≤0.60, 0.02≤c≤0.08, 0.95≤d≤1.20), at least a part of titanium in the composite oxide is solid-solved in the primary particles, and, a lithium titanium compound exists on a surface of the positive electrode active material for the lithium ion secondary battery.
US11594725B1
Provided are methods for solid state pretreatment of active materials (e.g., prelithiation of silicon monoxide) while forming treated negative active material structures. Also provided are the formed structures, negative electrodes comprising these structures, and electrochemical cells comprising these electrodes. In some examples, silicon monoxide structures are mixed with lithium hydroxide structures or some other lithium-containing structures. The mixture is heated in an inert environment to form treated negative active material structures. These treated structures comprise various lithium-containing components, some of which trap lithium. When an electrochemical cell, formed with these treated negative active material structures, is initially charged and additional new lithium ions are introduced into the negative electrodes (e.g., from the positive electrode), a larger portion of these new lithium ions forms reversible components (rather than irreversible components) in the negative electrode than, for example, in a conventional cell without any such treatment.
US11594723B2
Composites comprising an exfoliated graphite support material having a degree of graphitization g in an range of 50 to 93%, obtained by XRD Rietveld analysis, which is coated with ZnO nanoparticles. These composites are produced by three different methods: A) (syn) the method comprises the following consecutive steps: i) a Zn(II)salt is dissolved in a solvent ii) graphite and a base are added simultaneously iii) the mixture is stirred under impact of ultrasound iv) the solvent is removed from the suspension or B) (pre) the method comprises the following consecutive steps: i) graphite is suspended in a solvent and exfoliated via impact of ultrasound ii) a Zn(II)salt and a base are added simultaneously forming nano-ZnO particles iii) the mixture is stirred iv) the solvent is removed from the suspension or C) (post) the method comprises the following steps: i) a Zn(II)salt and a base are mixed in a solvent in a first reactor forming nano-ZnO particles ii) graphite is exfoliated via impact of ultrasound in a second reactor iii) both suspensions of i) and ii) are mixed together iv) after step iii) the solvent is removed from the suspension. These coated composites may be tempered in a further step and again coated and again tempered.
US11594720B2
A positive electrode for a secondary battery includes a positive electrode current collector and a positive electrode active material layer that contains a positive electrode active material particle and that is disposed on the surface of the positive electrode current collector. The positive electrode active material particle includes a positive electrode active material particle, a first coating that contains oxide X of metal element M1 and that is attached to the surface of the positive electrode active material particle, and a second coating having lithium-ion permeability that is attached to the surface of the first coating. The second coating contains oxide Y represented by LixM2Oy (0.5≤x<4, 1≤y<6), M2 being at least one selected from a group consisting of B, Al, Si, P, S, Ti, V, Zr, Nb, Ta, and La.
US11594719B2
A lithium electrode and a lithium secondary battery including the same. The lithium electrode has a surface oxide layer with a controlled thickness and surface roughness. The lithium electrode may be used as a negative electrode of a lithium secondary battery, for example, a lithium-sulfur secondary battery. A lithium-sulfur battery including the lithium electrode has an enhanced lifetime due to suppression of side reactions with polysulfide.
US11594718B2
In an aspect, a Li-ion cell may comprise a densified electrode exhibiting an areal capacity loading of more than about 4 mAh/cm2. For example, the densified electrode may a first electrode part arranged on a current collector and a second electrode part on top of the first electrode part, the second electrode part of the at least one densified electrode having a higher porosity than the first electrode part of the at least one densified electrode. In some designs, the densified electrode may be fabricated by densifying electrode layers via a pressure roller while maintaining a contacting part of the pressure roller at a temperature that is less than a temperature of the second electrode part. In some designs, the applied pressure is a time-varying (e.g., frequency modulated) pressure. In some designs, a drying time for a slurry to produce the densified electrode may range from around 1-120 seconds.
US11594715B2
An apparatus comprises a reaction chamber and at least one negative electrode reservoir configured to contain a negative electrode material. A heating system is configured to heat negative electrode material within the at least one negative electrode material reservoir and the reaction chamber and to heat positive electrode material in reaction chamber. An electrode material distribution system is configured to manage the transfer of fluid electrode material between the at least one negative electrode reservoir and the reaction chamber.
US11594709B2
Provided is a method of manufacturing a display device, in which a defective rate of a display substrate is reduced by, prior to main processing, irradiating a laser to a portion of a processing area of a display substrate, and predicting and correcting a location to which the laser is irradiated. The method includes irradiating a first laser to a first irradiation area of a processing area of a display substrate, obtaining a first image of the processing area of the display substrate, calculating a first displacement between a center of the first irradiation area irradiated with the first laser and a center of the processing area by using the first image, determining a second irradiation area to which a second laser is to be irradiated on the display substrate based on the first displacement, and irradiating the second laser to the second irradiation area.
US11594708B2
A display device includes first and second sidewall portions and a display module disposed therebetween that is folded with respect to an axis. A moving portion is connected to a first side of the display module and is disposed between the first sidewall portion and the second sidewall portion in a non-expanded mode. A link portion is connected to a second side of the display module. A driving integrated circuit is disposed below the display module and includes a heat discharge plate disposed thereon. The moving portion is configured to move in the first direction to bring the display device into an expansion mode in which the moving portion is farther displaced from the second side of the display module and the link portion is configured to expand in the first direction so that a portion of the link portion overlaps with the heat discharge plate.
US11594706B2
The disclosure discloses a display panel, a preparation method thereof and a display device. The display panel includes: a base substrate, a plurality of light emitting devices located on the base substrate, and a film packaging structure located on a side, away from the base substrate, of the light emitting devices, wherein the film packaging structure includes a first inorganic packaging film on the side, away from the base substrate, of the light emitting devices, a second inorganic packaging film on the side, away from the light emitting devices, of the first inorganic packaging film, and an organic packaging film between the first inorganic packaging film and the second inorganic packaging film; and the first inorganic packaging film is provided with convex structures at gaps among the light emitting devices, and the organic packaging film is disconnected at the convex structures.
US11594704B2
An OLED display panel and an encapsulating method of the same are provided. The OLED display panel includes a base substrate; an OLED device disposed on the base substrate; and a thin film encapsulating layer. The thin film encapsulating layer includes a first inorganic layer, an organic layer, and a second inorganic layer. The organic layer comprises a lower surface contacted to the first inorganic layer, an upper surface away from the first inorganic layer, and a plurality of side surfaces connected to the upper surface and the lower surface, an orthogonal projection of the upper surface projecting on the base substrate is disposed within an orthogonal projection of the lower surface projecting on the base substrate, and each of the plurality of side surfaces is inclined.
US11594693B2
A display device includes a base layer including first and second portions, and a third portion between the first and second portions and configured to be bent, folded, or rolled, a light emitting element layer on one surface of the base layer at the first portion, and including light emitting elements, a circuit board on the one surface of the base layer at the third portion, and electrically connected to the light emitting elements, protective patterns spaced apart from each other on another surface of the base layer, including a resin, and also including first protective patterns spaced apart from each other on the other surface of the base layer at the first portion, and at least one second protective pattern on the other surface of the base layer at the second portion, and at least one of a heat dissipation layer or a cushion layer below the protective patterns.
US11594686B2
Organic photovoltaic cells (OPVs) and their compositions are described herein. one or more embodiments, the acceptor with an active layer of an OPV includes is a non-fullerene acceptor. Such non-fullerene acceptors may provide improved OPV performance characteristics such as improved power conversion efficiency, open circuit voltage, fill factor, short circuit current, and/or external quantum efficiency.
US11594684B2
An organic light-emitting device includes a condensed cyclic compound represented by Formula 1, where at least one of X4 to X11 is C(Rx), and Rx is a group represented by Formula 2: The condensed cyclic compound represented by Formula 1 has a planar conformation because of the single bond linking the 8 and 8′ positions of the spirobifluorene moiety. Accordingly, the condensed cyclic compound may provide the organic light-emitting device with suitable hole mobility and thermal stability.
US11594682B2
A composition for use as an electronic material. The composition contains at least one organic semiconducting material, and at least one electrically insulating polymer forming a semiconducting blend wherein the insulating polymer acts as a matrix for the organic semiconducting material resulting in an interpenetrating morphology of the polymer and the semiconductor material. The variation of charge carrier mobility with temperature in the semiconducting blend is less than 20 percent in a temperature range. A method of making a film of an electronic material. The method includes dissolving at least one organic semiconducting material and at least one insulating polymer into an organic solvent in a pre-determined ratio resulting in a semiconducting blend, depositing the blend onto a substrate to form a film comprising an interpenetrating morphology of the at least one insulating polymer and the at least one organic semiconductor material.
US11594677B2
A semiconductor storage device includes a first wiring, a second wiring, an insulating portion, and a resistance changing film. The first wiring extends in a first direction. The second wiring extends in a second direction intersecting the first direction, and is provided at a location different from that of the first wiring in a third direction intersecting the first direction and the second direction. The insulating portion is provided between the first wiring and the second wiring in the third direction. The resistance changing film is provided between the first wiring and the second wiring in the third direction, is adjacent to the insulating film from a first side and a second side which is opposite to the first side in the first direction, and the resistance changing film being smaller than the second wiring in the first direction.
US11594674B2
A tunnel barrier layer includes a non-magnetic oxide, wherein a crystal structure of the tunnel barrier layer includes both an ordered spinel structure and a disordered spinel structure.
US11594673B2
A memory device includes a first electrode including a spin-orbit material, a magnetic junction on a portion of the first electrode and a first structure including a dielectric on a portion of the first electrode. The first structure has a first sidewall and a second sidewall opposite to the first sidewall. The memory device further includes a second structure on a portion of the first electrode, where the second structure has a sidewall adjacent to the second sidewall of the first structure. The memory device further includes a first conductive interconnect above and coupled with each of the magnetic junction and the second structure and a second conductive interconnect below and coupled with the first electrode, where the second conductive interconnect is laterally distant from the magnetic junction and the second structure.
US11594655B2
A method and device for automatic film expansion and a storage medium are provided. The method includes the following. Perform overall stretching on an expanded film. An interval between each two adjacent LED wafers on the expanded film is monitored in real time. When an interval between two adjacent LED wafers on the expanded film is greater than or equal to a preset target interval, stop performing overall stretching, and search the expanded film for a local region where an absolute difference between an interval between two adjacent LED wafers and the preset target interval is greater than a preset error threshold. When the local region exists on the expanded film, perform local stretching on the local region until an absolute difference between an interval between each two adjacent LED wafers in the local region and the preset target interval is less than or equal to the preset error threshold.
US11594654B2
A method of generating a germanium structure includes performing an epitaxial depositing process on an assembly of a silicon substrate and an oxide layer, wherein one or more trenches in the oxide layer expose surface portions of the silicon substrate. The epitaxial depositing process includes depositing germanium onto the assembly during a first phase, performing an etch process during a second phase following the first phase in order to remove germanium from the oxide layer, and repeating the first and second phases. A germanium crystal is grown in the trench or trenches. An optical device includes a light-incidence surface formed by a raw textured surface of a germanium structure obtained by an epitaxial depositing process without processing the surface of the germanium structure after the epitaxial process.
US11594646B2
In an example, the present invention provides a method of manufacturing a solar module. The method includes providing a substrate member having a surface region, the surface region comprising a spatial region, a first end strip comprising a first edge region and a first interior region, the first interior region comprising a first bus bar, a plurality of strips, a second end strip comprising a second edge region and a second interior region, the second edge region comprising a second bus bar, the first end strip, the plurality of strips, and the second end strip arranged in parallel to each other and occupying the spatial region such that the first end strip, the second end strip, and the plurality of strips consists of a total number of five (5) strips. The method includes separating each of the plurality of strips, arranging the plurality of strips in a string configuration, and using the string in the solar module.
US11594636B2
Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
US11594633B2
The present disclosure relates to a semiconductor device including a substrate and first and second spacers on the substrate. The semiconductor device also includes a gate stack between the first and second spacers. The gate stack includes a gate dielectric layer having a first portion formed on the substrate and a second portion formed on the first and second spacers; an internal gate formed on the first and second portions of the gate dielectric layer; a ferroelectric dielectric layer formed on the internal gate and in contact with the gate dielectric layer; and a gate electrode on the ferroelectric dielectric layer.
US11594627B2
An Enhancement-Mode HEMT having a gate electrode with a doped, Group III-N material disposed between an electrically conductive gate electrode contact and a gate region of the Enhancement-Mode HEMT, such doped, Group III-N layer increasing resistivity of the Group III-N material to deplete the 2DEG under the gate at zero bias.
US11594616B2
The structure of a semiconductor device with negative capacitance (NC) dielectric structures and a method of fabricating the semiconductor device are disclosed. A method of fabricating the semiconductor device includes forming a fin structure with a fin base portion and a fin top portion on a substrate, forming a spacer structure in a first region of the fin top portion, and forming a gate structure on a second region of the fin top portion. The spacer structure includes a first NC dielectric material and the gate structure includes a gate dielectric layer with a second NC dielectric material different from the first NC dielectric material.
US11594613B2
A lateral super junction JFET is formed from stacked alternating P type and N type semiconductor layers over a P-epi layer supported on an N+ substrate. An N+ drain column extends down through the super junction structure and the P-epi to connect to the N+ substrate to make the device a bottom drain device. N+ source column and P+ gate column extend through the super junction but stop at the P-epi layer. A gate-drain avalanche clamp diode is formed from the bottom the P+ gate column through the P-epi to the N+ drain substrate.
US11594611B2
Some embodiments include a semiconductor construction having a gate extending into a semiconductor base. Conductively-doped source and drain regions are within the base adjacent the gate. A gate dielectric has a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material. In some embodiments the ferroelectric material is within each of the first, second and third segments. In some embodiments, the ferroelectric material is within the first segment or the third segment. In some embodiments, a transistor has a gate, a source region and a drain region; and has a channel region between the source and drain regions. The transistor has a gate dielectric which contains ferroelectric material between the source region and the gate.
US11594602B2
A semiconductor structure includes a metal gate structure (MG) formed over a substrate, a first gate spacer formed on a first sidewall of the MG, a second gate spacer formed on a second sidewall of the MG opposite to the first sidewall, where the second gate spacer is shorter than the first gate spacer, a source/drain (S/D) contact (MD) adjacent to the MG, where a sidewall of the MD is defined by the second gate spacer, and a contact feature configured to electrically connect the MG to the MD.
US11594601B2
A semiconductor apparatus capable of reducing the leakage current in the reverse direction, and keeping characteristics thereof, even when using n type semiconductor (gallium oxide, for example) or the like having a low-loss at a high voltage and having much higher dielectric breakdown electric field strength than SiC is provided. A semiconductor apparatus includes a crystalline oxide semiconductor having a corundum structure as a main component, and an electric field shield layer and a gate electrode that are respectively laminated directly or through other layers on the n type semiconductor layer, wherein the electric field shield layer includes a p type oxide semiconductor, and is embedded in the n type semiconductor layer deeper than the gate electrode.
US11594596B2
Embodiments of the present invention are directed to a back-end-of-line (BEOL) compatible metal-insulator-metal on-chip decoupling capacitor (MIMCAP). This BEOL compatible process includes a thermal treatment for inducing an amorphous-to-cubic phase change in the insulating layer of the MIM stack prior to forming the top electrode. In a non-limiting embodiment of the invention, a bottom electrode layer is formed, and an insulator layer is formed on a surface of the bottom electrode layer. The insulator layer can include an amorphous dielectric material. The insulator layer is thermally treated such that the amorphous dielectric material undergoes a cubic phase transition, thereby forming a cubic phase dielectric material. A top electrode layer is formed on a surface of the cubic phase dielectric material of the insulator layer.
US11594595B2
A capacitor structure includes a plurality of bottom electrodes horizontally spaced apart from each other, a support structure covering sidewalls of the bottom electrodes, a top electrode surrounding the support structure and the bottom electrodes, and a dielectric layer interposed between the support structure and the top electrode, and between the top electrode and each of the bottom electrodes. An uppermost surface of the support structure is positioned at a higher level than an uppermost surface of each of the bottom electrodes.
US11594590B2
A display device includes a substrate that includes a display area and a peripheral area, a transistor in the display area, a pixel electrode connected to the transistor, a common electrode that overlaps the pixel electrode, and an organic insulation layer that is between the common electrode and the substrate, and overlaps at least a part of the peripheral area, wherein a thickness of a portion of the organic insulation layer overlapping the display area, and a thickness of a portion of the organic insulation layer overlapping the peripheral area, are different from each other, and the organic insulation layer includes a valley that penetrates the organic insulation layer, while overlapping the peripheral area.
US11594586B2
An organic light emitting display device including a plurality of pixels having a first sub-pixel and a second sub-pixel comprises a base substrate; a first anode disposed on the base substrate in the first sub-pixel; a second anode disposed on the base substrate in the second sub-pixel; an anode connection part connected to the first and second anodes; a driving transistor including a drain electrode that contacts the anode connection part and switching a driving power supplied to the first and second anodes; an organic light emitting layer disposed on the first and second anodes; a cathode disposed on the organic light emitting layer; and a dummy repair part including a plurality of metal layers overlapping each other with an insulating film interposed therebetween in a laser irradiation area, wherein at least one metal layer among the plurality of metal layers contacts the drain electrode and the cathode has an opened shape in the laser irradiation area.
US11594585B2
The present disclosure provides an array substrate, a method for manufacturing the array substrate, a display panel and a display apparatus. The array substrate of the present disclosure includes a substrate and a pixel definition layer on the substrate, the pixel definition layer includes a base structure on the substrate, the base structure defines a plurality of openings on the substrate, each of the plurality of openings corresponds to one pixel region; and at least one protrusion structure provided on the base structure, wherein the at least one protrusion structure protrudes towards a direction away from the substrate, and the at least one protrusion structure has hydrophobic property.
US11594584B2
An organic light-emitting diode display panel, a manufacturing method of an organic light-emitting diode display panel and a display device are provided. The organic light-emitting diode display panel includes: a substrate; a pixel definition layer, located on the substrate; and an encapsulation layer, located on the pixel definition layer, a desiccant is added to at least one of the pixel definition layer and the encapsulation layer.
US11594582B2
Disclosed herein are a display device and a mobile terminal device including the same, wherein the display device includes a display panel including a display area in which a first plurality of pixels are disposed, and a sensing area in which a plurality of photosensors and a second plurality of pixels are disposed. The first plurality of pixels of the display area and the second plurality of pixels of the sensing area may emit light by receiving a data voltage of an input image in a display mode. At least some of the second plurality of pixels in the sensing area may emit light in a fingerprint recognition mode.
US11594580B2
An organic light-emitting display apparatus implemented by using a plurality of organic light-emitting diodes on a substrate and including a first pixel and a second pixel respectively emitting light of different colors, includes: a pixel-defining layer including a first opening and a second opening, the first opening defining an emission area of the first pixel, and the second opening defining an emission area of the second pixel; a total reflective layer over the pixel-defining layer, the total reflective layer including a first upper opening corresponding to the first pixel and a second upper opening corresponding to the second pixel; and a planarization layer covering the total reflective layer and having a refractive index greater than a refractive index of the total reflective layer, wherein an area of the first upper opening is different from an area of the second upper opening.
US11594562B2
An imaging device including: a semiconductor substrate having a first and second surface opposite to the first surface; a microlens located closer to the first surface than the second surface; a first photoelectric converter located between the first surface and the microlens, where the first photoelectric converter includes a first electrode, a second electrode, and a photoelectric conversion layer that is located between the first electrode and the second electrode and that converts light into electric charges; and a signal detecting section located in the semiconductor substrate, the signal detecting section being configured to output a signal corresponding to the electric charges. The first photoelectric converter is the closest of any photoelectric converter existing between the first surface and the microlens to the first surface, and a focal point of the microlens is located below a lowermost surface of the photoelectric conversion layer and above the signal detecting section.
US11594554B2
A flat panel substrate with integrated antennas and wireless power transmission system for delivering power to a receiving device is presented herein. A method can comprise depositing, onto a flat panel substrate, an antenna layer comprising multiple adaptively phased antennas elements; and depositing, onto the flat panel substrate, respective thin film transistor (TFT)-based antenna management circuits for the multiple adaptively phased antenna elements—the respective TFT-based antenna management circuits being operable to measure respective first phases at which first signals are received at the multiple adaptively phased antenna elements, and based on the respective first phases, control respective second phases at which second signals are transmitted from the multiple adaptively phased antenna elements to facilitate delivery, via the second signals, of power to the receiving device. Further, the method comprises forming traces communicatively coupling the multiple adaptively phased antenna elements to the respective TFT-based antenna management circuits.
US11594553B2
A ferroelectric memory device includes an alternating stack of insulating layers and electrically conductive layers, a memory opening vertically extending through the alternating stack, and a memory opening fill structure located in the memory opening and containing a vertical stack of memory elements and a vertical semiconductor channel. Each memory element within the vertical stack of memory elements includes a crystalline ferroelectric memory material portion and an epitaxial template portion.
US11594551B2
A semiconductor memory device according to an embodiment includes: a stacked body alternately stacking first insulating layers and gate electrode layers in a first direction; first to third semiconductor layers in the stacked body extending in the first direction; first to third charge accumulation layers; and a second insulating layer in the stacked body extending in the first direction, the second insulating layer contacting the first semiconductor layer or the first charge accumulation layer in a plane perpendicular to the first direction. A first distance between two end surfaces of the gate electrode layer monotonically increases in the first direction in a first cross section parallel to the first direction. A second distance between two end surfaces of the gate electrode layer monotonically increases in the first direction, decreases, and then monotonically increases in a second cross section parallel to the first direction different from the first cross section.
US11594548B2
A semiconductor device includes a substrate, a lower structure on the substrate, the lower structure including a first wiring structure, a second wiring structure, and a lower insulating structure covering the first and second wiring structures, a first pattern layer including a plate portion and a via portion, the plate portion being on the lower insulating structure and the via portion extending into the lower insulating structure from a lower portion of the plate portion and overlapping the first wiring structure, a graphene-like carbon material layer in contact with the via portion and the first wiring structure between the via portion and the first wiring structure, gate layers stacked in a vertical direction perpendicular to an upper surface of the substrate and spaced apart from each other on the first pattern layer, and a memory vertical structure penetrating through the gate layers in the vertical direction.
US11594544B2
A semiconductor device includes; gate layers stacked on a substrate, a channel layer extending through the gate layers, a string select gate layer disposed on the channel layer and a string select channel layer extending through the string select gate layer to contact the channel layer. The string select channel layer includes a first portion below the string select gate layer including a first protruding region, a second portion extending through the string select gate layer, and a third portion above the string select gate layer including a second protruding region.
US11594543B2
According to one embodiment, a semiconductor storage device includes a semiconductor pillar including a channel. The channel includes a first channel portion and a second channel portion. A virtual cross section intersecting a first direction and including a first interconnection, a first electrode, the semiconductor pillar, a second electrode, and a second interconnection is determined. Both first end portions of the first channel portion and a first midpoint between both the first end portions are determined in the virtual cross section. Both second end portions of the second channel portion and a second midpoint between both the second end portions are determined in the virtual cross section. In this case, an angle between a second direction and a center line connecting the first midpoint and the second midpoint is an acute angle.
US11594536B2
Some embodiments include an integrated assembly having a CMOS region with fins extending along a first direction, and with gating structures extending across the fins. A circuit arrangement is associated with the CMOS region and includes a pair of the gating structures spaced by an intervening region having a missing gating structure. The circuit arrangement has a first dimension along the first direction. A second region is proximate to the CMOS region. Conductive structures are associated with the second region. Some of the conductive structures are electrically coupled with the circuit arrangement. A second dimension is a distance across said some of the conductive structures along the first direction. The conductive structures and the circuit arrangement are aligned such that the second dimension is substantially the same as the first dimension. Some embodiments include methods of forming integrated assemblies.
US11594530B2
An eighth semiconductor portion is provided between the first semiconductor portion and the third semiconductor portion. The eighth semiconductor portion is of the second conductivity type, contacting the first semiconductor portion, and having a lower second-conductivity-type impurity concentration than the second semiconductor portion.
US11594528B2
A layout modification method for fabricating a semiconductor device is provided. The layout modification method includes calculating uniformity of critical dimensions of first and second portions in a patterned layer by using a layout for an exposure manufacturing process to produce the semiconductor device. A width of the first and second portions equals a penumbra size of the exposure manufacturing process. The penumbra size is utilized to indicate which area of the patterned layer is affected by light leakage exposure from another exposure manufacturing process. The layout modification method further includes compensating non-uniformity of the first and second portions of the patterned layer according to the uniformity of critical dimensions to generate a modified layout. The first portion is divided into a plurality of first sub-portions. The second portion is divided into a plurality of second sub-portions. Each second sub-portion is surrounded by two of the first sub-portions.
US11594526B2
A multi-level semiconductor device, the device including: a first level including integrated circuits; a second level including a structure designed to conduct electromagnetic waves, where the second level is disposed above the first level, where the integrated circuits include single crystal transistors; and an oxide layer disposed between the first level and the second level, where the second level is bonded to the oxide layer, and where the bonded includes oxide to oxide bonds.
US11594525B2
A device is disclosed which includes at least one integrated circuit die, at least a portion of which is positioned in a body of encapsulant material, and at least one conductive via extending through the body of encapsulant material.
US11594521B2
A semiconductor device includes first and second chips that are stacked such that first surfaces of their element layers face each other. Each chip has a substrate, an element layer on a first surface of the substrate, pads on the element layer, and vias that penetrate through the substrate and the element layer. Each via is exposed from a second surface of the substrate and directly connected to one of the pads. The vias include a first via of the first chip directly connected to a first pad of the first chip and a second via of the second chip directly connected to a second pad of the second chip. The pads further include a third pad of the second chip which is electrically connected to the second pad by a wiring in the element layer of the second chip and to the first pad through a micro-bump.
US11594519B2
A semiconductor device includes a plurality of semiconductor chips disposed in a vertical form through a spacer, in which a shield layer having a thickness such that an electromagnetic field radiation generated from a generation source of the semiconductor chip can sufficiently be absorbed is disposed between the semiconductor chips.
US11594512B2
Various aspects of this disclosure provide a method of manufacturing an electronic device and an electronic device manufactured thereby. As a non-limiting example, various aspects of this disclosure provide a method of manufacturing an electronic device, and an electronic device manufactured thereby, that utilizes ink to form an intermetallic bond between respective conductive interconnection structures of a semiconductor die and a substrate.
US11594496B2
A device area and a marking area neighboring the device area over a dielectric stack are determined. The dielectric stack includes insulating material layers and sacrificial material layers arranged alternatingly over a substrate. The device area and the marking area are patterned using a same etching process to form a marking pattern having a central marking structure in a marking area and a staircase pattern in the device area. The marking pattern and the staircase pattern have a same thickness equal to a thickness of at least one insulating material layer and one sacrificial material layer, and the central marking structure divides the marking area into a first marking sub-area farther from the device area and a second marking sub-area closer to the device area. A first pattern density of the first marking sub-area is greater than or equal to a second pattern density of the second marking sub-area. A photoresist layer is formed to cover the staircase pattern and expose the marking pattern, and the photoresist layer is trimmed to expose a portion of the dielectric stack along a horizontal direction. An etching process is performed to maintain the marking pattern and remove the exposed portion of the dielectric stack and form a staircase.
US11594491B2
Disclosed is an apparatus including a molded multi-die high density interconnect including: a bridge die having a first plurality of interconnects and second plurality of interconnects. The apparatus also includes a first die having a first plurality of contacts and a second plurality of contacts, where the second plurality of contacts is coupled to the first plurality of interconnects of the bridge die. The apparatus also includes a second die having a first plurality of contacts and a second plurality of contacts, where the second plurality of contacts is coupled to the second plurality of interconnects of the bridge die. The coupled second plurality of contacts and interconnects have a smaller height than the first plurality of contacts of the first die and second die.
US11594488B2
A semiconductor package includes a substrate, at least one semiconductor chip arranged in the substrate and having chip pads, and a redistribution wiring layer covering a lower surface of the substrate and including first and second redistribution wirings and dummy patterns, the first and second redistribution wirings being stacked in at least two levels and connected to the chip pads. The first and second redistribution wirings are arranged in a redistribution region of the redistribution wiring layer, and the dummy patterns extend in an outer region outside the redistribution region to partially cover corner portions of the redistribution wiring layer, respectively.
US11594487B2
A semiconductor device includes a stacked structure disposed on a substrate. The stacked structure includes a plurality of insulation layers and a plurality of electrode layers alternately stacked in a third direction intersecting with first and second directions. A plurality of channel structures extends through the stacked structure in the third direction. A first wiring group includes a plurality of first horizontal wirings disposed on the stacked structure that are arranged in the first direction and extends in the second direction. A second wiring group includes a plurality of second horizontal wirings disposed on the stacked structure that are arranged in the first direction and extends in the second direction. Each of the plurality of first and second horizontal wirings are connected to corresponding one of the plurality of channel structures. A first line identifier is disposed between the first wiring group and the second wiring group.
US11594478B2
A second wiring layer is connected to a first wiring layer via an insulating layer. The second wiring layer comprises pad structures. Each pad structure includes a first metal layer formed on the insulating layer, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The pad structures comprises a first pad structure and a second pad structure. A via-wiring diameter of the first pad structure is different from a via-wiring diameter of the second pad structure. A distance from an upper surface of the insulating layer to an upper surface of the second metal layer of the first pad structure is the same as a distance from the upper surface of the insulating layer to an upper surface of the second metal layer of the second pad structure.
US11594476B2
A semiconductor device includes: a first chip including first and second electrodes provided at a first surface, and a third electrode provided at a second surface positioned at a side opposite to the first surface; a second chip including fourth and fifth electrodes provided at a third surface, and a sixth electrode provided at a fourth surface positioned at a side opposite to the third surface, wherein the second chip is disposed to cause the third surface to face the first surface; a first connector disposed between the first electrode and the fourth electrode and connected to the first and fourth electrodes; and a second connector disposed between the second electrode and the fifth electrode and connected to the second and fifth electrodes.
US11594473B2
A 3D semiconductor device including: a first level including a single crystal silicon layer and a plurality of first transistors, the plurality of first transistors each including a single crystal channel; a first metal layer overlaying the plurality of first transistors; a second metal layer overlaying the first metal layer; a third metal layer overlaying the second metal layer; a second level is disposed above the third metal layer, where the second level includes a plurality of second transistors; a fourth metal layer disposed above the second level; and a connective path between the fourth metal layer and either the third metal layer or the second metal layer, where the connective path includes a via disposed through the second level, where the via has a diameter of less than 800 nm and greater than 5 nm, and where at least one of the plurality of second transistors includes a metal gate.
US11594472B2
A package structure and method of forming the same are provided. The package structure includes a die, a via, an encapsulant, an adhesion promoter layer, and a polymer layer. The via is laterally aside the die. The encapsulant laterally encapsulates the die and the via. The adhesion promoter layer is sandwiched between the via and the encapsulant. The encapsulant comprises a portion aside the via and under the adhesion promoter layer, and the portion of the encapsulant is sandwiched between the adhesion promoter layer and the polymer layer.
US11594453B2
A method of forming a device on a substrate with recessed first/third areas relative to a second area by forming a fin in the second area, forming first source/drain regions (with first channel region therebetween) by first/second implantations, forming second source/drain regions in the third area (defining second channel region therebetween) by the second implantation, forming third source/drain regions in the fin (defining third channel region therebetween) by third implantation, forming a floating gate over a first portion of the first channel region by first polysilicon deposition, forming a control gate over the floating gate by second polysilicon deposition, forming an erase gate over the first source region and a device gate over the second channel region by third polysilicon deposition, and forming a word line gate over a second portion of the first channel region and a logic gate over the third channel region by metal deposition.
US11594449B2
A method of making a semiconductor structure includes depositing a first passivation material between adjacent conductive elements on a substrate, wherein a bottommost surface of the first passivation material is coplanar with a bottommost surface of each of the adjacent conductive elements. The method further includes depositing a second passivation material on the substrate, wherein the second passivation material contacts a sidewall of each of the adjacent conductive elements and a sidewall of the first passivation material, a bottommost surface of the second passivation material is coplanar with the bottommost surface of each of the adjacent conductive elements, and the second passivation material is different from the first passivation material.
US11594447B2
A semiconductor device structure includes a silicon-on-insulator (SOI) region. The SOI region includes a semiconductor substrate, a buried oxide layer disposed over the semiconductor substrate, and a silicon layer disposed over the buried oxide layer. The semiconductor device structure also includes a first shallow trench isolation (STI) structure penetrating through the silicon layer and the buried oxide layer and extending into the semiconductor substrate. The first STI structure includes a first liner contacting the semiconductor substrate and the silicon layer, a second liner covering the first liner and contacting the buried oxide layer, and a third liner covering the second liner. The first liner, the second liner and the third liner are made of different materials. The first STI structure also includes a first trench filling layer disposed over the third liner and separated from the second liner by the third liner.
US11594444B2
The present disclosure relates to a susceptor having a generally circular body having a face with a radially inward section and a radially outward section which includes a substrate supporting surface elevated relative to the radially inward section. A sidewall surrounds the substrate supporting surface which upon retention of a substrate on the radially outward section, the sidewall surrounds the substrate. The sidewall includes a plurality of humps which protrude from the top surface of the sidewall. Advantageously, the plurality of humps may aid in even thickness of deposition of material at the edge of the substrate.
US11594441B2
A method of modifying a high-resistivity substrate so that the substrate may be electrostatically clamped to a chuck is disclosed. The bottom surface is implanted with a resistivity-reducing species. In this way, resistivity of the bottom surface of the substrate may be greatly reduced. In some embodiments, to implant the bottom surface, a coating is applied to the top surface. After application of the coating, the substrate is flipped so that the front surface contacts the top surface of the chuck. The ions are then implanted into the exposed bottom surface to create the low resistivity layer. The resistivity of the low resistivity layer proximate the bottom surface after implant may be less than 1000 ohm-cm. Once the bottom surface has been implanted, the substrate may be processed conventionally. The low resistivity layer may later be removed by wafer backside thinning processes.
US11594436B2
Disclosed is a substrate treating apparatus for performing a cleaning treatment on substrates. The apparatus includes an indexer block with an indexer robot, a treating block including a front face cleaning unit and a back face cleaning unit as treating units, and a reversing path block including a plurality of shelves on which substrates are placed, and having a reversing function. The indexer robot includes a guide rail, a base, an articulated arm, and a hand. The guide rail is positioned so as not to overlap a mount position of a substrate in the reversing path block.
US11594435B2
The invention is a cost effective multisite parallel wafer tester that has an array of stationary wafer test sites; a single mobile wafer handling and alignment carriage that holds a wafer handling robot, a wafer rotation pre-alignment assembly, a wafer alignment assembly, a wafer front opening unified pod (FOUP), and a wafer camera assembly; and a robot that moves the wafer handling and alignment carriage to and from each test site. Each test site contains a wafer probe card assembly and a floating chuck. In use, wafers are loaded from a front opening FOUP into a wafer buffer FOUP from which wafers are retrieved by the wafer handling and alignment assembly. The robot positions the wafer handling and alignment carriage and the associated wafer handling robot, the wafer rotation pre-alignment assembly, the wafer alignment assembly, the wafer FOUP, and the wafer camera assembly in front of and inside a given test site and aligns the wafer to be tested with the probe card inside the test site using the floating chuck.
US11594429B2
A method for etching features in a stack below a patterned mask in an etch chamber is provided. The stack is cooled with a coolant with a coolant temperature below −20° C. An etch gas is flowed into the etch chamber. A plasma is generated from the etch gas. Features are selectively etched into the stack with respect to the patterned mask.
US11594426B2
A laminate including a glass plate and a coating layer, wherein the coating layer includes one or more components selected from the group consisting of silicon nitride, titanium oxide, alumina, niobium oxide, zirconia, indium tin oxide, silicon oxide, magnesium fluoride, and calcium fluoride, wherein a ratio (dc/dg) of a thickness dc of the coating layer to a thickness dg of the glass plate is in a range of 0.05×10−3 to 1.2×10−3, and wherein a radius of curvature r1 of the laminate with negating of self-weight deflection is 10 m to 150 m.
US11594423B2
The present disclosure provides a method of forming a capacitor array and a semiconductor structure. The method of forming a capacitor array includes: providing a substrate, the substrate including an array region and a non-array region, wherein a base layer and a dielectric layer are formed in the substrate, and a first barrier layer is formed between the base layer and the dielectric layer; forming, on a surface of the dielectric layer, a first array definition layer and a second array definition layer respectively corresponding to the array region and the non-array region; forming a pattern transfer layer on a surface of each of the first array definition layer and the second array definition layer; patterning the dielectric layer and the second array definition layer by using the pattern transfer layer as a mask, and forming a capacitor array located in the array region.
US11594410B2
A nitrogen plasma treatment is used on an adhesion layer of a contact plug. As a result of the nitrogen plasma treatment, nitrogen is incorporated into the adhesion layer. When a contact plug is deposited in the opening, an interlayer of a metal nitride is formed between the contact plug and the adhesion layer. A nitrogen plasma treatment is used on an opening in an insulating layer. As a result of the nitrogen plasma treatment, nitrogen is incorporated into the insulating layer at the opening. When a contact plug is deposited in the opening, an interlayer of a metal nitride is formed between the contact plug and the insulating layer.
US11594407B2
A surface interaction sample introduction (SISI) system for mass spectrometers is disclosed that improves sensitivity and reduces chemical background. SISI comprises of a settling chamber with an inlet orifice that ions created by an ionization source enter the MS impinging surface that is located in front of the inlet orifice, thereby the high-speed gas jet entering the settling chamber from the inlet orifice impinges on the impinging surface resealing ions and molecules into the settling chamber. The impinging surface can be one of the settling chamber surfaces or an extra surface placed inside the settling chamber. The impinging surface can be orthogonal or angled with respect to the gas jet. The impinging surface is heated to apply thermal energy to the jet to promote the liberation of ionized particles from attached impurities. The released ions and molecules leave the settling chamber from an outlet port towards a mass spectrometer inlet.
US11594401B2
A method for processing semiconductor wafer is provided. The method includes loading a semiconductor wafer on a top surface of a wafer chuck. The method also includes supplying a gaseous material between the semiconductor wafer and the top surface of the wafer chuck through a first gas inlet port and a second gas inlet port located underneath a fan-shaped sector of the top surface. The method further includes supplying a fluid medium to a fluid inlet port of the wafer chuck and guiding the fluid medium from the fluid inlet port to flow through a number of arc-shaped channels located underneath the fan-shaped sector of the top surface. In addition, the method includes supplying a plasma gas over the semiconductor wafer.
US11594397B2
A circuit tuning radio frequency (RF) power. The circuit includes a low to mid frequency (LF/HF) tuning circuit including a variable LF/MF capacitor coupled in series with an LF/MF inductor. The LF/MF tuning circuit is coupled between ground and a common node configured to receive an RF input. The circuit includes a high frequency (HF) tuning circuit coupled in parallel to the LF/MF tuning circuit between ground and the common node. The HF tuning circuit includes a variable HF capacitor coupled in series with an HF inductor. Cross parallel isolation occurs between the LF/MF inductor of the LF/MF tuning circuit and the HF inductor of the HF tuning circuit when adjusting the variable LF/MF capacitor or variable HF capacitor.
US11594382B2
Provided is a solar cell module including photoelectric conversion elements, wherein each of the photoelectric conversion elements includes a first substrate, and a first electrode, a hole blocking layer, an electron transport layer, a hole transport layer, a second electrode, and a second substrate on the first substrate, and a sealing member between the first substrate and the second substrate, and wherein, within at least two of the photoelectric conversion elements adjacent to each other, the hole-blocking layers are not extended to each other but the hole transport layers are in a state of a continuous layer where the hole transport layers are extended to each other.
US11594381B2
The present invention provides a novel method for producing a laminate to be used as a light-transmissive electrode layer and an N-type semiconductor layer of a wet or solid-state dye-sensitized solar cell comprising a light-transmissive electrode layer, an N-type semiconductor layer, a P-type semiconductor layer, and a facing electrode in this order. In said method, a member to be used as the light-transmissive electrode layer is cathode-polarized in a treatment solution containing a Ti component so as to form a titanium oxide layer to be used as the N-type semiconductor layer on said member.
US11594376B2
An electronic component and a board having the same mounted thereon are provided. The electronic component includes an electronic component including a capacitor array in which a plurality of multilayer capacitors including a capacitor body and a pair of external electrodes, respectively disposed on both end portions of the capacitor body in a first direction, are stacked in a second direction, perpendicular to the first direction, and a length of a multilayer capacitor, disposed on a lower end in the second direction, in the first direction is less than a length of another multilayer capacitor in the first direction; and a pair of metal frames, respectively disposed to be connected to the pair of external electrodes of the multilayer capacitor disposed on the lower end.
US11594372B2
A multilayer ceramic capacitor includes a multilayer body including dielectric layers which are stacked and internal electrode layers which are stacked, and external electrodes, each connected to the internal electrode layers. The external electrodes each include a conductive resin layer and a plated layer on the conductive resin layer. The conductive resin layer includes a resin portion, conductive fillers dispersed in the resin portion, and metal particles dispersed unevenly in a distribution differing from that of the conductive fillers in the conductive resin layer. An abundance ratio of the metal particles to the resin portion is higher on a side of the plated layer of the conductive resin layer than on a side of the conductive resin layer close to the multilayer body.
US11594371B2
A conductive powder for an internal electrode includes a metal particle and a graphene oxide disposed on at least a portion of a surface of the metal particle. A content of the graphene oxide is less than 1.0 weight percent, based on a weight of the metal particle.
US11594369B1
A system for providing magnetic field audio signals to a receiver in an aquatic environment. The system includes an audio source configured to provide an electronic audio signal, and an induction loop amplifier configured to receive the electronic audio signal and convert the received electronic audio signal into a current. The system further includes a wire loop connected with the induction loop amplifier, the wire loop bounding at least part of the aquatic environment and around the receiver in the aquatic environment, the wire loop producing a magnetic field from the current to generate an audio frequency induction loop to transmit the electronic audio signal to the receiver in the aquatic environment.
US11594364B2
A thermal management includes an inductor, a housing in thermal communication with the inductor, the housing defining a wall, and a conductor. The conductor has a greater heat transfer rate than the wall and is positioned within a groove and/or an aperture formed in the wall. The conductor is configured to transfer heat through the wall more efficiently than if the conductor were not present. A method of manufacturing a thermal management system includes forming a housing by additive manufacturing. The housing defines a wall having at least one of a groove and an aperture defined therein. The method includes positioning a conductor in at least one of the groove and the aperture. The conductor has a greater heat transfer rate than the wall. The method includes positioning an inductor into thermal communication with the housing.
US11594363B2
Disclosed herein is a coil component that includes first and second substrates, a first coil pattern formed on one surface of the first substrate, a second coil pattern formed on one surface of the second substrate, a first terminal electrode connected to one end of the first coil pattern and protruding from the first substrate, and a second terminal electrode connected to one end of the second coil pattern and protruding from the second substrate. The first and second substrates are laminated such that the first and second terminal electrodes overlap each other and are connected to each other.
US11594360B2
The present invention provides an electromagnetic apparatus with heat sink structure, comprising: metal housing, the metal housing further comprises the upper housing and the lower housing to fix the components of the electromagnetic apparatus and store the energy of the electromagnetic apparatus during operation; the electrical coil is mounted on the coil shelf and is provided with numbers of primary windings and secondary windings; the heat conductive tube is arranged in the gap of the windings for conducting the heat generated by the electrical coil to the outside of the electromagnetic apparatus. Furthermore, the conducting wire is electrically coupled to the electrical coil and transmits the input voltage and output voltage during the operation of electromagnetic apparatus.
US11594354B2
A magnetic base body according to one embodiment of the invention includes soft magnetic metal particles that have an insulating film on their surfaces. In a Raman spectrum obtained by observing light scattered when the magnetic base body is irradiated with an excitation laser with a wavelength of 488 nm, a peak intensity ratio. that is defined as a ratio of the peak intensity of a first peak existing at around a wave number of 712 cm−1 to the peak intensity of a peak existing at around a wave number of 1320 cm−1, is 1 to 70.
US11594344B2
A method for preparing a powder comprising an intimate mixture of U3O8 particles and PuO2 particles and which may further comprise particles of ThO2 or NpO2. The method comprises: preparing, via oxalic precipitations, an aqueous suspension S1 of particles of uranium(IV) oxalate and an aqueous suspension S2 of particles of plutonium(IV) oxalate; mixing the aqueous suspension S1 with the aqueous suspension S2 to obtain an aqueous suspension S1+2; separating the aqueous suspension S1+2 into an aqueous phase and a solid phase comprising the particles of uranium(IV) oxalate and the particles of plutonium(IV) oxalate; and calcining the solid phase to convert (1) the particles of uranium(IV) oxalate to particles of triuranium octoxide and (2) the particles of plutonium(IV) oxalate to particles of plutonium(IV) dioxide, whereby the powder is obtained.
US11594343B2
A method for restraining a sleeve lining a tube passing through a nuclear reactor pressure vessel is provided. The method includes attaching in situ a radial protrusion on an external surface of the sleeve; and attaching a collar to an end of the tube and coupling the radial protrusion with the collar to retain the thermal sleeve in position.
US11594342B2
A system includes a containment vessel configured to prohibit a release of a coolant, and a reactor vessel mounted inside the containment vessel. An outer surface of the reactor vessel is exposed to below atmospheric pressure, wherein substantially all gases are evacuated from within the containment vessel.
US11594341B2
A pit gate includes a gate body which is inserted between a pool portion storing water and a canal portion connected to the pool portion and is configured to change a flow state of the water, and a seal portion (6) which is accommodated in a groove-shaped accommodation recess formed in the gate body and seals between the pool portion and the gate body. The seal portion (6) includes a low-rigidity portion (10) which is relatively easily deformed by a load according to a water pressure from the pool portion side, and a high-rigidity portion (11) which is provided on the pool portion side of the low-rigidity portion and is not easily deformed relatively by the load.
US11594336B2
A macular health measurement and storage system comprises a plurality of macular-pigment measurement machine for measuring macular pigment density in humans, a plurality of computers each of which is associated with a corresponding one the macular-pigment measuring machines, and a central host. The plurality of macular-pigment measurement machines include a device for receiving macular pigment data from a patient, at least one data transfer port, and at least one processor that enables the transfer of the macular pigment data from the transfer port. The plurality of computers include a first port coupled to the data transfer port of the corresponding macular-pigment measurement machine for receiving the macular pigment data. Each of the computers includes a second port for transferring patient data. The central host is coupled to the second ports on each of the plurality of computers. The central host includes a storage device for storing the patient data.
US11594330B2
The present disclosure generally relates to user interfaces for health applications. In some embodiments, exemplary user interfaces for managing health and safety features on an electronic device are described. In some embodiments, exemplary user interfaces for managing the setup of a health feature on an electronic device are described. In some embodiments, exemplary user interfaces for managing background health measurements on an electronic device are described. In some embodiments, exemplary user interfaces for managing a biometric measurement taken using an electronic device are described. In some embodiments, exemplary user interfaces for providing results for captured health information on an electronic device are described. In some embodiments, exemplary user interfaces for managing background health measurements on an electronic device are described.
US11594328B2
Systems and methods for computer-implemented patient assistance are disclosed. In certain embodiments, the invention contemplates receiving patient data from plurality of sensors at a patient computer, transmitting patient data to a server, monitoring and analyzing the patient data at the server, and outputting recommended actions from the server to a personnel computer. The recommended actions are calculated based on safety considerations, emotional considerations, and/or a patient's treatment plan.
US11594315B2
Systems and methods for tracking activities from a plurality of multimodal inputs are described. Activity tracking can include receiving a plurality of multimodal inputs, synchronizing the plurality of multimodal inputs, generating segments from the synchronized multimodal inputs, recognizing activities associated with each generated segment by performing a bagged formal concept analysis (BFCA), and recording the recognized activities in a storage. Tracking of activities can include the detection of moments (e.g., eating moments), during which an activity tracking application can prompt a user for information (e.g., a food journal).
US11594297B2
Methods and apparatuses with counter-based reading are described. A memory cells of a codeword are accessed and respective voltages are generated. A reference voltage is generated and a logic state of each memory cell is determined based on the reference voltage and the respective generated cell voltage. The reference voltage is modified until a count of memory cells determined to be in a predefined logic state with respect to the last modified reference voltage value meets a criterium. In some embodiments the criterium may be an exact match between the memory cells count and an expected number of memory cells in the predefined logic state. In other embodiments, an error correction (ECC) algorithm may be applied while the difference between the count of cells in the predefined logic state and the expected number of cells in that state does not exceed a detection or correction power of the ECC.
US11594294B2
A method of operating a memory device that includes a plurality of stages each having a plurality of page buffers. The method including performing a verify operation of a first program loop from among a plurality of program loops, the verify operation of the first program loop including, performing a first off-cell counting operation on a first stage of the plurality of stages based on a first sampling rate to generate a first off-cell counting result; selectively changing the first sampling rate based on the first off-cell counting result to generate a changed first sampling rate; and performing a second off-cell counting operation on a second stage of the plurality of stages based on one of the first sampling rate and the changed first sampling rate to generate a second off-cell counting result.
US11594287B2
A nonvolatile memory device includes a first memory chip and a second memory chip connected to a controller through the same channel. The first memory chip generates a first signal from a first internal clock signal based on a clock signal received from the controller. The second memory chip generates a second signal from a second internal clock signal based on the clock signal, and performs a phase calibration operation on the second signal on the basis of a phase of the first signal by delaying the second internal clock signal based on a phase difference between the first and second signals.
US11594286B2
A method of operating a non-volatile memory device includes performing a first sensing operation on the non-volatile memory device during a first sensing time including a first section, a second section, and a third section. The performing of the first sensing operation includes applying a first voltage level, which is variable according to a first target voltage level, to a selected word line in the first section, applying a second voltage level, which is different from the first voltage level, to the selected word line in the second section, and applying the first target voltage level, which is different from the second voltage level, to the selected word line in the third section. The first voltage level becomes greater as the first target voltage level becomes greater.
US11594281B2
A memory device of the non-volatile type including a memory array having a plurality of memory cells organized as sectors, each sector having a main word line associated with a plurality of local word lines, each local word line coupled to the main word line by a respective local word line driver circuit, each of the local word line driver circuits consisting of a first MOS transistor coupled between the respective main word line and a respective local word line and a second MOS transistor coupled between the respective local word line and a first biasing terminal.
US11594280B2
A content addressable memory cell includes a first floating body transistor and a second floating body transistor. The first floating body transistor and the second floating body transistor are electrically connected in series through a common node. The first floating body transistor and the second floating body transistor store complementary data.
US11594266B2
A semiconductor circuit and an operating method for the same are provided. The method includes the following steps. A memory circuit is operated during a first timing to obtain a first memory state signal S1. The memory circuit is operated during a second timing after the first timing to obtain a second memory state signal S2. A difference between the first memory state signal S1 and the second memory state signal S2 is calculated to obtain a state difference signal SD. A calculating is performed to obtain an un-compensated output data signal OD relative with an input data signal ID and the second memory state signal S2. The state difference signal SD and the un-compensated output data signal OD are calculated to obtain a compensated output data signal OD′.
US11594261B1
A modular data storage tape library includes a modular frame having a form factor similar to other types of computing racks. The modular data storage tape library includes a hermetically sealed enclosure within the modular frame and a cooling portion within the modular frame. Data storage tapes, data storage drives and robotics for moving the data storage tapes are included within the hermetically sealed enclosure. A heat exchanger transfers heat from the hermetically sealed enclosure to the cooling portion outside of the sealed enclosure through a boundary of the hermetically sealed enclosure without introducing air from the data center into the hermetically sealed enclosure. Because air is neither introduced nor removed from the hermetically sealed enclosure, humidity fluctuations are minimal, if existent, and contaminants are prevented from entering the hermetically sealed enclosure, thus increasing the life spans of the data storage tapes included in the hermetically sealed enclosure.
US11594254B2
An apparatus including an interface and a processor. The interface may be configured to receive pixel data generated by a capture device. The processor may be configured to generate video frames in response to the pixel data, perform computer vision operations on the video frames to detect objects, perform a classification of the objects detected based on characteristics of the objects, determine whether the classification of the objects corresponds to a user-defined event and generate encoded video frames from the video frames. The encoded video frames may be communicated to a cloud storage service. The encoded video frames may comprise a first sample of the video frames selected at a first rate when the user-defined event is not detected and a second sample of the video frames selected at a second rate while the user-defined event is detected. The second rate may be greater than the first rate.
US11594252B2
A data object has a lock and a condition indicator associated with it. Based at least partly on detecting a first setting of the condition indicator, a reader stores an indication that the reader has obtained read access to the data object in an element of a readers structure and reads the data object without acquiring the lock. A writer detects the first setting and replaces it with a second setting, indicating that the lock is to be acquired by readers before reading the data object. Prior to performing a write on the data object, the writer verifies that one or more elements of the readers structure have been cleared.
US11594248B1
The disk device according to one embodiment includes magnetic disks, a magnetic head, a ramp, and a suspension. The suspension includes a sliding portion provided on a load beam. The suspension rotates about a second rotation axis between a load position and an unload position. The ramp includes a wall and a protrusion. The wall has a first support surface that supports the sliding portion when the suspension is located in the unload position. The protrusion includes a second support surface and an intermediate portion. The second support surface faces the magnetic head when the suspension is located in the unload position. The intermediate portion is located between the wall and the second support surface. The intermediate portion includes a first portion and a second portion. The second portion is located between the first portion and the first support surface in the radial direction of the second rotation axis.
US11594245B1
A bifunctional turntable which includes a rotating shaft, a platter, a light sensor module, an audio control module, and a plinth is revealed. The rotating shaft which is driven by a power source to rotate drives the platter to rotate. Then the light sensor module disposed on the rotating shaft detects rotation speed of the platter for playing a record at normal speed. The audio control module is located in the plinth and disposed on a simulated record for detecting changes in the simulated record which is manually operated. Then the audio control module sends signals to a digital audio control system at a rear end for driving the digital audio control system to output audio signals. Thereby the present turntable plays not only vinyl records but also simulated records.
US11594226B2
An embodiment includes converting an original audio signal to an original text string, the original audio signal being from a recording of the original text string spoken by a specific person in a source language. The embodiment generates a translated text string by translating the original text string from the source language to a target language, including translation of a word from the source language to a target language. The embodiment assembles a standard phoneme sequence from a set of standard phonemes, where the standard phoneme sequence includes a standard pronunciation of the translated word. The embodiment also associates a custom phoneme with a standard phoneme of the standard phoneme sequence, where the custom phoneme includes the specific person's pronunciation of a sound in the translated word. The embodiment synthesizes the translated text string to a translated audio signal including the translated word pronounced using the custom phoneme.
US11594223B1
An ordering system can be positioned partially, or completely, outside in a retail environment with an ordering device located outside of a building on a site. The ordering device receiving a first audio stream concurrently with a second audio stream from an employee and proceeds to capture the first audio stream with a first port of an on-site computing device while capturing the second audio stream with a second port of the on-site computing device. A customer strategy can be executed with an intelligence module of the on-site computing device connected to the ordering device with the on-site customer strategy directing automated interactions with a first on-site customer to compile a retail order. The employee may communicate directly with the intelligence module via the second port without interrupting the first audio stream.
US11594208B2
An information processing device includes a first acquisition unit that acquires biological information on a user, a first judgment execution unit that executes a first judgment on whether a first discomfort condition is satisfied or not based on first discomfort condition information specifying the first discomfort condition and the biological information, a second acquisition unit that acquires a sound signal, an acoustic feature detection unit that detects an acoustic feature based on the sound signal, a second judgment execution unit that executes a second judgment on whether a second discomfort condition is satisfied or not based on second discomfort condition information specifying the second discomfort condition and the acoustic feature, and an output judgment unit that judges whether first masking sound should be outputted or not based on a result of the first judgment and a result of the second judgment.
US11594200B2
This disclosure relates to techniques for a driving apparatus including a reordering circuit and a source driving circuit. The reordering circuit can be configured to reorder a plurality of sub-pixel data of an input data string to generate a reordered data string so as to reduce a color switching number associated with a target data line. The source driving circuit can be coupled to the reordering circuit to receive the reordered data string. The source driving circuit can be configured to drive the target data line of a display panel according to the reordered data string.
US11594197B2
A method for processing an input image having an initial gamut to a targeted image having a wider gamut for display on a wide-gamut display includes determining a set of color scaling factors based on different parameters including one or more user-related characteristics of a user and the available gamut of the wide-gamut display device, applying a gamut-mapping to the input image based on the available gamut to generate a gamut-mapped image and applying the set of color scaling factors to the gamut-mapped image to generate the targeted image. A user device having a wide-gamut display device also includes an image processing module configured for performing the method for processing the input image.
US11594191B2
The present disclosure relates to the field of display technologies, and provides a gamma circuit. The gamma circuit includes: a plurality of positive gamma voltage output terminals, a plurality of negative gamma voltage output terminals in one-to-one correspondence with the plurality of positive gamma voltage output terminals, and a plurality of voltage conversion circuits. Each of the voltage conversion circuits is configured to output a negative gamma reference voltage to the negative gamma voltage output terminal based on a positive gamma reference voltage output by the positive gamma voltage output terminal corresponding to the negative gamma voltage output terminal.
US11594177B2
The present disclosure relates to an image display apparatus. The image display apparatus includes: a display including an organic light emitting diode panel (OLED panel); and a controller configured to control the display, wherein the controller calculates an Average Picture Level (APL) of an input image, and in response to the calculated APL being greater than or equal to a first reference value in a high-dynamic range (HDR) mode, the controller decreases the APL and perform luminance conversion based on the decreased APL, and in response to the calculated APL being greater than or equal to the first reference value in a normal mode rather than the HDR mode, the controller performs luminance conversion based on the calculated APL. Accordingly, luminance representation may be improved during displaying image.
US11594170B2
A micro light-emitting diode (LED) display panel is provided. The micro LED display panel includes a substrate and a driving layer. The driving layer is disposed on the substrate. The driving layer includes a micro LED and a photo sensor. When the micro LED emits light to a finger of a user, the photo sensor generates a sensing signal.
US11594169B2
An electroluminescent display device includes a pixel circuit having transistors, and a gate driving circuit providing an emission signal, a first scan signal, and a second scan signal to the pixel circuit. The gate driving circuit includes an emission signal generating circuit for applying the emission signal to a gate electrode of at least one of the transistors, a first scan signal generating circuit for applying the first scan signal to a gate electrode of at least one of the transistors, and a second scan signal generating circuit for applying the second scan signal to a gate electrode of at least one of the transistors. The first scan signal generating circuit receives the emission signal and a voltage of a QB node of the second scan signal generating circuit, and the emission signal generating circuit and the first scan signal generating circuit include an n-type transistor and a p-type transistor.
US11594166B2
Provided are a mura compensation circuit and a driving apparatus for a display applying the same. The mura compensation circuit includes a data remapping unit configured to remap display data of a pixel having mura so that an original gray scale range of the display data has a changed gray scale range and to provide the display data having the gray scale range in which the highest gray scale of the original gray scale range is lowered to a first gray scale of the gray scale range and the lowest gray scale of the original gray scale range is raised to a second gray scale by the remapping, and a mura compensation unit configured to perform mura compensations on the display data having the changed gray scale range and to provide the display data on which the mura compensations have been performed.
US11594163B2
Systems and methods of use are presented that resize a displayed program presentation based on a requested television size, which allows a single large display monitor (television) to act as a proxy of all the smaller television sizes available in a given model line of televisions. The resized program is presented on the display monitor with a physical size larger than the requested size. Pricing information for the requested television size is superimposed on the presented resized program. Outlines for intermediate sizes of televisions of the same make and model to that of the display monitor are also presented in the presented program, including size and price indicators for the intermediate sizes. Multiple display monitors, each having a separate media player, can be implemented in a retail environment so as to allow several makes and models to be compared. Sync signals keep video transmitted by the media players synchronized.
US11594162B2
The present disclosure provides a method for detecting a display substrate and a device for detecting a display substrate. The method includes: exciting a threshold voltage of a driving transistor in each pixel driving circuit in the display substrate, so that the threshold voltage of the driving transistor with a shifted threshold voltage is further shifted; inputting a detection signal to each pixel driving circuit in the display substrate, where the detection signal is a signal enabling the pixel driving circuit to operate normally; and judging whether the display substrate is normal or not according to the voltage output by each pixel driving circuit.
US11594159B2
A display apparatus, a display management module and a method for ambient light compensation are described. The display management module is configured to receive an input video signal comprising a sequence of video frames and to determine whether a current video frame of the sequence of video frames immediately follows a scene change. The display management module is further configured to adjust ambient light compensation applied to the input signal in dependence on the signal indicative of intensity of ambient light only in response to determining that the current video frame of the sequence of video frames immediately follows a scene change.
US11594145B2
Example embodiments may relate to a system, method, apparatus, and computer readable media configured for monitoring a user performing various athletic movements and generating performance characteristics based on the data corresponding to such athletic movements. Users may also be encouraged to participate in athletic challenges or competitions against other users or groups of users. In addition, athletic movement data for multiple persons can be collected at a central location, and subsequently displayed to a user at a desired remote location, so that the user can compare his or her athletic activities to others.
US11594137B2
An approach is provided for providing mobility insight data related to shared vehicles for a point of interest (POI). The approach involves retrieving shared vehicle data for the POI. The shared vehicle data indicates one or more shared vehicle events that have occurred, that are occurring at a given time, or a combination thereof within a threshold proximity of the POI. The approach also involves processing the shared vehicle data to determine mobility insight data. The mobility insight data includes a shared vehicle usage pattern, a shared vehicle availability pattern, or a combination thereof under one or more contexts for travel to or from the POI. The approach further involves presenting the mobility insight data in a location-based user interface.
US11594134B2
Embodiments of the present disclosure disclose a parking space detection method and apparatus, an electronic equipment, a vehicle, and a storage medium, which relate to the field of automatic driving technologies and in particular, to the field of autonomous parking, including: collecting ultrasonic information during a moving process of a vehicle, generating a target grid map, performing feature recognition on the target grid map to obtain a line segment, and generating a parking space according to the line segment and the target grid map. By implementing the present disclosure, a disadvantage of a limited range of application in the prior art caused by that the detection of a parking space requires a travelling direction of a vehicle to be parallel with a side of an obstacle and requires the vehicle to be close to the obstacle is avoided, thereby achieving a relatively wide use and improving detection accuracy.
US11594133B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for monitoring a dedicated roadway the runs in parallel to a railroad. In some implementations, a system includes a central server, an interface, and sensors. The interface receives data from a railroad system that manages the railroad parallel to the dedicated roadway. The sensors are positioned in a fixed location relative to the dedicated roadway. Each sensor can detect vehicles in a first field of view on the dedicated roadway. For each detected vehicle, each sensor can generate sensor data based on the detected vehicle in the dedicated roadway and the data received at the interface. Each sensor can generate observational data and instruct the detected vehicle to switch to an enhanced processing mode. Each sensor can determine an action for the detected vehicle to take based on the generated observational data.
US11594128B2
A system for communicating information indicative of driving conditions, to a driver, using a smart ring are disclosed. An exemplary system includes a smart ring with a ring band having a plurality of surfaces including an inner surface, an outer surface, a first side surface, and a second side surface. The system further includes a processor, configured to obtain data from a communication module within the ring band, or from one or more sensors disposed within the ring band. The obtained data is representative of information indicative of one or more driving conditions to be communicated to the driver. The smart ring also includes a haptic module disposed at least partially within the ring band, and the module being configured to communicate information indicative of the one or more driving conditions.
US11594124B2
Multipurpose systems can include networked devices configured to include microphones, motion sensors, video cameras, touchscreens, optical sensors, speakers, or other suitable devices. The networked devices can include networking capabilities that enable the networked device to communicate with target devices and other networked devices. A system of networked devices can identify a target location or a target device by analyzing audio signals received at microphones of the networked devices. For example, a plurality of networked devices can identify a particular networked device that is in closest proximity to a user by analyzing an audio intensity of an audio signal received at the plurality of networked devices. The identified networked device can serve as a master device that can control a state of target devices.
US11594121B2
In a method for locating a hand-held power tool using a communications unit, the communications unit receives an activation signal. A locating signal is triggered when the activation signal is received.
US11594117B2
Techniques for detecting a high gas pressure situation within a gas delivery system (e.g., for natural gas delivery to homes and businesses) are described. In one example, a device measures gas pressure. If a pressure over a threshold value is detected, a nearby device is messaged. The nearby device either confirms the over-pressure condition or indicates it may be more localized. If the condition is present within an area of the gas delivery system and/or within a group of devices within the gas delivery system, protective measures may be taken, such as closing valves providing gas to a number of service sites.
US11594112B2
A lighting assembly is configured to create an emergency notification. The lighting assembly has a housing with a housing first surface and a housing second surface. A plurality of strobe lights is arranged into at least one row and at least four columns. A direct current power system is joined to the plurality of strobe lights and further comprising a printed circuit board electrically coupled to radio frequency relay switch, and a battery. A wireless remote is communicatively coupled to the radio frequency relay switch. Activating the wireless remote directs the printed circuit board to provide power to the plurality of strobe lights creating the emergency notification.
US11594109B2
In an embodiment, a secure safe apparatus is provided. The apparatus comprises a base and a bollard. The bollard comprises a first portion and a second portion manufactured as a single vertical member. The first portion is of sufficient length to extend below a bottom surface of the base into ground at a site where the secure safe apparatus is set. The second portion is of sufficient length to extend through a thickness of the base and above a top surface of the base. The second portion is adapted to be inserted through an aperture in a floor of a safe and affixed to an interior beam manufactured within an inside of the safe to affix the second portion to the beam.
US11594108B2
An electronic gaming machine includes a processor configured to control a display device to display a plurality of columns of symbol positions, where each column of symbol positions includes a plurality of symbols selected from an associated reel strip of a plurality of reel strips. The processor is also configured to select the symbols for each column, and control the display device to simulate stopping the first reel strip prior to controlling the display device to simulate stopping the second reel strip, whereby a sub-category of prize associated with a prize sub-category symbol is indicated to a player of the electronic gaming machine prior to indicating a category of prize associated with a prize category symbol. The processor is also configured to determine whether a first column includes the prize sub-category symbol as well as whether a second column includes the prize category symbol. If the prize sub-category and prize category symbols are included, the processor is also configured to provide an award.
US11594092B2
Methods and systems for managing facility access credentials for two or more facilities are disclosed. The method may include electronically receiving a user request to gain access to a designated facility of the two or more facilities and electronically receiving user information related to a user that is making the user request. A facility access credential from a group of facility access credentials that are assigned by a third-party credential issuer may be obtained and linked to the user information and the designated facility. The obtained facility access credential for use in gaining access to the designated facility may be activated resulting in an activated facility access credential and a notification transmitted to the user notifying the user of the activated facility access credential.
US11594085B2
A method and system that allows authorized individuals access into controlled access locations and the ability to grant temporary and limited access to guests into these locations. The method and system allows for navigational services to be provided to members and guests, and real-time tracking and confirmation to members and administrators that guests have arrived at their destination and did not enter any unauthorized areas. The method preferably can work through a system of wireless radio, sound and/or light-based beacons communicating with member and guest's electronic devices. Members and administrators can send one or more temporary electronic access keys to a guest's smartphone or other electronic device. Wireless radio, sound and/or light-based beacons provide an access control and location tracking system with real-time data about the member and guest whereabouts, allowing for the confirmation and tracking. Also provided is a system and method for identifying a customer's location at a business and provide notification to a company representative upon arrival of the customer at the business location. Real-time location determinations for the customer and customer location tracking can be provided. One or more wireless beacons communicate with the customer's electronic device. The beacons provide the system with real-time data about the customer's whereabouts, allowing for the confirmation and tracking of the customer at the location. A first non-limiting example of use, include a company that provides food and beverage allowing the customer to place an order for food and beverages on their electronic device and having the order delivered to the person at their current location as determined by the system. Another non-limiting example includes a company using the notification system to have assigned staff members notified of the customer's arrival.
US11594083B1
A method and a system determine a change of state of an autonomous device, such as an autonomous vehicle. A plurality of performance parameter values obtained by monitoring at least one performance parameter during the autonomous operation of the device is received. A performance quantity quantifying the quality of autonomous operation of the device, in particular the quality of driving of the autonomous vehicle, is determined based on the obtained performance parameter values and information associated with a flux of software and/or hardware related to the autonomous operation of the device. Further, a change of state value for the device is determined based on the performance quantity.
US11594081B2
An apparatus is provided to test valves. The apparatus includes a sensor and a driving mechanism. The driving mechanism is configured to control an external camshaft that is coupled to a valve train of an engine head. The apparatus controls the driving mechanism to control a rotation of the external camshaft that further controls an activation of each valve of the valve train associated with the engine head. The apparatus further controls the sensor to acquire information associated with the activation of each valve of the valve train based on the rotation of the external camshaft. The apparatus further compares the acquired information with pre-stored information, to determine an abnormality in each valve of the valve train, and generates a notification based on the comparison.
US11594078B2
A method and system that can be used to generate or modify a schedule using data indicative of a vehicle condition reported by a vehicle is described. A server receives a first computer network transmission (CNT) comprising data indicative of the vehicle and the vehicle condition, parses the first CNT to obtain the data indicative of the vehicle and the data indicative of the vehicle condition; determines, based on the data indicative of the vehicle, a computer network address associated with a repair shop having a client disposed at the address to display content of a scheduler application, and transmits to the client disposed at the address, a second CNT comprising data to cause the client to display as part of the content of the scheduler application served by computing server an alert indicator and parsed data indicative of the vehicle and the parsed data indicative of the vehicle condition.
US11594077B2
The present disclosure relates to systems, methods, and non-transitory computer readable media for generating modified digital images based on verbal and/or gesture input by utilizing a natural language processing neural network and one or more computer vision neural networks. The disclosed systems can receive verbal input together with gesture input. The disclosed systems can further utilize a natural language processing neural network to generate a verbal command based on verbal input. The disclosed systems can select a particular computer vision neural network based on the verbal input and/or the gesture input. The disclosed systems can apply the selected computer vision neural network to identify pixels within a digital image that correspond to an object indicated by the verbal input and/or gesture input. Utilizing the identified pixels, the disclosed systems can generate a modified digital image by performing one or more editing actions indicated by the verbal input and/or gesture input.
US11594073B2
The present invention relates to a face recognition method and a face recognition device, the method including: a step for detecting one or more faces in an image frame; a step for updating a face object in a face list by using the one or more pieces of detected face information; and a step for recognizing an identity corresponding to the face object by using a plurality of feature vectors of the face object in the updated face list.
US11594072B1
Aspects of the present disclosure include methods for generating a heatmap including a plurality of sampling points having a plurality of characteristic values associated with the detected non-visible light, identifying one or more macroblocks each includes a subset of the plurality of sampling points, calculating a number of occurrences of the local pattern value within each subset of the plurality of the sampling points for each of the one or more macroblocks, generating a first array including a plurality of weighted values by calculating the plurality of weighted values based on the numbers of occurrences of the local pattern value and corresponding sizes of the one or more macroblocks, assigning a unique index to each of the plurality of weighted values, generating a second array of the unique index by ranking the plurality of weighted values, and generating a third array including a plurality of ranking distances.
US11594070B2
An object detection training method can include receiving a training sample set in a current iteration of an object detection training process over an object detection neural network. The training sample set can include first samples of a first class and second samples of a second class. A first center loss value of each of the first and second samples can be determined. The first center loss value can be a distance between a feature vector of the respective sample and a center feature vector of the first or second class which the respective sample belongs to. A second center loss value of the training sample set can be determined according to the first center loss values of the first and second samples. A first target loss value of the current iteration can be determined according to the second center loss value of the training sample set.
US11594062B2
A biometric authentication device with infection preventive function to prevent infection of pathogens such as virus, bacteria and the like is described. The biometric authentication device with infection preventive function includes: an image acquisition unit configured to take an image of a finger of a person to be authenticated; an authentication processing unit configured to performs an authentication process by the use of biometric information contained in the taken image; and a contact prevention unit configured to prevent the finger of the person to be authenticated from coming in contact with the biometric authentication device by leading the finger of the person to be authenticated to a predetermined position in relation to the biometric authentication device by the tactile sensation.
US11594054B2
In some implementations, a system may obtain document lineage training data associated with a plurality of historical documents and corresponding lineage data of independent historical documents of the plurality of historical documents. The system may train, based on the document lineage training data, a lineage analysis model to determine a lineage of edited sections of a source document. The system may receive a plurality of document files that correspond to a plurality of versions of a document. The system may determine, using a similarity analysis model, that a first section from a first version of the plurality of versions corresponds to a second section from a second version of the plurality of versions. The system may determine, using the lineage analysis model, a lineage of a corresponding section of the document that is associated with the first section and the second section.
US11594050B2
The subject matter of this specification can be implemented in, among other things, methods, systems, computer-readable storage medium. A method can include receiving, by a processing device, image data having one or more image frames indicative of a state of a meal preparation area. The method may further include, determining, based on the image data, a first feature characterization of a first meal preparation item associated with the state of the meal preparation area. The method may further include determining that the first feature characterization does not meet object classification criteria for a set of object classifications. The method may further include causing a notification indicating the first meal preparation item and one of an object classification or a classification status corresponding to the first meal preparation item on a graphical user interface (GUI).
US11594048B2
The subject matter of this specification can be implemented in, among other things, methods, systems, computer-readable storage medium. A method can include receiving, by a processing device, image data including one or more image frames indicative of a current state of a meal preparation area. The processing device determines a first quantity of a first ingredient disposed within a first container based on the image data. The processing device determines a meal preparation procedure associated with the first ingredient based on the first quantity. The processing device causes a notification indicative of the meal preparation procedure to be displayed on a graphical user interface (GUI).
US11594044B2
Aspects of the disclosure provide for a method for identifying speed limit signs and controlling an autonomous vehicle in response to detected speed limit signs. The autonomous vehicle's computing devices identifies a speed limit sign in a vehicle's environment and a location and orientation corresponding to the speed limit sign. Then, the and orientation location of the speed limit sign is determined to not correspond to a pre-stored location and a pre-stored orientation of a speed limit sign that is pre-stored in map information. An effect zone of the speed limit sign is determined based on the location and orientation of the speed limit sign and characteristics of surrounding areas or other detected object before or after the speed limit sign. The autonomous vehicle's computing devices determines a response of the vehicle based on the determined effect zone, and controls the autonomous vehicle based on the determined response.
US11594039B2
The present disclosure provides a perception system for a vehicle. The perception system includes a perception filter for determining a region of interest (“ROI”) for the vehicle based on an intent of the vehicle and a current state of the vehicle; and a perception module for perceiving an environment of the vehicle based on the ROI; wherein the vehicle is caused to take appropriate action based on the perceived environment, the current state of the vehicle, and the intent of the vehicle.
US11594034B1
Methods, systems, and devices that support techniques for a smart monitoring system are described. A system may monitor a physical environment using a camera-enabled device operating in a first mode of a set of modes. The system may determine one or more parameters based on the monitoring. The parameters may include an identity of an entity, a behavior of the entity, or a setting of the security and automation system, or any combination thereof. The system may perform an operation based on the one or more parameters. The techniques described herein may deter an intruder from an intended action (e.g., theft, property damage, etc.) and/or provide lighting to a user of the security and automation system, among other benefits.
US11594032B1
A media source is configured to provide a media stream that includes an audio-video recording. The audio-video recording comprises image frames. A video presentation device receives the media stream provided by the media source and selects a portion of the image frames of the media stream. The device determines, based at least in part on characteristics of the video presentation device and properties of the selected portion of the image frames, a processing resource for executing an algorithm configured to determine a probability that the media stream includes synthetic media. The selected portion of the frames and an indication of the algorithm are provided to the processing resource. The processing resource executes the algorithm to determine the probability that the media stream includes synthetic media. The audio-video recording and a representation of the probability that the media stream includes synthetic media are displayed.
US11594031B2
A system and method to automatically generate a secondary video stream based on an incoming primary video stream. The method including performing video analytics on the primary video stream to generate one or more analysis results, detecting the first target of interest using the analysis results, automatically extracting a first secondary video stream that captures at least a portion of a first target of interest and has a field of view smaller than that of the primary video stream, tracking the first target of interest, displaying the first secondary video stream, detecting a second target of interest using the analysis results, automatically adapting the first secondary video stream from the primary video stream to capture a portion of the first and second targets of interest, tracking the second target of interest, and displaying the first secondary stream including the portion of the first and second targets of interest.
US11594014B2
According to an aspect of an embodiment, operations may comprise obtaining a first point cloud that includes a first point. The operations also comprises obtaining a second point cloud that is a copy of the first point cloud and that includes a second point that is a copy of the first point. The operations also comprises moving the second point cloud with respect to the first point cloud according to a first vector. The operations also comprises identifying a closest point of the first point cloud that is closest to the second point of the second point cloud. The operations also comprises determining a second vector between the closest point and the second point. The operations also comprises determining a measure of usefulness of the first point based on the first vector and the second vector. The operations also comprises indicating the measure of usefulness of the first point.
US11594009B2
Even if an object to be detected is not remarkable in images, and the input includes images including regions that are not the object to be detected and have a common appearance on the images, a region indicating the object to be detected is accurately detected. A local feature extraction unit 20 extracts a local feature of a feature point from each image included in an input image set. An image-pair common pattern extraction unit 30 extracts, from each image pair selected from images included in the image set, a common pattern constituted by a set of feature point pairs that have similar local features extracted by the local feature extraction unit 20 in images constituting the image pair, the set of feature point pairs being geometrically similar to each other. A region detection unit 50 detects, as a region indicating an object to be detected in each image included in the image set, a region that is based on a common pattern that is omnipresent in the image set, of common patterns extracted by the image-pair common pattern extraction unit 30.
US11593996B2
Aspects of the disclosure provide for generating a visualization of a three-dimensional (3D) world view from the perspective of a camera of a vehicle. For example, images of a scene captured by a camera of the vehicle and 3D content for the scene may be received. A virtual camera model for the camera of the vehicle may be identified. A set of matrices may be generated using the virtual camera model. The set of matrices may be applied to the 3D content to create a 3D world view. The visualization may be generated using the 3D world view as an overlay with the image, and the visualization provides a real-world image from the perspective of the camera of the vehicle with one or more graphical overlays of the 3D content.
US11593994B2
A computer-implemented method prevents physical interference between co-located users in virtual environments. The method includes identifying a first user associated with a first virtual reality (VR) system and a second user associated with a second VR system. The method also includes predicting a future movement of the first user to perform a first task in a primary virtual environment. The method further includes identifying, in response to the predicting the future movement of the first user, a first physical space needed for the first user. The method includes determining, in response to identifying the first physical space, a likely interference in a first physical location of the first user. The method also includes preventing the likely interference.
US11593990B1
Aspects presented herein relate to methods and devices for graphics processing including an apparatus, e.g., a GPU. The apparatus may configure a BVH structure including a plurality of levels and a plurality of nodes, the BVH structure being associated with geometry data for a plurality of primitives in a scene. The apparatus may also identify an amount of storage in a GMEM that is available for storing at least some of the plurality of nodes in the BVH structure. Further, the apparatus may allocate the BVH structure into a first BVH section including a plurality of first nodes and a second BVH section including a plurality of second nodes. The apparatus may also store first data associated with the plurality of first nodes in the GMEM and second data associated with the plurality of first nodes and the plurality of second nodes in a system memory.
US11593988B2
In various examples, transmittance may be computed using a power-series expansion of an exponential integral of a density function. A term of the power-series expansion may be evaluated as a combination of values of the term for different orderings of samples in the power-series expansion. A sample may be computed from a combination of values at spaced intervals along the function and a discontinuity may be compensated for based at least on determining a version of the function that includes an alignment of a first point with a second point of the function. Rather than arbitrarily or manually selecting a pivot used to expand the power-series, the pivot may be computed as an average of values of the function. The transmittance estimation may be computed from the power-series expansion using a value used to compute the pivot (for a biased estimate) or using all different values (for an unbiased estimate).
US11593984B2
Systems and processes for animating an avatar are provided. An example process of animating an avatar includes at an electronic device having one or more processors and memory, receiving text, determining an emotional state, and generating, using a neural network, a speech data set representing the received text and a set of parameters representing one or more movements of an avatar based on the received text and the determined emotional state.
US11593981B2
The disclosure discloses a method for processing a screenshot image, electronic device and computer storage medium. The method includes obtaining an image of a current page based on an instruction of screenshotting the current page; determining whether the image comprises content to be removed; in response to a determination that the image comprises the content to be removed, searching for a first element in a first image layer of the current page, the first element in the first image layer corresponding to the content to be removed; determining whether a second element exists in a second image layer based on a predetermined condition, wherein the second image layer is adjacent to the first image layer; and performing a covering processing on the image to cover the content to be removed to obtain a processed image based on a determination result.
US11593980B2
Among other things, embodiments of the present disclosure improve the functionality of electronic messaging software and systems by providing a customized display of avatars corresponding to users exchanging electronic communications, such as short message service (SMS) or multimedia service (MMS) texts and emails. The appearance of the displayed avatars may be dynamically altered based on the actions taken by the users, as well as based on the content of the messages between the users or information from other sources.
US11593968B2
In some embodiments, a method analyzing a first set of values for a first bin plane in a plurality of bin planes. The plurality of bin planes are used to determine a context model for entropy coding of a current block in a video. The method determines whether to use a second set of values from a second bin plane based on the analyzing. When it is determined to use the second set of values, information is calculated for the context model using the first set of values and the second set of values. When it is determined to not use the second set of values, information is calculated for the context model using the first set of values.
US11593966B2
Disclosed herein are methods of providing an image storage service, computer-readable recording mediums, and/or computing devices. The method of providing the image storage service includes selecting image data in a first format, determining an initial compression parameter for converting the selected image data in the first format into a second format, obtaining primary image data in the second format by transcoding the selected image data in the first format based on the initial compression parameter, searching for a desired compression parameter based on whether image quality of the primary image data satisfies a criterion, obtaining final image data in the second format by transcoding the selected image data in the first format based on the desired compression parameter, and storing final image data in the second format in the memory.
US11593964B2
Embodiments of the present disclosure relate to methods and apparatuses for outputting information and calibrating a camera. The method may include: acquiring a first image, a second image, and a third image, the first image being an image photographed by a to-be-calibrated camera, the second image being a high-precision map image including a target area indicated by the first image, and the third image being a reflectance image including the target area; fusing the second image and the third image to obtain a fused image; determining a matching point pair based on points selected by a user in the first image and the fused image; and calibrating the to-be-calibrated camera based on coordinates of the matching point pair.
US11593963B2
The present invention relates to tracking objects. Specifically, the present invention relates to determining the position and/or location of styli from image data.
Aspects and/or embodiments seek to provide a method for determining an orientation and/or a position of a cylindrical object from image data using a single viewpoint.
US11593961B2
A method can include obtaining, from a video having a first resolution, a set of frames having a second resolution. The first resolution can be higher than the second resolution. The set of frames can include a first frame and a second frame. The method can include generating a difference feature map. The method can include obtaining a third frame having the first resolution. The method can include detecting, based on the difference feature map, a first location of a first object in the third frame. The method can include cropping, from the third frame, a first cropped area. The first cropped area can be smaller than a third frame area. The method can include generating, based on a feature map and the difference feature map, a spatial attention layer. The method can include detecting, by the spatial attention layer, the first object in the first cropped area.
US11593958B2
There are provided an imaging device, a distance measurement method, a distance measurement program, and a recording medium capable of accurately measuring a distance to a subject without depending on a color of the subject.
A bifocal imaging lens, a first pixel and a second pixel that respectively pupil-divide and selectively receive luminous flux incident through a first region of the first region and a second region having different focusing distances of the imaging lens, an image sensor having a third pixel and a fourth pixel corresponding to the second region, a first image acquisition unit (41-1) and a second image acquisition unit (41-2) that acquire a first image and a second image having asymmetric blurs from a first pixel group (22A) and a third pixel group (22C) of the image sensor, a third image acquisition unit (43-1) and a fourth image acquisition unit (43-2) that add pixel values of adjacent pixels of the first and second pixels of the image sensor and add pixel values of adjacent pixels of the third and fourth pixels to acquire a third image and a fourth image having symmetric blurs, and a distance calculation unit (45) that calculates a distance to a subject in the image based on the acquired first and third images or the acquired second and fourth images are included.
US11593955B2
A map fusing method includes receiving a source graph and a target graph. The source graph is representative of a source map and the target graph is representative of a target map and includes nodes and edges that connect the nodes. The method further includes processing each of the source graph and the target graph in a graph convolutional layer to provide graph convolutional layer outputs related to the source graph and to the target graph, processing each of the graph convolutional layer outputs for the source graph and the target graph in a linear rectifying layer to output node feature maps related to the source graph and the target graph. The method further includes selecting pairs of node representations from the node feature maps related to the source graph and the target graph and concatenating the selected pairs to output selected and concatenated pairs of node representations.
US11593945B2
Methods and systems for generating a semantically augmented image are disclosed. An embedding is generated for each object label associated with a segmented input image. For each embedding associated with a respective object label, a similarity score is computed between the embedding associated with the object label and an embedding representing an object class in an object bank storing a plurality of object images. At least one object is selected, the selected object being associated with a respective object image in the object bank, the selected at least one object being from an identified object class that is identified as contextually relevant to at least one object label associated with the segmented input image, based at least on the similarity score. The selected object is added into the segmented input image to generate the augmented image.
US11593937B2
The present embodiments relate generally to systems and methods for performing a measurement on an ultrasound image displayed on a touchscreen device. The method may include: receiving, via the touchscreen device, first input coordinates corresponding to a point on the ultrasound image; using the first input coordinates as a seed for performing a contour identification process on the ultrasound image, wherein the contour identification process performs contour evolution using morphological operators to iteratively dilate from the first input coordinates; upon identification of a contour from the contour identification process, placing measurement calipers on the identified contour; and storing a value identified by the measurement calipers as the measurement.
US11593936B2
A method and ultrasound imaging system includes generating a cine including a plurality of cardiac views based on the cardiac ultrasound data, segmenting a plurality of cardiac chambers from each of the plurality of cardiac images, and automatically determining a cardiac chamber area for each of the plurality of cardiac chambers. The method and ultrasound imaging system includes displaying the cine on a display device and displaying a plurality of single trace curves on the display device at the same time as the cine to provide feedback regarding an acquisition quality of the cine, wherein each of the single trace curves represents the cardiac chamber area for a different one of the plurality of cardiac chambers over the plurality of cardiac cycles.
US11593918B1
In one embodiment, a method includes obtaining an image comprising a plurality of pixels, determining, for a particular pixel of the plurality of pixels, a gradient value, classifying, based on the gradient value, the particular pixel into a flat class or one of a plurality of edge classes, and denoising the particular pixel based on the classification.
US11593914B2
A method for presenting an image on a display device (100) includes modifying the image by applying a geometric transformation to the image so that an area of the image on the display device is presented to a viewer with higher density of pixels than that in the rest of the image (S18).
US11593913B2
A method for correcting an image divides an output image into a grid with vertical sections of width smaller than the image width but wide enough to allow efficient bursts when writing distortion corrected line sections into memory. A distortion correction engine includes a relatively small amount of memory for an input image buffer but without requiring unduly complex control. The input image buffer accommodates enough lines of an input image to cover the distortion of a single most vertically distorted line section of the input image. The memory required for the input image buffer can be significantly less than would be required to store all the lines of a distorted input image spanning a maximal distortion of a complete line within the input image.
US11593903B2
Methods, systems and computer storage media are disclosed for providing resources to a platform issue. Embodiments describe associating educational resources and an event resource to resolve the platform issue.
US11593900B1
A portable remote processing apparatus facilitates various aspects of a transaction, such as a real estate property transaction. A seller of the real estate property can use the portable remote processing apparatus to prepare a walk-through of the property for prospective buyers, to configure the property for a showing, and/or to interact with a buyer device to negotiate a sale of the real estate property. Typically, the portable remote processing apparatus communicates with a remote server device, thereby limiting the amount of hard coding in the apparatus and improving the processing capability of the apparatus.
US11593899B2
Disclosed herein is a method for facilitating streamlining traveling processes for traveling, in accordance with some embodiments. Accordingly, the method comprises steps of receiving a travel itinerary information from a user device, receiving a location information of the user from the user device, analyzing the travel itinerary information and the location information using a machine learning model, retrieving a traveling requirement, transmitting a document requirement to the user device, receiving a user document from the user device, analyzing the user document, generating a travel application for procuring a travel document for the user, and transmitting the travel application to an agency device associated with an agency. Further, the at least one agency provides the travel document to the user for facilitating the traveling.
US11593891B2
Various embodiments of systems and methods for cross media joint friend and item recommendations are disclosed herein.
US11593889B2
Methods and systems for maintaining a distributed ledger and/or blockchain of transactions and/or events pertaining to autonomous vehicles and/or smart contracts. An enforcement server may receive indications of transactions and/or events generated by one or more autonomous vehicles. The transactions and/or events may include information relating to a trigger condition and/or a decision condition associated with one or more smart contracts. The enforcement server may route the transaction to the appropriate smart contract to determine whether a trigger condition has been satisfied. When a trigger condition is satisfied, the enforcement server may automatically perform an action to enforce the smart contract and/or update the distributed ledger. In some aspects, the distributed ledger may record events associated with autonomous and semi-autonomous vehicle technology or system usage, including events associated with transitioning between manual and autonomous control, or vice versa, of one or more autonomous or semi-autonomous vehicles.
US11593885B2
A regularization-based (RB) hedging tool identifies a recommended hedging portfolio that track a target asset and provides one or metrics indicating a predicted performance of the hedging portfolio relative to the target asset. The RB hedging tool uses a RB hedging model that is trained on price data from an observation period. Initial hyperparameters for the model are selected using asset price data from a validation period and the performance of the model is evaluated by applying it to asset price data from a backtest period. The end-user is presented with one or more metrics indicating the performance of the model and may modify one or more settings (e.g., hyperparameters) of the model. The model is retrained and reapplied to the backtest period, and the metrics are updated. Thus, end-users may tailor the model to their own particular needs and preferences.
US11593873B2
Embodiments for establishing trust in commerce negotiations are provided. Information associated with negotiation actions of each of a plurality of entities is stored in a shared ledger. A trustworthiness score is calculated for at least one of the plurality of entities based on the information associated with the negotiation actions of the at least one of the plurality of entities. The calculated trustworthiness score is provided to at least one other of the plurality of entities.
US11593868B1
A method includes generating, based on user images, a user 3-D model. The method proceeds with obtaining, via a user interface, a request to graphically represent an accessory on to a user graphical representation. This user graphical representation is generated using the user 3-D model. In response to this request, an accessory 3-D model is obtained. Further, the method includes positioning, via the user interface and based on parameters of the user 3-D model and of the accessory 3-D model, an accessory graphical representation on to the user graphical representation. The method further includes updating, in response to detecting user movement, the user 3-D model and the accessory 3-D model and presenting, via the user interface and based on these updated 3-D models, the accessory graphical representation and the user graphical representation in accordance with the user movement.
US11593867B2
A computer system configured to integrate a plurality of websites is provided. The computer system includes a memory, a display, and at least one processor coupled to the memory and the display. In one example, the system comprises a monitoring component executed by the at least one processor and configured to analyze web content generated by a website provider and detect one or more identified elements within the web content. The system may also comprise a converting component executed by the at least one processor and configured to, responsive to detection of the one or more identified elements by the monitoring component, convert at least one portion of the web content into converted content, wherein the at least one processor is configured to display, in the display, the converted content and at least one other portion of the web content.
US11593866B2
Systems and methods are provided for providing a platform to provide virtual storefronts to consumers. Environmental elements are associated with specific consumer services on computer server. A user in the environment takes audio or visual recordings of an environmental element and uploads the recordings to the server. The server determines the appropriate consumer service associated with the recorded environmental element and provides the user with a reference to the service. Accordingly, any space, such as a bus stop, subway or train terminal, movie theater, or airport, may be turned into a virtual store.
US11593863B2
A server receives an order request from a consumer device where the order request is be provisioned to a recipient at a later time and where the recipient is required to be physically present receive the order. The order request also includes a request location and a request time. As a function of the information, the method determines an estimated time to complete the order request. The method further sends a confirmation request to the consumer device requesting a confirmation response within a predetermined time. After an expiration of the predetermined time, the method completes a transaction for the order request and receives the confirmation response from the consumer device after the expiration of the predetermined time. The method sends a notification to the consumer device indicating the estimated time to complete the order request for the recipient to receive the order request.
US11593861B2
Systems and methods for automated product recommendation are disclosed herein. This can include generating an entry, the entry corresponding to an item selected for purchase, in a mirror-cart linked with a user account and identifying a recipe associated with the selected item. This can include comparing items identified in the recipe to items contained in the mirror-cart to identify a missing item that is not in the mirror-cart, and then prompting the user to purchase the missing item. Automated product recommendation can include generating an entry in the mirror-cart linked to the missing item when the user selects the missing item for purchase, updating an invoice with price information for the selected missing item, and transferring the invoice to a point of sale terminal at the retail location.
US11593841B2
Techniques for providing webpages based on tracking consumer device interactions are discussed herein. Some embodiments may include one or more servers configured to: receive a request for access to a promotion webpage from a consumer device, wherein the request includes a consumer device cookie and the promotion webpage includes an indication of a promotion; in response to receiving the request for access to the promotion webpage, generate the promotion webpage including widgets; generate clickstream data based on tracking widget views of the widgets within the promotion webpage; associate the clickstream data with the consumer device cookie; and generate widget analytic data based on the clickstream data. The widget analytic data may then be used to populate webpages with widgets to optimize various criteria, such as widget views or promotion purchases.
US11593837B2
Systems, and methods for selecting advertisements based on party size and/or engagement are provided. An Internet-connected media display device may be detected as displaying media. An up-to-date party size in a monitored space may be determined based on frequency response data by a wireless access point located close to the space. An up-to-date engagement level may also be determined with respect to each individual in the space based on frequency response data by the wireless access point. An advertisement database may be filtered for a qualifying advertisement based on the identified party size and engagement levels.
US11593835B2
Price mining and dynamic online marketing campaign adjustment data processing systems and methods are disclosed. A system and method for dynamically adjusting an online marketing campaign, in various embodiments, is configured to increase and/or decrease one or more keyword bids that make up part of an online marketing campaign for a particular product from a particular retailer based on whether: (1) the particular product is or is not competitively priced relative to one or more competing retailers; and/or (2) an advertisement for the particular product from the particular retailer on a search engine results page or in an online marketplace is in a relatively desirable position.
US11593829B1
Systems/techniques for facilitating proxy objects for tracking processing of electronic coupon codes are provided. In various embodiments, a system can determine that a browser is performing a checkout on a frontend website. In various aspects, the system can cause the frontend website to instruct the web browser to transmit a validation request to a backend server, wherein the validation request identifies a coupon code and requests that the backend server determine whether the coupon code is applicable to the checkout. In various instances, the system can cause the web browser to append a proxy object to the validation request, wherein the proxy object fetches, during execution of the validation request by the backend server, an execution status of the validation request. In various cases, the system can receive, from the proxy object, the execution status and can initiate one or more electronic actions based on the execution status.
US11593812B2
Aspects of the disclosure relate to using machine learning techniques for generating automated suspicious activity reports (SAR). A computing platform may generate a labelled transaction history dataset by combining historical transaction data with historical report information. The computing platform may train a convolutional neural network using the labelled transaction history dataset. The computing platform may receive new transaction data and compress the new transaction data using lossy compression. The computing platform may input the compressed transaction data into the convolutional neural network, which may cause the convolutional neural network to output a suspicious event probability score based on the compressed transaction data. The computing platform may determine whether the suspicious event probability score exceeds a predetermined threshold and, if so, the computing platform may send one or more commands directing a report processing system to generate a SAR, which may cause the report processing system to generate the SAR.
US11593810B2
A computer-implemented method includes the operations of receiving pre-registration data from a cardholder and receiving cardholder transaction data from an interchange network. Transaction details are extracted from the received cardholder transaction data. The extracted transaction details are compared to the received pre-registration data, and based on the comparison, a transaction confidence score for the transaction is determined.
US11593809B2
Provided is a computer-implemented method for authenticating a customer during payment transactions based on biometric identification parameters of the customer that includes receiving image data associated with an image template for identification of a customer, receiving image data associated with an image of a biometric identification parameter of the customer during a payment transaction between the customer and a merchant, establishing a short-range communication connection with a user device associated with the customer during the payment transaction between the customer and the merchant, authenticating an identity of the customer for the payment transaction via the short-range communication connection, determining an account identifier of an account of the customer based on authenticating the identity of the customer for the payment transaction, and processing the payment transaction using the account identifier of the account of the customer. A system and computer program product are also disclosed.
US11593803B2
The present invention relates to a two level crux chain platform with a Proof of History (PoH) for increasing security, robustness and/or verifiability of a blockchain includes a first initial block with a node assigned to an address of a shard, a plurality of following blocks comprising a new address for each of the following blocks generated using previous address and previous block head by a ladder swapping protocol, a record stream with a plurality of stream value and each stream value is a current record value hashed with a previous stream value and a blockchain server for storing a plurality of modules.
US11593795B1
A processing unit and a mobile identity information controlled financial account device may communicate. The processing unit receives at least one digital representation of a biometric, obtains identity information using the at least one digital representation of the biometric, and determines whether or not to transmit an authorization signal to the mobile identity information controlled financial account device that enables use of the mobile identity information controlled financial account device in at least one transaction involving at least one financial account. The mobile identity information controlled financial account device may be usable for the at least one transaction when the mobile identity information controlled financial account device receives the authorization signal. The processing unit may also receive a first digital representation of a biometric for a first person along with at least one permission to assign regarding the mobile identity information controlled financial account device for a second person.
US11593792B1
Data representing ownership of a traditional asset of a first party having a predefined monetary value stored at a first party network node is replicated to a plurality of other party network nodes, including a second party network node, communicably coupled to the first party network node and to one another. Entry of data is received at the first party network node that represents a partition by the first party of the asset of the first party on a non-value axis into at least two non-overlapping assets and a transfer of ownership of one of those two assets to the second party. The data representing the partition of the non-value axis and transfer of ownership of one of the two non-overlapping assets to the second party is replicated to the plurality of other party nodes, including the second party network node.
US11593789B1
A mobile device includes a display device; a processor; and a memory device configured to store instructions that, when executed by the processor, cause the processor to: present, by the display device, a user interface to a user of the mobile device for accessing a mobile online banking application; upon accessing the mobile online banking application, provide, by the display device, an option to a create a mobile wallet; responsive to receiving an indication to create the mobile wallet, provide, by the display device, a list of accounts held by the user; and receive a selection of at least one account from the list accounts to provision the at least one account to the mobile wallet for use in future mobile wallet transactions such that the at least one account from the list of accounts is auto-provisioned to the mobile wallet.
US11593781B2
Described are a system, method, and computer program product for reconfiguring a transaction during network processing. The method includes receiving, from a merchant system, a transaction request including transaction data and configured in an initial configuration associated with a single-message transaction or a dual-message transaction. The method includes determining, based at least partly on the transaction data and/or at least one parameter of a merchant profile associated with the merchant system, a recommended configuration associated with a single-message transaction or a dual-message transaction, the recommended configuration different from the initial configuration. The method includes reconfiguring the transaction request based on the recommended configuration. The method includes generating a communication to a transaction processing system configured to cause the transaction processing system to process the transaction request as a single-message transaction or a dual-message transaction based on the recommended configuration.
US11593778B2
A request is processed by a control device based on a detected proximity of a client device to the control device. The control device, which is intermediate to the client device and a beacon device, runs application software that receives the request generated using a client application running at the client device. The beacon device, upon receipt of an indication that the control device received the request, transmits a signal to detect a proximity of the client device to the control device. The application software receives data indicative of a response to the signal from the beacon device. The application software allows the request upon a determination that the data reflects the response is received. Alternatively, the application software allows the request upon a determination that the data indicates that the proximity of the client device to the control device satisfies a threshold.
US11593774B2
A mobile banking system and method allows an unbanked individual to engage in banking practices that would otherwise not be available to the individual due to the individual not having a bank account and not being able to cash checks, make deposits, etc. The mobile banking system allows the unbanked individual to create a registered system account and become a customer of the system. This system account allows the customer to make deposits at credit unions and merchants who are part of the mobile banking system. The customer can also withdraw funds from a merchant or make purchases from a merchant. The customer can also make donations to a desired donation receiver and create a wallet that allows the customer to allocate funds to cards in the wallet and allow individuals access to the cards and money associated with a card.
US11593762B2
An online document system can allow users to participate in collaborative negotiation of documents stored with in the online document system. To facilitate negotiations between multiple entities (each potentially including multiple users with different roles in the negotiation), the online document system includes a permissions system that allows per-clause control over user's access to propose and approve changes to a negotiated document. Similarly, the user interfaces for viewing a negotiated document provided by the online document system to users can depend on the role of that user in editing the document and the current stage of the negotiation of the document. Finally, the online document system can track agreement between sides in a negotiation on a per-clause basis and can otherwise help facilitate the negotiation of the document.
US11593757B2
Systems and methods of processing items. Items in a distribution network or process may be scanned at every handling point in the distribution network, and each scan is recorded in a central repository. The scan information can be used to generate real-time access to data, analytical tools, predictive tools, and tracking reports.
US11593755B2
A method for stock keeping in a store includes: accessing an image captured by a fixed camera within the store; retrieving a field of view of the fixed camera; estimating a segment of an inventory structure in the store depicted in the image based on a projection of the field of view onto a planogram of the store; identifying a set of slots within the inventory structure segment; retrieving a product model representing a set of visual characteristics of a product type assigned to a slot, in the set of slots, by the planogram; extracting a constellation of features from the image; if the constellation of features approximates the set of visual characteristics in the product model, detecting presence of a product unit of the product type occupying the inventory structure segment; and representing presence of the product unit, occupying the inventory structure segment, in a realogram.
US11593724B2
A system, method and computer program product for integrated management of animate and inanimate objects of an enterprise, including a cloud-based server having a database, a website, and configured for running computer programs thereon; a user device including a smartphone, tablet and/or personal computer (PC) running an application or software including a gamified user interface (UI) configured to connect to the database and function as a data entry and display device; automated devices including a sensor, electronic switch, pump and/or a hydroponic dosing device connected to the database and configured to collect and transmit data or to react to received commands; an Artificial Intelligence (AI) powered engine configured to monitor statuses of animate and inanimate objects of an enterprise, as well as external conditions and actors that affect the enterprise, and based on analysis of the statuses, configured to task employees and/or the automated devices of the enterprise, and configured to employ cognitive reasoning to provide the enterprise with advice on managing business operations; and a framework employed by the AI engine based on a metaphor of a novel, with business operations of the enterprise presented as a story, and including a data model that follows rules of grammar.
US11593716B2
Embodiments for implementing enhanced ensemble model diversity and learning by a processor. One or more data sets may be created by combining one or more clusters of data points of a minority class with selected data points of a majority class. One or more ensemble models may be created from the one or more data sets using a supervised machine learning operation. An occurrence of an event may be predicted using the one or more ensemble models.
US11593714B2
A computer system is provided. The computer system includes a memory, a network interface, and a processor coupled to the memory and the network interface. The processor is configured to receive a response to a request to verify whether an ostensible client of a service is actually a client or a bot, the response including an indicator of whether the ostensible client is a client or a bot; receive information descriptive of interoperations between the ostensible client and the service that are indicative of whether the ostensible client is a client or a bot; and train a plurality of machine learning classifiers using the information and the indicator to generate a next generation of the plurality of machine learning classifiers.
US11593713B2
Systems and methods are provided framework for automatically choosing the appropriate generalized linear model (GLM) given a time series of count data, and for anomaly detection on time series data. A dispersion parameter is determined and used to determine whether the count data is overdispersed data or underdispersed data. The overdispersed data or the underdispersed data is used to determine a GLM to apply on the dataset. Using the determined GLM on the data, anomalies can be determined.
US11593710B1
Example methods, apparatus, and articles of manufacture to estimate waiting times of prescriptions are disclosed herein. An example computer-implemented method, executed by a processor, to estimate a waiting time of a prescription for a medication includes training a machine learning model using, for each of a plurality of previously filled prescriptions, a set of characteristics of the previously filled prescription, and a fill time for the previously filled prescription, receiving a prescription for a medication for a patient, receiving a request for an estimated waiting time for filling the prescription medication for the patient, identifying a set of characteristics of the prescription medication for the patient, applying the set of characteristics of the prescription medication to the machine learning model to determine the estimated waiting time for filling the prescription medication for the patient, and providing an indication of the estimated waiting time for display on a client device.
US11593707B2
A system and method include techniques for: generating, by a quantum autoencoder, based on a set of quantum states encoded in a set of qubits, a decoder circuit that acts on a subset of the set of qubits, a size of the subset being less than a size of the set; and generating a reduced-cost circuit, the reduced-cost circuit comprising: (1) a new parameterized quantum circuit acting only on the subset of the set of qubits, and (2) the decoder circuit.
US11593695B2
A hybrid computing system for solving a computational problem includes a digital processor, a quantum processor having qubits and coupling devices that together define a working graph of the quantum processor, and at least one nontransitory processor-readable medium communicatively coupleable to the digital processor which stores at least one of processor-executable instructions or data. The digital processor receives a computational problem, and programs the quantum processor with a first set of bias fields and a first set of coupling strengths. The quantum processor generates samples as potential solutions to an approximation of the problem. The digital processor updates the approximation by determining a second set of bias fields based at least in part on the first set of bias fields and a first set of mean fields that are based at least in part on the first set of samples and coupling strengths of one or more virtual coupling devices.
US11593676B2
Systems and methods that determining a solution for a real-time message are provided. Multiple messages of different types are received from multiple platforms. The messages were generated in response to errors caused by applications monitored by the platforms. For each message, a language processing system determines the content of the message and the machine learning system determines a classification of the message. The set of message candidates are generated by comparing the classification and the content of the message to historical messages. From the set of message candidates, solution messages are identified. A recommended solution is determined from the solution messages.
US11593660B2
The proposed model is a Variational Autoencoder having a learnable prior that is parametrized with a Tensor Train (VAE-TTLP). The VAE-TTLP can be used to generate new objects, such as molecules, that have specific properties and that can have specific biological activity (when a molecule). The VAE-TTLP can be trained in a way with the Tensor Train so that the provided data may omit one or more properties of the object, and still result in an object with a desired property.
US11593658B2
The application provides a processing method and device. Weights and input neurons are quantized respectively, and a weight dictionary, a weight codebook, a neuron dictionary, and a neuron codebook are determined. A computational codebook is determined according to the weight codebook and the neuron codebook. Meanwhile, according to the application, the computational codebook is determined according to two types of quantized data, and the two types of quantized data are combined, which facilitates data processing.
US11593654B2
A method for training a neural network includes receiving a plurality of images and, for each individual image of the plurality of images, generating a training triplet including a subset of the individual image, a subset of a transformed image, and a homography based on the subset of the individual image and the subset of the transformed image. The method also includes, for each individual image, generating, by the neural network, an estimated homography based on the subset of the individual image and the subset of the transformed image, comparing the estimated homography to the homography, and modifying the neural network based on the comparison.
US11593649B2
We propose a neural network-based base caller that detects and accounts for stationary, kinetic, and mechanistic properties of the sequencing process, mapping what is observed at each sequence cycle in the assay data to the underlying sequence of nucleotides. The neural network-based base caller combines the tasks of feature engineering, dimension reduction, discretization, and kinetic modelling into a single end-to-end learning framework. In particular, the neural network-based base caller uses a combination of 3D convolutions, 1D convolutions, and pointwise convolutions to detect and account for assay biases such as phasing and prephasing effect, spatial crosstalk, emission overlap, and fading.
US11593645B2
Embodiments implement non-intrusive load monitoring using machine learning. A trained convolutional neural network (CNN) can be stored, where the CNN includes a plurality of layers, and the CNN is trained to predict disaggregated target device energy usage data from within source location energy usage data based on training data including labeled energy usage data from a plurality of source locations. Input data can be received including energy usage data at a source location over a period of time. Disaggregated target device energy usage can be predicted, using the trained CNN, based on the input data.
US11593644B2
The present disclosure disclose method and apparatus for determining memory requirement for processing a DNN model on a device, a method includes receiving a DNN model for an input, wherein the DNN model includes a plurality of processing layers. The method includes generating a network graph of the DNN model. The method includes creating a colored network graph of the DNN model based on the identified execution order of the plurality of processing layers. The colored network graph indicates assignment of at least one memory buffer for storing at least one output of at least one processing layer. The method includes determining at least one buffer reuse overlap possibility across the plurality of processing layers. Based on the determined at least one buffer reuse overlap possibility, the method includes determining and assigning the memory required for processing the DNN model.
US11593638B2
A downloadable navigator for a mobile ultrasound unit having an ultrasound probe, implemented on a portable computing device. The navigator includes a trained orientation neural network to receive a non-canonical image of a body part from the mobile ultrasound unit and to generate a transformation associated with the non-canonical image, the transformation transforming from a position and rotation associated with a canonical image to a position and rotation associated with the non-canonical image; and a result converter to convert the transformation into orientation instructions for a user of the probe and to provide and display the orientation instructions to the user to change the position and rotation of the probe.
US11593637B2
A method, an electronic device, and computer readable medium are provided. The method includes receiving an input into a neural network that includes a kernel. The method also includes generating, during a convolution operation of the neural network, multiple panel matrices based on different portions of the input. The method additionally includes successively combining each of the multiple panel matrices with the kernel to generate an output. Generating the multiple panel matrices can include mapping elements within a moving window of the input onto columns of an indexing matrix, where a size of the window corresponds to the size of the kernel.
US11593636B1
A machine learning system and method. The machine learning system includes at least one computation circuit that performs a weighted summation of incoming signals and provides a resulting signal. The weighted summation is carried out at least in part by a magnetic element in which weights are adjusted based on changes in effective magnetic susceptibility of the magnetic element.
US11593633B2
Systems, methods, and computer-readable storage devices are disclosed for improved real-time audio processing. One method including: constructing a deep neural network model, including a plurality of at least one-bit neurons, configured to output a predicted label of audio data, the plurality of at least one-bit neurons arranged in a plurality of layers, including at least one hidden layer, and being connected by a plurality of connections, each connection having at least a one-bit weight, wherein one or both of the plurality of at least one-bit neurons and the plurality of connections have a reduced bit precision; receiving a training data set, the training data set including audio data; training the deep neural network model using the training data set; and outputting a trained deep neural network model configured to output a predicted label of real-time audio data.
US11593629B2
A hybrid delta modulator that can be used as a variable threshold neuron in a neural network is described. The hybrid delta modulator exhibits a memory of the prior state of the modulator, similar to a delta modulator, and receives a sum-of-products signal from a weighting circuit and generates a quantized output stream that represents the sum-of-products signal, potentially including an activation function and offset. With appropriately selected components, the hybrid delta modulator separates the integral function of the feedback from the gain function. Further, the gain can be selected, and the characteristic of the output pattern can be tailored to include an arbitrary combination of the input and the rate of change of the input. The use of a hybrid delta modulator of the present approach provides a simpler solution and better performance than many prior art neurons.