A component mounting system that includes a component mounter in which multiple component supply units are detachably arranged in a supply area and mounts components on a board based on a job. The system performs a preparatory arrangement control for dividing the component supply units required for the job into multiple, and controlling the unit exchange device to make an arrangement of the component supply units in each group match an arrangement order in the supply area, and a supply arrangement control for controlling the unit exchange device to automatically exchange the component supply units, and to arrange the component supply units required for the job after switching in the supply area.
An electrical device includes a housing part and a cover part, the cover part being connected to the housing part, in particular with the aid of screws, the cover part in particular covering an opening of the housing part. A first circuit board is connected to the cover part, and an elastically preloaded sheet-metal part, in particular an elastically preloaded tab section of a sheet-metal part, presses at least one heat-generating component, in particular a controllable semiconductor switch, in the direction of the cover part, in particular for the purpose of dissipating heat from the heat-generating component into the environment via the cover part.
A display apparatus including a display and a supporter. The supporter being mounted on the display and configured to support the display and rotate the display module between a first position and a second position. The supporter including a drive motor, a first gear, and a detection sensor. The drive motor configured to supply a driving force to rotate the display. The first gear configured to rotate together with the display by receiving the driving force from the drive motor. The detection sensor configured to detect a rotation amount of a second gear configured to rotate in with the first gear.
A circuit board with conductive wiring which is precisely shaped and sized includes a two-part conductive element, namely a first conductive wiring layer and a second conductive wiring layer, a first cover film and a second cover film. The first conductive wiring layer and the second conductive wiring layer are in direct contact to each other. A projection of the first conductive wiring layer and a projection of the second conductive wiring layer along a direction perpendicular to the circuit board overlap with each other. The first and the second cover films wrap the first and the second conductive wiring layers, respectively.
A composite metal foil and a preparation method thereof are provided. The composite metal foil includes a carrier layer, a barrier layer, a striping layer, and a metal foil layer. The carrier layer, the barrier layer, the striping layer, and the metal foil layer are sequentially stacked, the barrier layer includes a metal bonding layer and a high-temperature resistant layer stacked, and the metal bonding layer is disposed between the carrier layer and the high-temperature resistant layer. The striping layer is disposed between the carrier layer and the metal foil layer so as to facilitate peeling of the carrier layer, and the barrier layer is disposed between the carrier layer and the metal foil layer so as to prevent the carrier layer and the metal foil layer from diffusing mutually to cause bonding at a high temperature, so that the carrier layer and the metal foil layer are easy to peel off. In addition, the metal bonding layer is disposed between the carrier layer and the high-temperature resistant layer, so that the barrier layer is not easy to separate from the carrier layer, and peeling between the barrier layer and the carrier layer is prevented.
A Printed Circuit Board (PCB) includes a via extending through at least one layer of the PCB. The PCB may also include a first catch pad connected to the via and located within a first metal layer of the PCB. The first catch pad may have a first size. The PCB may further include a second catch pad connected to the via and located within a second metal layer of the PCB. The second catch pad may have a second size greater than the first size. The second catch pad may overlap horizontally with a portion of a metallic feature in the first metal layer to obstruct light incident on a first side of the PCB from transmission to a second side of the PCB through a region of dielectric material near the via.
A package device and a manufacturing method thereof are provided. The package device includes a redistribution layer including a first dielectric layer, a conductive layer, and a second dielectric layer. The conductive layer is disposed between the first dielectric layer and the second dielectric layer. The redistribution layer has a test mark, the test mark includes a plurality of conductive patterns formed of the conductive layer, and the conductive patterns are arranged in a ring shape.
An electronic device includes a circuit board and an electric element mounted on the circuit board. The electric element includes a multilayer body made of electrically insulating base materials, a transmission line portion, and connection portions. The transmission line portion and the connection portions are provided in the multilayer body. Each of the connection portions is continuous with a corresponding portion of the transmission line portion, and is connected to the circuit board by an electrically conductive bonding material. The transmission line portion other than the connection portions is not electrically connected to an electronic component on the circuit board. The electronic component not electrically connected to the electric element is disposed between the transmission line portion of the electric element and the circuit board.
A method for manufacturing a flexible circuit board capable of transmitting high frequency signals with reduced attenuation includes providing an inner wiring board including a first conductive wiring layer and a first substrate layer, the first conductive wiring layer including a signal line and two ground lines on both sides of the signal line, the first substrate layer covering a side of the first conductive wiring layer and defining first through holes which expose the signal line; providing two copper clad laminates including a second substrate layer and a copper foil, the second substrate layer having second through hole aligned with the first through holes; laminating the two copper clad laminates onto two sides of the inner wiring board via two adhesive layers, each adhesive layer defining third through holes aligned with the first and second through holes; and forming a second conductive wiring layer from the copper foil.
A light system monitors an area of interest for exposure to radiant energy provided by an operating room light head. At least one operating parameter of the light head is obtained, and based on the at least one operating parameter it is determined if the area of interest has been or will be exposed to radiant energy exceeding a prescribed threshold over a prescribed time period. Based on the determination, the system at least one of automatically adjusts an operating setting of the at least one light head or generates a warning of possible overexposure to radiant energy in the area of interest.
An LED driver that is operable with two different types of power source originally designed for a high-intensity discharge lamp. The LED driver directs current of an input power provided by the power source down a first current path if it is determined that the power source comprises a functional ignitor. The LED driver directs current of an input power provided by the power source down a second current path if it is determined that the 5 power source does not comprise a functional ignitor.
Disclosed are a method and device for controlling an RRC state, and a computer storage medium. The method includes: sending, by a terminal device, a first RRC message to a network device, the first RRC message comprising an RRC connection resume request message; receiving, by the terminal device, a second RRC message sent by the network device, the second RRC message carrying first indication information which is indicative of a target RRC state of the terminal device; and entering, by the terminal device, the target RRC state based on the first indication information.
A first BLUETOOTH device includes a transceiver configured to receive a control procedure packet from a second BLUETOOTH device during a BLUETOOTH connection event of a BLUETOOTH connection between the first BLUETOOTH device and the second BLUETOOTH device. The first BLUETOOTH device also includes a controller coupled to the transceiver and configured to set a more data (MD) bit of a response packet to the control procedure packet to a first value independent of whether the first BLUETOOTH device has more data to send to the second BLUETOOTH device. The first value corresponds to maintaining the BLUETOOTH connection event open. The transceiver is further configured to send the response packet to the second BLUETOOTH device during the BLUETOOTH connection event.
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method for controlling a user equipment (UE) context and a UE connection, which includes: a first node obtains resume requirement information of a UE; the first node determines whether to resume the UE context, and/or, the UE connection, based on the resume requirement information of the UE. The present disclosure also provides a device for controlling UE context and UE connection.
Methods, systems, and devices for wireless communications are described. One example method for wireless communications at a user equipment (UE) includes detecting a radio link failure (RLF) condition for a connection between the UE and a network over a first cell group and determining, in response to detecting the RLF condition, whether an air interface resource allocation is available for a signaling radio bearer (SRB) between the UE and the network over another cell group. The method also includes selecting, based at least in part on the determination, one of a plurality of RLF procedures. In some examples, the UE may select a first RLF procedure that fully releases radio resources when no SRB is available and a different, second RLF procedure that partially when an SRB is available between the UE and the network over a second cell group.
Presented herein are techniques to facilitate extending a multiple access Protocol Data Unit (PDU) session and Access Traffic Steering, Switching, and Splitting Low-Layer (ATSSS-LL) policies to an enterprise network. In one example, a method may include obtaining a request for an ATSSS-LL policy for a user equipment (UE) for establishing a multiple access protocol data unit session for the UE via a wireless wide area access network for an enterprise network; and providing to the UE one or more ATSSS-LL rules for the ATSSS-LL policy, an Internet Protocol (IP) address for the multiple access protocol data unit session for the UE, and an identifier for the multiple access protocol data unit session for the UE in which the IP address is utilized for a wireless local area access network connection for the UE established via a wireless local area access network of the enterprise network.
Communication is established between a plurality of users through mobile computing devices. A server communicates with the mobile computing devices. Unique User Identifiers (UUIDs) are registered on the server through a network, and a database connected to the server stores the uploaded UUIDs and associated data. The server receives and sends communications to and from the mobile computing devices, receives UUIDs and associated data from mobile computing devices, and sends UUIDs and associated data to one or more mobile computing devices.
An electronic device for receiving data packets in a Bluetooth environment is provided. The electronic device includes a wireless communication circuitry configured to support a Bluetooth protocol. The wireless communication circuitry is configured to establish a first link with a first external electronic device, synchronize a secret key generation scheme with the first external electronic device based on information obtained while establishing the first link, receive page information transmitted from a second external electronic device, based on Bluetooth address information of the first external electronic device, the Bluetooth address information being obtained while establishing the first link, generate a link key used for a second link between the first external electronic device and the second external electronic device, based on the synchronized secret key generation scheme, and receive an encrypted data packet transmitted over the second link from the second external electronic device using the generated link key.
The present disclosure provides a method and an apparatus for random access in a wireless communication system, as well as a user terminal. The method includes: receiving indication information transmitted from a radio base station, the indication information instructing a user terminal to initiate a random access; determining a target Physical Random Access Channel (PRACH) resource from available resources based on a current coverage level and resource information carried in the indication information, the target PRACH resource being used for transmitting a PRACH signal for initiating the random access; and re-determining, in response to a failure to initiate the random access over the target PRACH resource, the target PRACH resource from the available resources based on an updated coverage level and the resource information, and transmitting the PRACH signal over the re-determined target PRACH resource. The present disclosure can solve the technical problem in the related art associated with low success rate of random accesses initiated by radio base stations.
Systems and methods related to UL communications in a wireless network are provided. A UE receives an indication of a plurality of TXOPs for a RACH procedure from a BS. In an embodiment, the UE starts a timer after either successfully transmitting a random access message to the BS or failing to succeed in any of the TXOPs. In another embodiment, the UE starts the timer at a pre-agreed time after one of the TXOPs, regardless of whether the random access message has been successfully transmitted yet or not. In another embodiment, the UE receives as part of a RACH response an indication of whether the RACH response is split into multiple parts. If the UE does not locate an identifier corresponding to the UE in the RACH response, the UE checks for the indication and, if present, listen for the next RACH response identified from the indication.
The invention refers to a method at a user equipment for performing a random access procedure, wherein the UE randomly selects a random access preamble from a given set of preambles to be used for the random access procedure, the method comprising the steps of detecting (420) a partitioning of the given set of random access preambles into a first and a second partition, detecting (430) a certain capability of the UE, and selecting (440) a random access preamble from the fist partition to indicate the certain capability to a base station; the invention further refers to a corresponding method in a base station, a corresponding UE, and a corresponding base station.
Methods, systems, and devices for wireless communication are described. A wireless device may perform a listen before talk (LBT) procedure on a channel bandwidth using an energy detection (ED) threshold. The ED threshold being associated with a transmission bandwidth that is narrower than the channel bandwidth. The wireless device may also, responsive to a successful LBT procedure, transmit on the transmission bandwidth according to a frequency hopping pattern during a first channel occupancy time (COT). The frequency hopping pattern comprises a first resource allocation and a second resource allocation different from the first resource allocation.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine an adjusted contention window size for a listen-before-talk (LBT) procedure that increases channel access time fairness between a plurality of different groups of UEs. The UE may determine, via the LBT procedure, that a channel is idle based at least in part on the adjusted contention window size. The UE may transmit, to other UEs in a group of UEs that includes the UE, control information that enables a group channel occupancy time (COT) associated with the channel to be shared with the other UEs in the group of UEs. Numerous other aspects are described.
Wireless communications systems and methods related to communications in a network are provided. A UE receives a listen-before-talk (LBT) failure detection configuration associated with at least one of a dormant mode or a discontinuous reception (DRX) cycle in a first cell of a wireless communication network. The UE performs, based on the LBT failure detection configuration, an LBT failure detection in the first cell while operating in the dormant mode for the first cell or during an inactive DRX configured-on duration of the DRX cycle. The UE transmits an LBT failure detection report based on the LBT failure detection.
An information reporting method includes: determining that a random access problem occurs; and reporting, to a base station, a bandwidth part (BWP) on which the random access problem occurs. By determining that the random access problem occurs and reporting the BWP on which the random access problem occurs to the base station, the base station may determine the BWP on which the random access problem occurs.
Systems, apparatuses, and methods are described for wireless communications. A base station may determine configuration parameters for a wireless device. The configuration parameters may be based on traffic pattern information received from the wireless device, such as a traffic periodicity, a timing offset, and/or a message size.
A base station retransmits data to a user equipment (UE) using a fast beam selection process before the retransmission. The UE transmits an uplink feedback in a beam sweep manner to facilitate fast beam selection in retransmission. The base station can measure the beam sweep patterns from the UE to decide the best beam for retransmission. The UE can send a negative acknowledgment (NACK) or a reference signal in a beam sweep manner to facilitate beam selection at the base station for retransmission.
The present invention includes a receiver configured to receive first information, the first information including information for configuring whether transform precoding for a physical uplink shared channel is enabled, and a transmitter configured to transmit information indicating a first power headroom level for the physical uplink shared channel with the transform precoding enabled and information indicating a second power headroom level for the physical uplink shared channel with the transform precoding not enabled.
Provided are a method and device for transmitting and receiving a signal in a wireless communication system. In a wireless communication system according to an embodiment of the present disclosure, a radio unit (RU) is configured to obtain channel information about a plurality of reception paths of the RU, through which signals of at least one user equipment (UE) are received, with respect to each UE, determine a combined weight based on the channel information by using preset mapping information according to the number of the plurality of reception paths and the number of combined paths that are combined from the plurality of reception paths, and transmit a combined signal to a digital unit (DU) through the combined paths, the combined signal being generated as a result of combining the signals received through the plurality of reception paths according to the determined combined weight.
Techniques for transmitting and receiving wireless communications over an unlicensed radio frequency spectrum band are disclosed, including techniques for transmitting and receiving service information blocks over the unlicensed radio frequency spectrum band, techniques for gaining access to the unlicensed radio frequency spectrum band by performing extended clear channel assessments (eCCAs), techniques for transmitting and receiving synchronization signals and reference signals over the unlicensed radio frequency spectrum band, techniques for communicating locations of reference signals, and techniques for communicating availability of certain resources to be combined across multiple different transmissions.
The method for transmitting control information in a mobile communication system includes: determining a control channel resource for transmitting control information by means of the data channel region; and transmitting the control information using the determined control channel resource. A capacity for control information, which increases for multiple user multiple-input multiple-out (MIMOs) in a heterogeneous network environment, for heterogeneous network interference control using carrier aggregation, for frequent use of a multicast-broadcast single frequency network (MBSFN) subframe, and for a CoMP transmission control, may be satisfied. Further, an adaptive resource allocation based on a requested capacity for control information may be enabled, and the efficient utilization of resources may also be enabled.
Methods and apparatuses for measurement information reporting. A method of a user equipment (UE) includes method receiving a configuration for a set of resources comprising non-zero-power channel state information reference signal (NZP CSI-RS) resources or synchronization signal and physical broadcast channel (SS/PBCH) block resources and receiving NZP CSI-RS in the NZP CSI-RS resources or SS/PBCH blocks in the SS/PBCH block resources from the set of resources. The method includes measuring signal-to-interference and noise ratio (SINR) values based on the NZP CSI-RS or the SS/PBCH blocks; and transmitting, for a subset of resources from the set of resources, a largest of the SINR values, differential SINR values relative to the largest SINR value, and NZP CSI-RS resource indexes (CRIs) or SS/PBCH block indexes for at least some of the NZP CSI-RS resources or the SS/PBCH blocks resources from the subset of resources.
A method and apparatus of a user equipment (UE) are provided. The method and apparatus comprise: identifying spatial parameters for a synchronization signals/physical broadcast channel (SS/PBCH) block and a downlink (DL) signal, wherein the spatial parameters are commonly used for receiving the SS/PBCH block and the DL signal; receiving the SS/PBCH block and the DL signal, wherein the SS/PBCH block and the DL signal are time division multiplexed in a same slot; and determining information from the DL signal.
Methods and devices for configuring and monitoring a search space of a PDCCH are provided. The specific solution includes: transmitting PDCCH configuration information to a UE, where the PDCCH configuration information is for indicating at least one search space of a PDCCH of the UE, and the search space is any one of the following types: a common search space; a group common search space, or a UE specific search space.
A method for data transmission in a sidelink includes: a first terminal device selecting a first resource from a data resource pool in a selection window, the first resource being used for sending data of the first terminal device; the first terminal device selecting, from a control resource pool in the selection window, a second resource for sending first indication information, the first indication information being used for indicating the first resource, the positions of the first resource and the second resource in a time domain and/or frequency domain being different; and the first terminal device sending the first indication information over the second resource, and sending the data of the first terminal device over the first resource.
[Problem] It becomes possible to realize more efficient communication in a wireless local area network (LAN) system.
[Solution] There is provided a wireless communication device that functions as an access point of a wireless LAN, including: a generation unit that generates a wireless signal in which allocation information for allocating a plurality of stations to one resource unit is stored; and a transmission unit that transmits the wireless signal to the stations.
Aspects relate to mechanisms for a wireless communication device to configure and indicate one or more beams for sidelink communication with another wireless communication device. The sidelink communication can include first stage sidelink control information (SCI) and second stage SCI that may be communicated on a first beam configured on the wireless communication devices. The sidelink communication can further include sidelink data traffic that may be communication on a second beam. The second beam may be the first beam or a different beam based on at least one of a beam capability of at least the first wireless communication device or a gap between the sidelink data traffic and at least one of the first stage SCI or the second stage SCI.
Methods, systems, and devices for wireless communications are described. A first user equipment (UE) in a wireless communications system, such as a vehicle-to-everything (V2X) communications systems, may communicate over sidelink to other UEs. The first UE may receive, from a base station, control signaling indicating a sidelink resource pool allocated for sidelink communication between the first UE and a second UE. The first UE may transmit an indication that superposition coding may be used to generate a concurrent sidelink and uplink transmission. The first UE may then transmit the concurrent sidelink and uplink transmission within a resource of the sidelink resource pool based on the indication. The second UE may decode the sidelink portion of the transmission, and the base station may decode the uplink portion of the transmission.
A method for timing and frequency tracking and paging monitoring is described. The method can include performing a timing and frequency tracking based on a timing/frequency tracking reference signal (RS) at a user equipment (UE) in a beam formed wireless communication system, and performing a paging monitoring at a first paging occasion (PO) that is quasi-co-located (QCLed) with the first timing/frequency tracking RS. The first timing/frequency tracking RS is one of a sequence of timing/frequency tracking RSs each transmitted on a beam and is associated with a beam index. The first PO is within a PO window that includes a sequence of POs each transmitted on a beam. The first PO is associated with the same beam index as the first timing/frequency tracking RS.
An electronic device according to various embodiments can comprise: a housing; a wireless communication circuit located in the housing; a processor operationally connected to the wireless communication circuit; and a memory located inside the housing and operationally connected to the processor, wherein the memory can store instructions such that, when executed, the processor performs camp-on on a cell of a first base station through the wireless communication circuit, receives, from the first base station, information related to a network related to the first base station, identifies a state in which no service is provided from the first base station to the electronic device, and searches for a registered public land mobile network (RPLMN) on the basis of at least a portion of the received information.
Some methods enable a computer to receive location information from a device and determine a coverage region for the device. The device's coverage region is the area within range of a wireless signal coming from the device. The computer can determine that part of the device's coverage region covers part of a specified region and instruct the device to provide wireless access to a network associated with the first region.
Disclosed is a tangible article of manufacture having instructions stored thereon that, when executed, cause a machine to perform operations for tracking an operator and operator status using a safety device. The operations include programming a plurality of NFC tags with assignment information, wherein the assignment information is at least one of a location assignment for NFC tags being placed at particular locations and an instrument operator assignment for NFC tags distributed to multi-gas detection instrument operators. The instructions further include receiving temporary assignment information at the safety device when an NFC radio of the safety device is brought in proximity to at least one of the plurality of NFC tags; and tagging safety device data with the temporary assignment information.
A method (100) of route selection in a wireless communication system and a control system (40) is provided. The method includes selecting a route between a first node (1) and a second node (2) and comprises: —evaluating (110) a plurality of possible routes (R1, R2, R3, R4), at least one route (R2, R3, R4) including a third node (3, 4) between the first and the second node; and —selecting (160) the route that has the lowest latency among the possible routes. Especially the method (100) includes: —selecting (120) parameter settings for each link of the possible routes, said selecting (120) comprising; —selecting (130) the length of the cyclic prefix, —evaluating (140) combinations of the selected cyclic prefix and different settings of the at least one further parameter of the physical layer; —selecting (150) the parameter settings that has lowest estimated latency and fulfils at least one communication quality criterion.
Provided in embodiments of the disclosure are a method and apparatus for cell selection or reselection, and a terminal. The method includes that: a terminal performs cell selection or cell reselection based on first information, the first information being Non-Public Network (NPN) related information.
Provided are a handover method and apparatus. The method includes following steps: a UE receives an RRC reconfiguration message sent by a source base station, where the RRC reconfiguration message includes a list of target cells for performing a conditional handover by the UE, information of each target cell in the list of the target cells for performing the conditional handover includes at least one of the following: frequency information of the target cell, a physical cell identifier of the target cell, a conditional handover command of the target cell generated by the target cell, or at least one piece of measurement configuration identifier information, and the at least one piece of measurement configuration identifier information is used for instructing an execution condition for the UE to perform a conditional handover in the target cell; and the UE performs a handover according to the RRC reconfiguration message.
A condition handover cancellation method and a communication equipment are provided. A CHO cancellation method applied to a source network side device includes: sending a CHO request to at least one target network side device; and sending a CHO cancellation message to the target network side device and/or a terminal side device.
A handover method for managing WBSS vehicle network managed by a WESS-CM includes: recognizing that a vehicle enters an overlapped area between first and second WBSSs; sending, by the first WBSS, a handover recommend request to the WESS-CM; confirming with the second WBSS, by the WESS-CM, whether handover is possible; responding to the WESS-CM, by the second WBSS, the availability of the handover after allocating communication resources; sending, by the WESS-CM, a handover recommend response to the first WBSS; transmitting, by the first WBSS, a handover request message to the vehicle; performing the handover, by the vehicle, by performing reassociation with the second WBSS; and periodically broadcasting, by the vehicle, basic safety message using a T-slot in shared control channel and a T-slot in BSM channel for the second WBSS, while the vehicle is located in the overlapped area.
A method (100) for managing resource usage across domains in a communication network is disclosed. The communication network comprises a radio access domain, a core domain and a transport domain providing connectivity between the radio access domain and the core domain. The method comprises receiving from the core domain an indication of load status of gateway nodes in the core domain (110), receiving from the transport domain an indication of load status of transport resources in the transport domain (120), normalising across the core and transport domain a cost of using resources in each domain (130), calculating, on the basis of the normalised costs, optimal chains of resources in the core and transport domains for providing a service from different radio access nodes to different possible Access Point Names (APNs) (140), and sending to the core and transport domains information about the calculated optimal resource chains (150). Also disclosed are methods for managing resource usage in a core domain, a transport domain and a radio access domain of a communication network, together with cross domain, core domain, transport domain and radio access domain control elements.
A method and system for controlling data split of a dual-connected user equipment device (UE) when the UE has at least two co-existing air-interface connections including a first air-interface connection with a first access node and a second air-interface connection with a second access node. An example method includes (i) comparing an aggregate frequency bandwidth of the first air-interface connection with an aggregate frequency bandwidth of the second air-interface connection, (ii) based at least on the comparing, establishing a split ratio that defines a distribution of data flow of the UE between at least the first air-interface connection and the second air-interface connection, and (iii) based on the establishing, causing the established split ratio to be applied. Further the method could include using the comparison as a basis to set one of the UE's air-interface connections as the UE's primary uplink path.
A method includes determining, by a terminal device, a relation of size between an amount of data to be sent of a first split bearer of the terminal device and a preset threshold of the first split bearer, wherein the amount of the data to be sent includes a total amount of data volume in a PDCP layer of the first split bearer and an amount of data in a first RLC layer that is configured by a network side on the first split bearer and that is used to transmit data by default. The method also includes determining according to the relation of size in a plurality of cell groups corresponding to the first split bearer, a target cell group used to process the data to be sent according to the relation of size. The method facilitates load balance between cell groups and data transmission flexibility.
Embodiments are directed towards systems and methods for user plane function (UPF) and network slice load balancing within a 5G network. Example embodiments include systems and methods for load balancing based on current UPF load and thresholds that depend on UPF capacity; UPF load balancing using predicted throughput of new UE on the network based on network data analytics; UPF load balancing based on special considerations for low latency traffic; UPF load balancing supporting multiple slices, maintaining several load-thresholds for each UPF and each slice depending on the UPF and network slice capacity; and UPF load balancing using predicted central processing unit (CPU) utilization and/or predicted memory utilization of new UE on the network based on network data analytics.
A wireless communication network serves User Equipment (UEs) over a wireless network slice. A core user-plane in the slice exchanges user data with the UEs over a Radio Access Network (RAN). The core control-plane determines when the slice has a concentration of UEs that exceeds a threshold in a geographic area. When the slice has the UE concentration that exceeds the threshold in the geographic area, the core control-plane signals an edge user-plane to serve the UEs that use the wireless network slice in the geographic area. The edge user-plane exchanges additional user data over the RAN with the UEs that use the wireless network slice in the geographic area. The core control-plane may determine when the concentration of UEs moves toward another geographic area and proactively launch another edge user-plane to serve the UEs that will soon need the slice in the other geographic area.
A first base station (BS) transmitting a secondary node (SN) Addition Request message to a second BS for a communication device; receiving a SN Addition Request Acknowledge message from the second BS, wherein the SN Addition Request Acknowledge message comprises a first plurality of configurations which configure the communication device to communicate with the second BS and configure a data radio bearer (DRB) which is a SCG split bearer; transmitting a first message comprising the first plurality of configurations to the communication device, wherein the second BS communicates with the communication device according to the first plurality of configurations; receiving a second message indicating the SCG failure from the communication device; initiating a SN Modification procedure with the second BS to recover the SCG failure, or transmitting a third message configuring the DRB to be a master cell group bearer or a MCG split bearer to the communication device.
The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
A radio frequency (RF) device includes a spatial orientation sensor and logic circuit configured to determine spatial orientation of the RF device relative to a reference position or relative to a RF transmitter. In particular, the RF device determines a distance between the RF receiver and the RF transmitter based on a received signal strength of the signal and a determined spatial orientation of the RF device, by determining an orientation compensation value from a stored orientation compensation profile and determining a resulting compensated received signal strength. The RF device is thereby able to determine distance in an orientationally-invariant manner.
In one embodiment, a service receives a device registration request sent by an endpoint device, wherein the endpoint device executes an onboarding agent that causes the endpoint device to send the device registration request via a cellular connection to a private access point name (APN) associated with the service. The service verifies that a network address of the endpoint device from which the device registration request was sent is associated with an integrated circuit card identifier (ICCID) or international mobile equipment identity (IMEI) indicated by the device registration request. The service identifies a tenant identifier associated with the ICCID or IMEI. The service sends, based on the tenant identifier, a device registration response to the endpoint device via the private APN.
A method, apparatus and computer program product may be provided for signaling-based remote provisioning and updating of protection policy information in a SEPP of a visited network. A method may include obtaining, at a home network node (hSEPP), protection policy information from a local repository in a home network or via configuration. The hSEPP is a network node at a boundary of the home netowork, and the home network is a public land mobile network (hPLMN). The method includes distributing, via a signaling interface, the protection policy information to a visited network node (vSEPP) within a visited network (vPLMN). The vSEPP is a network node at a boundary of a second network. The protection policy information includes information regarding protection of signaling messages addressed for network functions (NFs) hosted in the hPLMN and is configured for enabling the vSEPP to selectively protect outgoing messages to hSEPP in the home network.
Provided are a wireless communication method, a network device and a terminal device. The method includes: after acquiring a PSI parameter of a terminal device, a first network device determines whether to update policy information of the terminal device, wherein the PSI parameter is used for identifying a part of policy information for the terminal device under a subscribed user. In an implementation of the present disclosure, after acquiring a Policy Section Identifier (PSI) parameter of a terminal device, a first network device directly determines whether to update policy information of the terminal device.
Methods and systems for managing decoding of control channel on a multi-SIM UE. A method includes receiving, by the UE, the plurality of control channels from at least one Base Station (BS), the plurality of control channels corresponding to a plurality of Subscriber Identity Modules (SIMs), selecting, by the UE, a respective decoder for each of the plurality of SIMs, and decoding, by the UE, each respective control channel among the plurality of control channels using the respective decoder for a respective SIM among the plurality of SIMs, the respective SIM corresponding to the respective control channel.
The disclosed technology includes a health engine that monitors and modifies customer-premises equipment (CPE) devices. The health engine can detect patterns in CPE device behavior, identify problems with CPE devices, and adjust CPE device configurations proactively or reactively to address problems or prevent problems. In some implementations, the health engine can instruct a CPE device or gateway to restart, update its software or firmware, notify a user of the CPE device of an unhealthy behavior pattern in a CPE device. The health engine can modify a CPE device prior to a user using the device or when the CPE device is inactive.
Disclosed are techniques for wireless communication. In an aspect, a vehicle communications system of a vehicle comprises a vehicle controller with a wireless communications interface capable of providing wireless coverage in a plurality of vehicle regions, and a set of relay devices that are each communicatively coupled to the vehicle controller and are each capable of providing wireless coverage in at least one of the plurality of vehicle regions. In a further aspect, the vehicle controller transitions between first and second modes of communication based in part upon a traffic condition.
Systems and methods are provided to manage, control, and configure connectivity for vehicles or other devices. Data in different formats, which is received from different connectivity providers, is converted into a unified data format and stored in a data store. The unified data format allows analytics to be performed across the converted data. In some embodiments, a connectivity type of a plurality of connectivity types associated with a vehicle is controlled based on a current lifecycle stage of the vehicle. In some embodiments, a first data connection between a device and a first connectivity provider is utilized. Based on an identified change in location of the device and information associated with a second data connection between the device and a second connectivity provider, a switch to the second data connection is facilitated based on a determination that that the second data connection has more optimal characteristics.
A signal multiplexing apparatus and method using layered division multiplexing are disclosed. A signal multiplexing apparatus according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal at different power levels; a power normalizer configured to reduce the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing interleaving that is applied to both the core layer signal and the enhanced layer signal; and a frame builder configured to generate a broadcast signal frame using the time-interleaved signal and L1 signaling information.
It is provided a method for detecting when a user equipment, UE, is airborne. The method is performed in a UE status detector and comprises the steps of: obtaining an indicator of variation of signal strengths for signals received in the UE, wherein the signals are transmitted for at least three different cells; and determining, based on the indicator of variation, when the UE is airborne.
A computer-implemented method for combined indoor and outdoor tracking using a tracking device is disclosed. In at least one embodiment of the method, a fingerprint of radio signals is generated by the device at a location to be determined. The location of the device is determined by applying trained functions to the fingerprint wherein the trained functions have been end-to-end trained using a plurality of fingerprints generated at known locations. Environmental sensor data may be used to predict a lifetime of a component tracked by the tracking device.
A hearing instrument charger device for charging an individually shaped hearing instrument, includes: a charger casing; a charger power supply within the charger casing; a first charger coil connected to the charger power supply; charger electronics for controlling charging of the hearing instrument; and a holder configured for receiving the hearing instrument, the holder located within the charger casing; wherein the holder for the hearing instrument has a shape that is specific for the individually shaped hearing instrument, such that when the individually shaped hearing instrument is received in the holder, a second charger coil of the individually shaped hearing instrument is in an operative position for receiving charging power from the first charger coil of the hearing instrument charger device.
A speaker comprises a housing, a transducer residing inside the housing, and at least one sound guiding hole located on the housing. The transducer generates vibrations. The vibrations produce a sound wave inside the housing and cause a leaked sound wave spreading outside the housing from a portion of the housing. The at least one sound guiding hole guides the sound wave inside the housing through the at least one sound guiding hole to an outside of the housing. The guided sound wave interferes with the leaked sound wave in a target region. The interference at a specific frequency relates to a distance between the at least one sound guiding hole and the portion of the housing.
A speaker comprises a housing, a transducer residing inside the housing, and at least one sound guiding hole located on the housing. The transducer generates vibrations. The vibrations produce a sound wave inside the housing and cause a leaked sound wave spreading outside the housing from a portion of the housing. The at least one sound guiding hole guides the sound wave inside the housing through the at least one sound guiding hole to an outside of the housing. The guided sound wave interferes with the leaked sound wave in a target region. The interference at a specific frequency relates to a distance between the at least one sound guiding hole and the portion of the housing.
A thermophone includes an inner core and an outer shell coaxial with the inner core. The inner core and outer shell enclose a volume filled with gas. A pair of posts extend radially from the inner core to the outer shell and extend longitudinally between the inner core and the outer shell. At least one longitudinal slot is formed along the outer shell and a fluid seal covers the slot. A thermoacoustic active element is disposed in the volume and heated by modulated current to generate alternating pressure on the outer shell and produce acoustic signals.
A ring-shaped cushion for a hearing protector or audio headset. The cushion has a circumferential contact pad for sealing on a wearer's head and an attachment for sealing with an earmuff. The cushion further has a sound insulation tube that inwardly defines an inner space. The sound insulation tube extends between the contact pad and the attachment. The cushion has a ventilation passage that extends entirely through the cushion between an inlet opening in the contact pad and an area outside of the inner space. The cushion may further include one or more physiological sensors to monitor the health of a wearer.
An open audio device with a body that has an inner surface that is configured to be located behind an outer ear of a user and in contact along a length of the body at multiple locations of at least one of the outer ear and the head proximate the intersection of the head and the outer ear. The inner surface of the body lies generally along a decaying helix. An acoustic module is carried by the body and is configured to be located against the outer ear above the ear canal opening.
An acoustic output device includes a base case whose internal space is formed as an arrangement space and in which an insertion hole communicating with the internal space is formed, a cover that covers at least a part of the base case, an elastically deformable waterproof sheet including a flat surface portion joined to the base case and a bag-shaped pocket portion inserted into the insertion hole, a push button including an operating portion to be pressed and operated and a working portion inserted into the pocket portion, a substrate that is arranged in the arrangement space, and a switch that is arranged on the substrate and operated by the working portion via the pocket portion.
A loudspeaker containing a sound-generating element and a grill mounted as a cover in front of the sound-generating element. The grill has optically transparent areas. At least one lighting element is mounted between the sound-generating element and the grill, the lighting element being visible from the outside through the optically transparent areas of the grill when illuminated.
Systems and methods are disclosed for providing non-intrusive advertising content to users. The method includes receiving user input reflecting user content preferences for receiving desired content related to specific topics in lieu of standard advertising slots while watching playable media content via a set-top box. The method may further include receiving a request for playable media content and then retrieving desired content based on user content preferences. Thereafter, the method may include choosing non-intrusive advertising content and generating datagrams that include the desired content and the non-intrusive advertising content. The datagrams may be concatenated with the playable media content to generate displayable content. The display content may then be provided for displaying.
Methods and systems are described herein for improving audio for hearing impaired content consumers. An example method may comprise determining a content asset. Closed caption data associated with the content asset may be determined. At least a portion of the closed caption data may be determined based on a user setting associated with a hearing impairment. Compensating audio comprising a frequency translation associated with at least the portion of the closed caption data may be generated. The content asset may be caused to be output with audio content comprising the compensating audio and the original audio.
A set-top box with enhanced content and system and method for use of the same are disclosed. In one embodiment, a wireless transceiver is located within a housing, which also interconnectively includes a television input, television output, a processor, and memory. The set-top box may establish a pairing with a proximate wireless-enabled interactive programmable device having a display. Content, such music, for example, may be imported from the proximate wireless-enabled interactive programmable device and provided to the television. While the music is playing, the set-top box may generate and provide to the television a control signal that includes instructions to adjust the brightness of the television by dimming the television.
Systems and methods are provided herein for providing recommendations to a user. A short-media viewing profile may be maintained for the user. The short-media viewing profile may be based on user's behavior while watching short-length media content. A long-media viewing profile may be maintained for the user. The long-media viewing profile may be based on user's behavior while watching long-length media content. In response to determining that the user is currently engaged in viewing short-length media content, a recommendation is provided to the user based on the short-media viewing profile. In response to determining that the user is currently engaged in viewing long-length media content, a recommendation is provided to the user based on the long-media viewing profile.
Techniques are disclosed for performing video synthesis of audiovisual content. In an example, a computing system may determine first parameters of a face and body of a source person from a first frame in a video shot. The system also determines second parameters of a face and body of a target person. The system determines that the target person is a replacement for the source person in the first frame. The system generates third parameters of the target person based on merging the first parameters with the second parameters. The system then performs deferred neural rendering of the target person based on a neural texture that corresponds to a texture space of the video shot. The system then outputs a second frame that shows the target person as the replacement for the source person.
A source apparatus is disclosed. The apparatus includes a storage, a communicator, and a processor configured to, when the source apparatus being turned on while the source apparatus is turned off, identify an application related to a content included in the content reproduction history among a plurality of applications based on a content reproduction history stored in the storage, control the communicator to receive a content list provided by the application, and provide the content list by executing the application.
Generating structured data from screen recordings is disclosed, including: obtaining, from a client device, a screen recording of a user's activities on the client device with respect to a task; performing, at a server, video validation on the screen recording, including by determining whether the screen recording matches a set of validation parameters associated with the task; and generating a set of structured data based at least in part on the video validation.
The present invention relates to a method for dynamic image content replacement in a video stream comprising generating a set of key image data (K) comprising a sequence of at least two different key images (K1, K2), periodically displaying said set of key image data (K) on a physical display, generating at least a first original video stream (O1) of a scene which includes said physical display by recording said scene with a camera, wherein said at least one video stream (O1) comprises key video frames (FK1, FK2), captures synchronously with displaying each of said at least two different key images (K1, K2) of said set of key image data (K) on said physical display, generating a mask area (MA) corresponding to an active area of said physical display visible in said key video frames from differential images (AFK) obtained from consecutive key video frames (FK1, FK2), generating at least one alternative video stream (V) by inserting of alternative image content (I) into the mask area (MA) of an original video stream, and broadcasting at least said at least one alternative video stream.
A method of controlling residual coding for decoding or encoding of a video sequence, is performed by at least one processor and includes determining whether a small transform size of a primary transform is to be used for the residual coding of a coded block of the video sequence. The method further includes based on the small transform size of the primary transform being determined to be used, identifying, as the primary transform, a first transform set including discrete sine transform (DST)-4 and discrete cosine transform (DCT)-4, based on the small transform size of the primary transform being determined to not be used, identifying, as the primary transform, a second transform set including DST-7 and DCT-8, and performing the residual coding of the coded block, using the identified primary transform.
Embodiments of the present disclosure discloses a scene-aware video encoder system. The scene-aware encoder system transforms a sequence of video frames of a video of a scene into a spatio-temporal scene graph. The spatio-temporal scene graph includes nodes representing one or multiple static and dynamic objects in the scene. Each node of the spatio-temporal scene graph describes an appearance, a location, and/or a motion of each of the objects (static and dynamic objects) at different time instances. The nodes of the spatio-temporal scene graph are embedded into a latent space using a spatio-temporal transformer encoding different combinations of different nodes of the spatio-temporal scene graph corresponding to different spatio-temporal volumes of the scene. Each node of the different nodes encoded in each of the combinations is weighted with an attention score determined as a function of similarities of spatio-temporal locations of the different nodes in the combination.
A three-dimensional data encoding method includes: shifting point cloud data indicating three-dimensional positions in a three-dimensional space by a first shift amount; dividing the point cloud data into pieces of sub point cloud data; shifting each of the pieces of sub point cloud data by a second shift amount based on a position of one of the subspaces that includes the sub point cloud data, the pieces of sub point cloud data being included in the point cloud data shifted by the first shift amount; and encoding the pieces of sub point cloud data shifted, to generate a bitstream. The bitstream includes first shift information for calculating the first shift amount, and pieces of second shift information each for calculating a corresponding one of second shift amounts by which the pieces of sub point cloud data are shifted and each of which is the second shift amount.
An image decoding method according to the present document includes: a step for deriving a luma intra prediction mode; and a step for generating a chroma candidate mode list for a chroma block including a preset number of chroma intra candidates by using at least one among a DM, a planar mode, a DC mode, a vertical mode, a horizontal mode, and an up-right diagonal mode, which are derived from the luma intra prediction mode, wherein the DM is a prediction mode corresponding to a center (CR) position of the luma block, and the chroma intra candidates other than the DM can be derived through a duplicate check of the DM and a prediction mode corresponding to any one among the top left (TL), top right (TR), bottom left (BL), and bottom right (BR) of the luma block, the planar mode, the DC mode, the vertical mode, and the horizontal mode.
Provided is a video decoding method including determining a displacement vector per unit time of pixels of a current block in a horizontal direction or a vertical direction, the pixels including a pixel adjacent to an inside of a boundary of the current block, by using values about reference pixels included in a first reference block and a second reference block, without using a stored value about a pixel located outside boundaries of the first reference block and the second reference block; and obtaining a prediction block of the current block by performing block-unit motion compensation and pixel group unit motion compensation on the current block by using a gradient value in the horizontal direction or the vertical direction of a first corresponding reference pixel in the first reference block which corresponds to a current pixel included in a current pixel group in the current block, a gradient value in the horizontal direction or the vertical direction of a second corresponding reference pixel in the second reference block which corresponds to the current pixel, a pixel value of the first corresponding reference pixel, a pixel value of the second corresponding reference pixel, and a displacement vector per unit time of the current pixel in the horizontal direction or the vertical direction. In this regard, the current pixel group may include at least one pixel.
A method for visual media processing, including performing a conversion between a current chroma chroma block of visual media data and a bitstream representation of the current chroma chroma block, wherein, during the conversion, a chroma residual of the current chroma chroma block is scaled based on a scaling coefficient, wherein the scaling coefficient is derived at least based on luma samples located in predefined positions.
An apparatus for point cloud decoding includes processing circuitry. The processing circuitry receives, from a coded bitstream for a point cloud, encoded occupancy codes for nodes in an octree structure for the point cloud. The nodes in the octree structure correspond to three dimensional (3D) partitions of a space of the point cloud. Sizes of the nodes are associated with sizes of the corresponding 3D partitions. Further, the processing circuitry decodes, from the encoded occupancy codes, occupancy codes for the nodes. At least a first occupancy code for a child node of a first node is decoded without waiting for a decoding of a second occupancy code for a second node having a same node size as the first node. Then, the processing circuitry reconstructs the octree structure based on the decoded occupancy codes for the nodes, and reconstructs the point cloud based on the octree structure.
A video to be encoded to a plurality of different target encodings for bandwidth adaptive serving is received. The video is encoded into a plurality of different candidate encodings using different candidate encoding parameters. A quality metric is determined for each of the plurality of different candidate encodings. One or more different target quality metrics are selected for a first portion of the different target encodings based at least in part on one or more specified constraints for one or more target devices. One or more different target quality metrics are selected for a second portion of the different target encodings based at least in part on the determined quality metrics of the different candidate encodings. Based at least in part on the selected different target quality metrics for the first portion and the second portion, the plurality of different target encodings of the video is generated.
A video encoding device for encoding video using inter prediction includes encoding control means 11 for controlling an inter-PU partition type of a CU to be encoded, based on a minimum inter-PU size (PA) and a CU size (PB) of the CU to be encoded. A video decoding device includes decoding control means for controlling an inter-PU partition of a CU to be decoded, based on the minimum inter-PU size (PA) and the size (PB) of the CU to be decoded.
Systems and methods are described for video coding using affine motion models with adaptive precision. In an example, a block of video is encoded in a bitstream using an affine motion model, where the affine motion model is characterized by at least two motion vectors. A precision is selected for each of the motion vectors, and the selected precisions are signaled in the bitstream. In some embodiments, the precisions are signaled by including in the bitstream information that identifies one of a plurality of elements in a selected predetermined precision set. The identified element indicates the precision of each of the motion vectors that characterize the affine motion model. In some embodiments, the precision set to be used is signaled expressly in the bitstream; in other embodiments, the precision set may be inferred, e.g., from the block size, block shape or temporal layer.
A method, computer program, and computer system is provided for video encoding and decoding. Video data including one or more frames is received. One or more quantization parameters associated with the received video data are determined for frame generation or enhancement of a target frame from among the one or more frames. The video data is decoded based on the determined quantization parameters.
The present disclosure provides a method and an apparatus for determining an intra-frame prediction mode of a current video block. The method includes determining, in an image area including a to-be-coded current video block, reference modes of the current video block based on a plurality of intra-frame prediction modes of a plurality of second video blocks, the image area being in an area defined by an adjacent coding unit (CU) and a father CU corresponding to the current video block in a video frame or slice including the current video block; determining an alternative prediction mode set from preset intra-frame prediction modes, the alternative prediction mode set comprising a plurality of alternative prediction modes, including the reference modes; and determining, in the alternative prediction mode set, a prediction mode having optimal intra-frame prediction coding performance on the current video block as an intra-frame prediction mode of the current video block.
A display apparatus includes a first pixel and a second pixel. Each of the first and second pixels includes a first sub-pixel which emits light having a first color, a second sub-pixel which emits light having a second color different from the first color, a third sub-pixel which emits light having a third color different from the first and second colors, and an infrared sub-pixel which emits infrared light. The infrared light emitted from the infrared sub-pixel in the first pixel and the infrared light emitted from the infrared sub-pixel in the second pixel have different intensities from each other.
Dual and multi-modulator projector display systems and techniques are disclosed. In one embodiment, a projector display system comprises a light source; a controller, a first modulator, receiving light from the light source and rendering a halftone image of said the input image; a blurring optical system that blurs said halftone image with a Point Spread Function (PSF); and a second modulator receiving the blurred halftone image and rendering a pulse width modulated image which may be projected to form the desired screen image. Systems and techniques for forming a binary halftone image from input image, correcting for misalignment between the first and second modulators and calibrating the projector system—e.g. over time—for continuous image improvement are also disclosed.
Apparatuses, systems, and techniques to receive, at one or more processor associated with an image signal processing (ISP) pipeline, a compressed image generated by an image sensor, wherein the compressed image is captured at a first bit-depth associated with the image sensor and is compressed to a second bit-depth that is lower than the first bit-depth, and wherein the ISP is associated with a third bit-depth that is lower than the first bit-depth and higher than the second bit-depth; and decompress the compressed image according to a power curve to generate a partially decompressed image having the third bit-depth, wherein a plurality of regions of the partially decompressed image are decompressed at separate decompression amounts based on a corresponding pixel value of each region of the plurality of regions.
A computer-implemented online conferencing transactional platform system comprising an interaction module, a video-conferencing module, and a storage device may allow multiple participants in a video-conference to access, co-browse, collaboratively edit, and sign a transactional document. An interaction module fetches an image of a transactional document and a field identifier for an interactive transactional document element to be filled out from a remotely-connected secure signature API, and displays the image of the document, along with the interactive transactional document element on a webpage interface to a moderator and a signer end user in a video-conference. The interaction module receives a filled-out transactional document in an I-frame from the secure signature API, allowing the signer end user to sign the transactional document using a secure embedded signature process.
A distributed, parallel, image capture and processing architecture provides significant advantages over prior art systems. A very large array of computational circuits—in some embodiments, matching the size of the pixel array—is distributed around, within, or beneath the pixel array of an image sensor. Each computational circuit is dedicated to, and in some embodiments is physically proximal to, one, two, or more associated pixels. Each computational circuit is operative to perform computations on one, two, or more pixel values generated by its associated pixels. The computational circuits all perform the same operation(s), in parallel. In this manner, a very large number of pixel-level operations are performed in parallel, physically and electrically near the pixels. This obviates the need to transfer very large amounts of pixel data from a pixel array to a CPU/memory, for at least many pixel-level image processing operations, thus alleviating the significant high-speed performance constraints placed on modern image sensors.
A system to process images includes a light source configured to emit a first illumination pattern onto one or more first portions of a scene. The system also includes an image sensor configured to capture light reflected from the scene in response to the emitted first illumination pattern. The system also includes an optimizer configured to perform raytracing of the light reflected from the scene. The system further includes a processor operatively coupled to the optimizer. The processor is configured to determine a parameter of a surface of the scene based on the raytracing, cause the light source to emit a second illumination pattern onto one or more second portions of the scene based at least in part on the parameter of the surface, and refine the parameter of the surface of the scene based on additional raytracing performed on reflected light from the second illumination pattern.
An electronic device includes a first camera, a second camera, a display, a memory, and a processor. The processor collects a first image obtained by the first camera with respect to an external object and a second image obtained by the second camera with respect to the external object, generates a third image with respect to the external object using a first area of the first image and a second area of the second image, which corresponds to the first area, identifies an input associated with the third image displayed through the display, and displays an image generated using at least one of the first image, the second image, or depth information in response to the input. The generating operation of the third image includes generating the depth information with respect to the third image.
An image capturing apparatus that allows a photographer to easily recognize whether or not a blurring generated in an image at the time of image capturing is due to a spherical aberration variable mechanism is provided. The image capturing apparatus, to/from which a lens barrel can be attached/detached, comprising a mounting unit configured to mount the lens barrel, a processor; and a memory storing a program which, when executed by the processor, causes the image capturing apparatus to obtain an adjustment amount of spherical aberration from the lens barrel mounted on the mounting unit, and control a display device to display information about the adjustment amount together with an image obtained through the lens barrel.
Devices, systems, and methods are provided for enhanced pointing angle validation. A device may generate a collimated beam using a light source emitting a light beam through a fiducial target in an optical instrument. The device may capture an image fiducial target using a camera, wherein the camera is mounted on a mounting datum that is orthogonal to the collimated beam. The device may determine a pointing angle associated with camera based on the captured image of the fiducial target. The device may compare a location of the fiducial target in the image to an optical center of the camera. The device may determine a validation status of camera based on the location of the fiducial target in the image.
A signal processing method includes: obtaining a first frame synchronization signal including a plurality of first pulses, a period between a trailing edge of a first pulse and a leading edge of a next first pulse being a first time period, which corresponding to a first integer number of pulses of a first pixel clock signal; generating a synchronization calibration signal including a plurality of second pulses, a trigger edge of each second pulse being at a same time as the trailing edge of the first pulse; and generating a second frame synchronization signal including a plurality of third pulses, a period between the trigger edge of each second pulse and a leading edge of a third pulse closest to the second pulse after the second pulse being a second time period, which corresponding to a first integer number of pulses of the second pixel clock signal.
A printing apparatus corrects image data for printing on the basis of a color measurement result obtained by a sensor, prints a set of first color tone correction patches on a first sheet with a predetermined size and prints a set of a second color tone correction patches on a second sheet with the predetermined size. When the first sheet and the second sheet are printed one after another, a color measurement result of the tone correction patches printed on the first sheet and the second sheet is used in correcting the image data for printing. When the first sheet and the second sheet with the predetermined size are not printed one after another, a color measurement result of the tone correction patches printed on the first sheet and the second sheet for correcting the image data for printing is not used in correcting the image data for printing.
A media distribution system provides controlled distribution of media owned by various parties hosted on a local media access device. A media image communication system provides a secure method of communications between the media host and the client receiving and viewing the media. The media image communication system converts a typical text message into an image file format to prevent unauthorized access to the message, and to prevent any changes and/or manipulation of the message content.
A storage medium storing a program causes a computer of an information processing apparatus to execute a method including obtaining information about a predetermined program stored in a communication apparatus, and controlling issuance of a predetermined notification about update of the predetermined program based on the obtained information about the predetermined program. The predetermined notification is controlled to be issued in a case where a version of the predetermined program is not a latest version, and the predetermined notification is controlled so as not to be issued in a case where the version of the predetermined program is the latest version.
An image reading apparatus including: a conveyance path; a light transmitting member; a first reading unit; a second reading unit; a first roller disposed opposite to the first reading unit; a second roller disposed opposite to the second reading unit; a holding member configured to hold the first roller and the second roller; a plurality of first abutment portions provided on both end portion sides in a width direction of the first roller and forming a gap between the light transmitting member and the first roller by abutting on the light transmitting member; a plurality of second abutment portions provided on both end portion sides in the width direction of the second roller and forming a gap between the light transmitting member and the second roller by abutting on the light transmitting member; and an urging member urges the holding member against the light transmitting member.
A method and system for managing financial risk through the use of postpaid processing during use of wireless services is presented within the scope of the following invention. The present invention uses credit card authorization to pre-reserve credit card funds for wireless services in excess of planned usage. Authorizations eliminate the credit risk associated with overages and payment timing, and also maintain a customer experience identical to postpaid processing. The authorizations are invisible to the customer and no charge is brought to a customer's credit card until the monthly bill is settled. Separating the authorization and settlement stages of retail wireless payment processing allows the branded wireless provider to avoid inherent areas of credit risk during the tenure of a customer's wireless service, while maintaining a familiar customer experience.
A system and method for managing virtual queues. A cloud-based queue service manages a plurality of queues hosted by one or more entities. The queue service is in constant communication with the entities providing queue management, queue analysis, and queue recommendations. The queue service is likewise in direct communication with queued persons. Sending periodic updates while also motivating and incentivizing punctuality and minimizing wait times based on predictive analysis. The predictive analysis uses “Big Data” and other available data resources, for which the predictions assist in the balancing of persons across multiple queues for the same event or multiple persons across a sequence of queues for sequential events.
A system and method for authenticating a caller may include receiving an incoming call from the caller, determining a gender of the caller, and selecting, based on the determined gender, to search for the caller in one of: a watchlist of untrustworthy female callers, and a watchlist of untrustworthy male callers.
An intercom device and a method of recording an audio stream at the intercom device. The intercom device includes a user interface, a memory, and an electronic processor. The electronic processor is communicatively coupled to the user interface and the memory and is configured to receive a user-selectable entry from an input mechanism of the user interface. The electronic processor sets an away mode of the intercom device in response to the user-selectable entry. An audio stream is received by the intercom device from another intercom device. Are cord signal indicative of a request to record the audio stream is also received from the another intercom device. The intercom device records the audio stream in the memory in response to receiving the record signal when operating in the away mode.
Systems, apparatuses, and methods are described for wireless communications. A base station and wireless device may communicate capability information associated with a wireless device. The capability information may include information indicating support for an Ethernet type packet data unit session or header parameter compression. An Ethernet type packet data unit session may be instantiated based on the capability information.
A computer system receives user data from a computing device of a user and determines that the user will utilize a transport service to arrive at a destination location at a specified time. The computer system automatically triggers, without user input, a service request for the user by monitoring transport provider availability within a proximity of a current location of the user prior to the specified time, and determines a service request time for the user based on the transport provider availability. The computer system then generates the service request for the scheduled user event based on the service request time.
A message transmitting and receiving method according to one aspect is performed by a communication apparatus, the communication apparatus including a middleware unit configured to manage a message published by a publisher in a publish/subscribe system in which a message is exchanged between the publisher and a subscriber via a broker, and a storage unit configured to store a library including functions configured to provide the broker, and includes the steps of performing, by the middleware unit, subscribing on the broker by setting a callback function, and upon receipt of a first message published by a device, passing, by the broker, the first message to the middleware unit by calling the callback function.
Mechanisms for subscription and notification may include dynamically changing notification behavior based on notification target status or support access to notification history information.
A shared radar and communications system. The system includes a transmitter and a receiver. The transmitter modules signals based on a first spreading code defined at least in part by a first plurality of information bits. The first plurality of information bits encodes selected information. The transmitter transmits the modulated signals. The receiver receives a first signal and a second signal. The first signal includes the transmitted signals transmitted by the transmitter and reflected from objects in an environment. The receiver processes the first signal to detect objects in the environment. The second signal is transmitted from another system. The second signal carries a second plurality of information bits. The receiver processes the second signal to determine the second plurality of information bits. The second plurality of information bits are encoded with information selected by the other system.
A multitenant infrastructure server (MTIS) is configured to provide an environment to execute a computer routine of an arbitrary application. The MTIS receives a request from a webtask server to execute the computer routine in a webtask container. The computer routine is executed in the webtask container at the MTIS. Upon successful execution of the computer routine, a result set is returned to the webtask server. If the execution of the computer routine is unsuccessful, an error notification is returned to the webtask server. The resources consumed during the execution of the computer routine are determined. The webtask container is destroyed to prevent persistent storage of the computer routine on the MTIS.
A method for execution by a dispersed storage network (DSN) managing unit includes receiving access information from a plurality of distributed storage and task (DST) processing units via a network. Cache memory utilization data is generated based on the access information. Configuration instructions are generated for transmission via the network to the plurality of DST processing units based on the cache memory utilization data.
Disclosed embodiments are directed at systems, methods, and architecture for providing auto-documentation to APIs. The auto documentation plugin is architecturally placed between an API and a client thereof and parses API requests and responses in order to generate auto-documentation. In some embodiments, the auto-documentation plugin is used to update preexisting documentation after updates. In some embodiments, the auto-documentation plugin accesses an on-line documentation repository. In some embodiments, the auto-documentation plugin makes use of a machine learning model to determine how and which portions of an existing documentation file to update.
A method includes receiving from a transmitting data interface, a data stream mapping of a data input into data shards for transmission in a data stream over a data stream communication channel. Data capacity for a data producing software application from a plurality of data producing software applications is adjusted by increasing or decreasing a number of data shards in the data stream assigned to the data producing software application. An updated data stream mapping of the data input into the plurality of data shards is generated by updating a start hash key and an end hash key in a range for each of the data shards assigned to the data producing software application. The updated data stream mapping is sent to the transmitting data interface for adjusting the data capacity in the data stream transmitted over the data stream communication channel of the data producing software application.
Apparatus and methods for managing content delivery in a packetized network. In one embodiment, the network provide content to a plurality of clients via a plurality of nodes and origin points, and resources are discreetly represented (e.g., with IP addresses, such as those afforded under the IPv6 protocol) to allows for direct advertisement of resources. Exemplary solutions described herein further advantageously leverage extant architectures and protocols (such as BGP), and make use of a common control plane, which can be utilized for example by different content delivery network (CDN) operators and different delivery components to advertise resources. Internally within a given CDN, increased granularity of resource addressing and advertisement may provide benefits including: (i) resource affinity; (ii) resource-level balancing; (iii) dynamic resource scoping; and (iv) “zero-touch” provisioning and resource relocation.
An online meeting system begins the process of connecting a user to an online meeting when the user enters a prejoin dialog for choosing meeting settings, rather than waiting until the user chooses to actually join the meeting after entering settings. Starting the meeting connection process at this time allows a shorter perceived connection time to the meeting and thus reduces user frustration with the meeting system.
Extending access to a data model in a data analytics computer data processing system includes loading into a programmatically isolated process address space of a computer, an instance of an extension framework computer program and executing in the framework, computer program logic configured to establish a communicative channel between the isolated process address space and a data analytics computer data processing system executing in a separate process address space. Thereafter, within the framework a directive may be received to access a data model managed in the data analytics computer data processing system. In response, a function may be selected in respect to an API to the data analytics computer data processing system corresponding to the received directive. Finally, the selected API function may be invoked over the communicative channel and a result derived from the data model may be received in the framework from over the communicative channel in response to the selected API function.
Embodiments of the disclosure relate to verifying a watermark of an artificial intelligence (AI) model for a data processing (DP) accelerator. In one embodiment, a system receives an inference request from an application. The system extracts the watermark from an AI model having the watermark. The system verifies the extracted watermark based on a policy. The system applies the AI model having a watermark to a set of inference inputs to generate inference results. The system sends a verification proof and the inference results to the application.
A method for DoS attacks at an NF includes maintaining, at a first NF, an NF subscription database containing rules that specify maximum numbers of allowed subscriptions and corresponding rule criteria. The method further includes receiving, at the first NF and from a second NF, a subscription request for establishing a subscription. The method further includes determining, by the first NF, that the subscription request matches criteria for at least one rule in the NF subscription database and incrementing, by the first NF, at least one count of a number of subscriptions for the at least one rule. The method further includes determining, by the first NF, that the at least one count of the number of subscriptions exceeds a maximum number of allowed subscriptions for the at least one rule. The method further includes, in response to determining that the at least one count of the number of subscriptions exceeds the maximum number of allowed subscriptions for the at least one rule, preventing establishment of the subscription.
Facilitating web page spectroscopy in a communications network is provided herein. A system can comprise a processor and a memory that stores executable instructions that, when executed by the processor, facilitate performance of operations. The operations can comprise receiving first data that describes a first communication packet flow and second data that describes a second communication packet flow. The operations can also comprise training a model based on the first data and the second data, as a result of which the model is trained to detect respective behaviors represented by the first data and the second. Further, the operations can comprise extracting a common parameter from third data that describes a third communication packet flow and fourth data that describes a fourth communication packet flow based on the model.
A technological approach can be employed to protect data. Datasets from distinct computing environments of an organization can be scanned to identify data elements subject to protection, such as sensitive data. The identified elements can be automatically protected such as by masking, encryption, or tokenization. Data lineage including relationships amongst data and linkages between computing environments can be determined along with data access patterns to facilitate understanding of data. Further, personas and exceptions can be determined and employed as bases for access recommendations.
A method and processing system for managing user access to one or more resources is disclosed. A central service may receive an access change request message regarding a user. The access change request message may include a user identifier, a user role, and an access action for the user. Example access actions may include adding or removing user access with respect to a resource. The central service may determine which resources are associated with the user role and transmit one or more event messages to the resources to implement the access actions. The resources may send acknowledgement messages to the central service to confirm that the access actions have been completed.
An author of a malicious websites campaign (scam or phishing) likely uses a legitimate third-party service to facilitate the malicious campaign. An example includes legitimate CAPTCHA (Completely Automated Public Turing Test to Tell Computers and Humans Apart) services to conceal the malicious campaign from automated security scanners. A security service/platform can employ a detection pipeline that leverages use of CAPTCHA keys across websites of a malicious websites campaign. Websites that use CAPTCHA keys found in known malicious websites can at least be identified as suspect and communicated to firewalls.
Apparatuses, systems, methods, and computer program products are presented for aggregation platform permissions. A hardware computing device is configured to aggregate a user's data from a first plurality of third-party service providers over a data network for the user to access through a second plurality of third-party service providers, the hardware computing device comprising a trusted intermediary between the first plurality of third-party service providers and the second plurality of third-party service providers. A permissions module is configured to monitor which of a second plurality of third-party service providers have access to which portions of data from which of a first plurality of third-party service providers. A graphical user interface is configured to display one or more user interface elements allowing a user to grant and/or revoke access to portions of data from a first plurality of third-party service providers individually to a second plurality of third-party service providers.
The present disclosure relates to generating a passphrase for an encrypted volume by at least cryptographically combing the first cryptographic key and the shared secret. Where the shared secret is split into a plurality of shares and a first number of the plurality of shares is greater than a second number of the plurality of shares and the second number of the plurality of shares is required to reconstruct the shared secret.
A method of operating a second network access node comprises configuring the second network access node to act as a secondary network access node for a dual connectivity mode for a terminal device in which a first network access node acts as a master network access node. The method further comprises establishing, while acting as a secondary network access node for the dual connectivity mode, that the second network access node should switch to acting as a master network access node, deriving a new master network access node security key for use by the second network access node when switched to acting as a master network access node for the dual connectivity mode, and configuring the second network access node to act a master network access node for the dual connectivity mode using the new master network access node security key.
An example process includes breaking content into multiple fragments; and transmitting at least two of the multiple fragments over different physical channels in order to isolate the at least two fragments during transmission. The example process may include generating session keys; encrypting at least some of the fragments using different session keys; and associating, with each fragment, a session key used to encrypt a different fragment to produce fragment/session key pairs.
Systems, methods, and computer-readable media for achieving privacy for both data and an algorithm that operates on the data. A system can involve receiving an algorithm from an algorithm provider and receiving data from a data provider, dividing the algorithm into a first algorithm subset and a second algorithm subset and dividing the data into a first data subset and a second data subset, sending the first algorithm subset and the first data subset to the algorithm provider and sending the second algorithm subset and the second data subset to the data provider, receiving a first partial result from the algorithm provider based on the first algorithm subset and first data subset and receiving a second partial result from the data provider based on the second algorithm subset and the second data subset, and determining a combined result based on the first partial result and the second partial result.
A data transcoding device includes a memory device for storing clear data containing private information and a processor configured as a data transcoder. The processor is configured to create packets of the clear data, prepare the packets for transcoding the clear data into an indecipherable multimedia data file appearing as noise, by determining properties of the indecipherable multimedia file based on parameters of the clear data. The processor is configured to generate the indecipherable multimedia file by transcoding the clear data based on the determined properties.
A first correspondence table in a terminal device stores a correspondence between an identifier of a process running on the terminal device and an identifier of a data stream created by the process, a second correspondence table stores a second correspondence between an identifier of an application and an identifier of a process created by the application. The terminal device receives an identifier, sent by a network security device, of a first data stream. The terminal device can find, in the first correspondence table, a first record storing the identifier of the first data stream to obtain an identifier of a process. The terminal device can find in the second correspondence table, a second record storing the identifier of the process in the first record to obtain an identifier of an application from the second record. The identifier of the application is then sent to the network security device.
A method for providing fixed-mobile convergence capabilities and/or device discovery capabilities within a telecommunications network includes: a specific client device or user equipment is connected to or connects to the home gateway device in order to connect to the telecommunications network; the home gateway device uses the connection to the specific client device or user equipment to initiate an exchange of messages according to an authentication or key exchange protocol, wherein the authentication or key exchange protocol is an extensible authentication protocol (EAP) or an enhanced authentication and key agreement (AKA), wherein identity information of the specific client device or user equipment is transmitted to the home gateway device as part of at least one message of the authentication or key exchange protocol; and the authentication or key exchange protocol is prematurely terminated.
A digital data communications network that supports efficient, scalable routing of data and use of network resources by combining a recursive division of the network into hierarchical sub-networks with repeating parameterized general purpose link communication protocols and an addressing methodology that reflects the physical structure of the underlying network hardware. The sub-division of the network enhances security by reducing the amount of the network visible to an attack and by insulating the network hardware itself from attack. The fixed bandwidth range at each sub-network level allows quality of service to be assured and controlled. The routing of data is aided by a topological addressing scheme that allows data packets to be forwarded towards their destination based on only local knowledge of the network structure, with automatic support for mobility and multicasting. The repeating structures in the network greatly simplify network management and reduce the effort to engineer new network capabilities.
In an example information search method, if a first terminal performs a first search based on a first keyword, and does not obtain a result, the first terminal generates a request for performing a second search, and sends, to a network device, the request for performing the second search. The network device sends a second request to a second terminal. The second terminal performs the second search based on the first keyword, obtains a second search result, and sends the second search result to the first terminal. Through this technique, it can be effectively ensured that a user finds a search result corresponding to the first keyword, and that user privacy is also ensured.
A communication system for providing a positive communication to an inmate is provided. The communication system includes memory that stores data, and an application server that analyzes data to determine topics that are important to the inmate. The application server includes a topic rating system to rate the topics based on importance to the inmate and based on an emotional tone used by the inmate during a communication. When the application server receives a question from the inmate, the application server searches the data and the Internet and responds based on the answer and the data stored in memory. The application server also provides support to the inmate by suggesting counseling services according to the needs of the inmate. Further, the communication system provides a positive influence to the inmate to encourage educational progression.
Snapshots of storage volumes and containers of a bundled application may be created and used to rollback or clone the bundled application. Clone snapshots of storage volumes may be gradually populated with data from prior snapshots to reduce loading on a primary snapshot. Components of cloned applications may communicate with one another using addresses of these components in the parent application. Containers of the bundled application may communicate with an open virtual switch (OVS) that implements flows to implement translation between clone and parent addresses. Containers may be modified to execute operation-specific entrypoint functions prior to invoking an entrypoint of an application instance loaded in the containers.
An apparatus, method, and computer program product are provided to pair request data objects with network response assets and their related systems to allow for the efficient movement of network resources and other resources in high-volume network environments that feature distributed network response assets. In some example implementations, location information such as triangulated position information associated with one or more mobile devices, along with other system characteristics is used to identify optimized pairs of request objects and response assets, such that request parameters, such as position and time constraints, can be efficiently met.
A communication method in a communication network comprising a plurality of nodes, at least one node comprising a plurality of traffic queues for serving data traffic at different priorities, each traffic queue being associated with a respective queue backoff value computed from respective queue contention parameters having first and second values in, respectively, a first and a second contention modes, obtaining quality of service requirements of data stored in a traffic queue of the node; checking whether the quality of service requirements can be fulfilled when accessing the communication channel using the second contention mode; if the requirements cannot be fulfilled as the result of the checking, disabling access to resource units provided by the other node within one or more transmission opportunities granted to the other node on the communication channel; and transmitting data stored in the traffic queue using the first contention mode.
Techniques are described herein that are capable of load-balancing establishment of connections among groups of connector servers in a public computer network by performing operations that include receiving a connection request from a connector client in a private computer network, requesting establishment of a connection between the connector client and one of the connector servers in the public computer network. A number of connections between the private computer network and each group is determined. An identified group is selected from the groups based at least in part on a number of connections between the private computer network and the identified group being less than or equal to a number of connections between the private computer network and each other group. The connection request is provided toward the identified group, which enables establishment of the connection between the connector client and a connector server in the identified group.
A method and system for remote testing of a plurality of devices is disclosed. The method may include receiving a request from a client system to perform testing on a set of remote devices. The local system and the client system are connected via a first network connection and the plurality of remote devices are connected to the local system via a second network connection. The method may further include receiving an input from the client system with reference to a test-suite to perform a testing action on the set of remote devices, generating a test command corresponding to the input, and transmitting the test command to each of the set of remote devices. The method may further include receiving feedback from each of the set of remote devices and transmitting the feedback to the client system.
A device may receive a hash table that includes lists of protocol detectors, wherein the hash table is generated based on historical process data identifying potential process variables associated with an industrial control system. The device may receive a packet identifying potential process variables associated with the industrial control system, and may extract, from the packet, packet data identifying a source address, a destination address, a port, and a transport protocol. The device may compare the packet data with data in the hash table to identify a set of lists of protocol detectors, and may process the packet data, with the set of lists of protocol detectors, to determine a matching protocol, no matching protocol, or a potential matching protocol for the packet. The device may perform one or more actions based on determining the matching protocol, no matching protocol, or the potential matching protocol for the packet.
An apparatus and method for a power-efficient framework to maintain data synchronization of a mobile personal computer (MPC) are described. In one embodiment, the method includes the detection of a data synchronization wakeup event while the MPC is operating according to a sleep state. Subsequent to wakeup event, at least one system resource is disabled to provide a minimum number of system resources required to re-establish a network connection. In one embodiment, user data from a network server is synchronized on the MPC without user intervention; the mobile platform system resumes operation according to the sleep state. In one embodiment, a wakeup alarm is programmed according to a user history profile regarding received e-mails. In a further embodiment, data synchronizing involves disabling a display, and throttling the system processor to operate at a reduced frequency. Other embodiments are described and claimed.
Some embodiments provide a novel method of performing health monitoring for resources associated with a global server load balancing (GSLB) system. This system is implemented by several domain name system (DNS) servers that perform DNS services for resources located at several geographically separate sites. The method identifies several different groupings of the resources. It then assigns the health monitoring of the different resource groups to different DNS servers. The method then configures each particular DNS server (1) to send health monitoring messages to the particular group of resources assigned to the particular DNS server, (2) to generate data by analyzing responses to the sent health monitoring messages, and (3) to distribute the generated data to the other DNS servers. The method in some embodiments is performed by a set of one or more controllers.
Provided herein are systems and methods for providing insights or metrics in connection with provisioning applications and/or desktop sessions to end-users. Network devices (e.g., appliances, intermediary devices, gateways, proxy devices or middle-boxes) can gather insights such as network-level statistics. Additional insights (e.g., metadata and metrics) associated with virtual applications and virtual desktops can be gathered to provide administrators with comprehensive end-to-end real-time and/or historical reports of performance and end-user experience (UX) insights. Insights relating to an application or desktop session can be used to determine and/or improve the overall health of the infrastructure of the session, Citrix Virtual Apps and Desktops, the applications (e.g., remote desktop application) being delivered using the infrastructure, and/or the corresponding user experience.
Disclosed herein are a method and an NWDAF for collecting network data, including: transmitting a network exposure subscription request message including an event reporting granularity parameter to the NF; receiving a data set determined by the NF based on the event reporting granularity parameter from the NF through an event exposure notification message in at least one reporting cycle; and performing network data analysis using received data set.
Disclosed are various examples for determining an IT topology for an enterprise IT organization based on operational goals of the enterprise organization. Visual models that are designed to facilitate responses associated with the current IT topology and operational goals of an enterprise IT organization are displayed to an entity of the enterprise. The entity can provide enterprise profile data to an IT solutions system by interacting with user interfaces. The IT solutions system can generate the IT topology prescription and roadmap for implementing the IT topology prescription based on the operational goals identified in the responses. Statements of work can be dynamically generated that outline details and terms of implementing the IT topology prescription for the enterprise IT organization.
For computing nodes having a first programmable and comprising a first node and a second node, an update of the first node from the first programmable to a second programmable across an external network is initiated. In response to the update being interrupted, the first programmable is automatically reinstated on the first node by retrieving the first programmable from the second node across an internal network. The second node is automatically updated to the second programmable by retrieving the second programmable from the first node across the internal network in response to completion of the update of the first node to the second programmable.
A network equipment operation adjustment system is provided herein that is configured to improve the performance of a telecommunications network by generating a network score representing the performance of a telecommunications network within a geographic region, determining one or more network equipment parameter adjustments using the network score, and causing the adjustments to occur. The network equipment operation adjustment system can further display the network score and other network scores for other geographic regions in an interactive user interface to efficiently allow a network operator to view the network performance of a telecommunications network by geographic region and/or to view how the network performance in each of the geographic regions is changing over time.
Systems and methods are provided herein for a mechanism for faster convergence of network traffic after a network device's link is interrupted by leveraging the withdrawal of the ethernet virtual private network (EVPN) auto discovery (AD) route. This may be accomplished by a first device checking an ethernet segment identifier (ESI) status flag before generating an entry in the first device's forwarding table, where the entry is based on an IP route for a host received by a second network device. In response to receiving a withdrawal of an EVPN AD route from the second device, the first device may update the ESI status flag to indicate that the host on the ethernet segment (ES) is reachable only via the third device and update the entry that was based on the IP route for the host received by the second network device to prevent sending traffic to the host via the second device.
In one embodiment, a label stability analyzer service receives classification data indicative of device type labels assigned to endpoints in a network by a device classification service. The label stability analyzer service counts device type label changes made by the device classification service to the endpoints. The label stability analyzer service computes variability metrics for the device type labels, wherein the variability metric for a device type label is based on a count of the device type label changes associated with that label. The label stability analyzer service determines, based on one of the variability metrics for a particular one of the device type labels exceeding a threshold value, a configuration change for the device classification service that adjusts how the device classification service applies the particular label to endpoints. The label stability analyzer service provides the configuration change to the device classification service.
To improve the reliability of nodes that are utilized by a cloud computing provider, information about the entire lifecycle of nodes can be collected and used to predict when nodes are likely to experience failures based at least in part on early lifecycle errors. In one aspect, a plurality of failure issues experienced by a plurality of production nodes in a cloud computing system during a pre-production phase can be identified. A subset of the plurality of failure issues can be selected based at least in part on correlation with service outages for the plurality of production nodes during a production phase. A comparison can be performed between the subset of the plurality of failure issues and a set of failure issues experienced by a pre-production node during the pre-production phase. A risk score for the pre-production node can be calculated based at least in part on the comparison.
Examples described herein include systems and methods for multi-tenant event sourcing and audit logging in a cloud-based computing infrastructure. In an example method, an event package can be received from a first microservice of an application. The event can describe any action performed within the computing infrastructure and can include various types of information. For example, it can include an event type, event ID, object type, object ID, and parent event ID. The event package can be associated with a tenant and only provided to tenant-approved recipients. The recipient can use the event package to automatically carry out steps to recreate and configure an object, or to determine the source of an event or failure within the system.
Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for a base station to transmit a feedback configuration to a user equipment (UE) indicating a subcarrier spacing and a length of a cyclic prefix (CP) that the UE is to use to transmit feedback associated with a second frequency band (e.g., a high frequency band) using a first frequency band (e.g., a low frequency band). The UE may monitor the second frequency band for downlink messages transmitted by the base station and transmit a feedback message accordingly using the indicated subcarrier spacing and applying a CP having the indicated length.
According to various embodiments, a receiving station (STA) may receive a physical protocol data unit (PPDU). The PPDU may include a legacy signal field, a repeated legacy signal field, a first signal field, and a second signal field. The receiving STA may determine a type of the PPDU and a format of the PPDU, based on the legacy signal field, the repeated legacy signal field, the first signal field, and the second signal field.
Systems, devices, and methods of the present invention facilitate secure communication by altering the set of symbol waveforms that may be in use in particular symbol times defined herein as Symbol Waveform Hopping. SWH may be enabled by selecting two or more modulation formats that have sufficiently comparable communication performance (e.g., occupied bandwidth and signal power efficiency), but characterized by symbol waveform alphabet that include different symbol waveform, so that the overall transmission/communication performance of data stream in a signal transmission channel of the system is not significantly affected by switching between modulation formats. Some or all of the symbol waveforms in each alphabet may not be present in other alphabets.
The present disclosure is directed to a mechanism for optimized application performance in SD-WAN, and includes the steps of receiving initial traffic packets at a first site for transmission to a second site; determining whether a direct tunnel is established between the first site and the second site based on a state of the second site, the state comprising an active state indicating that a direct tunnel is established between the first and second sites or an inactive state indicating that the direct tunnel is not established between the first and second sites; and in response to determining that the direct tunnel is not established, determining that the initial packets satisfy a configured trigger; forwarding the initial packets to the second site via a backup path; establishing the direct tunnel between the first and second sites; and forwarding subsequent traffic packets to the second site via the established direct tunnel.
Embodiments include a device comprising an interface module for interfacing with proprietary legacy systems. The interface module comprises a data interface for interfacing with a processing component of the legacy system, where the processing component uses a proprietary protocol for processing data of the legacy system. The interface module includes a protocol module that comprises a protocol corresponding to the proprietary protocol of the legacy system, and the interface module uses the protocol to exchange data with the processing component. The interface module includes a communication device that communicates with a remote system via a wireless channel. The interface module controls communications that include passing commands from the remote system to the legacy system, and passing event data of the legacy system to the remote system.
Methods and systems are provided for providing secure Ethernet transmissions. In some aspects, an autonomous vehicle system is provided and can include a first system-on-chip being configured to provide data to a second system-on-chip via an Ethernet harness, a first switch being configured to: receive the data from the first system-on-chip, and provide the data to a first transceiver for transmission to the second system-on-chip, the first switch being configured to provide first transmission data to the first transceiver and to prohibit receipt of retrieval data from the second system-on-chip, and the first transceiver configured to communicate with the second system-on-chip via the Ethernet harness.
Messaging between an ultra-tag and external microcontroller. In an embodiment, a transmitting device is communicatively connected to a receiving device by a clear-to-communicate line and request line. When data to be transmitted has normal priority, the transmitting device detects whether the clear-to-communicate line indicates that the receiving device is available, indicates a request to transmit on the request line if so, waits until the receiving device is available and then indicates a request to transmit on the request line if not, after indicating a request to transmit, transmits the data when the clear-to-communicate line indicates that the receiving device is unavailable, and, after transmitting the data, releases the indication of the request to transmit on the request line. On the other hand, when the data has high priority, the transmitting device indicates a request to transmit on the request line, regardless of an indication on the clear-to-communicate line.
In one or more embodiments, a system includes a plurality of network devices comprising a plurality of ports, a power bus connecting the network devices, wherein power is shared between the network devices over the power bus, and a controller for identifying available power and allocating power to the ports. The ports include a plurality of PSE (Power Sourcing Equipment) PoE (Power over Ethernet) ports each operable to transmit power to a device connected to one of the PSE PoE ports, a plurality of PD (Powered Device) PoE ports each operable to receive power from a device connected to one of the PD PoE ports, and a plurality of bi-directional PoE ports each configurable to operate as a PSE PoE port to transmit power to a device connected to one of the bi-directional PoE ports or as a PD PoE port to receive power from the connected device.
One embodiment is directed a powered device that comprises a connector to connect a multi-conductor cable to the powered device and device circuits partitioned into a first partition and a second partition. The powered device is configured to receive power from a first cable circuit and a second cable circuit provided over the multi-conductor cable. The powered device is configured to separately power the first partition using power received from the first cable circuit and power the second partition using power received from the second cable circuit and to power isolate the first cable circuit from the second cable circuit. The powered device further comprises at least one isolation device coupled to the first partition and the second partition and configured to enable information to be communicated between the first partition and the second partition. Other embodiments are disclosed.
In some embodiments, a method includes generating, based on distributed ledger data associated with a first distributed ledger-based network (DLN), distributed ledger data associated with a second DLN. The first DLN and the second DLN each is a fork and the distributed ledger data associated with the first DLN include account data associated with a set of accounts. The method includes generating a request to initiate a transaction between a first account and a second account. The method includes authenticating the transaction based on a protocol associated with the second DLN and without using a private cryptographic key of the first account. The method includes sending a signal indicating the transaction was authenticated and storing information associated with the transaction in the distributed ledger data associated with the second DLN.
A verification platform may include a data connection to receive a stream of industrial asset data, including a subset of the industrial asset data, from industrial asset sensors. The verification platform may store the subset of industrial asset data into a data store, the subset of industrial asset data being marked as invalid, and record a hash value associated with a compressed representation of the subset of industrial asset data combined with metadata in a secure, distributed ledger (e.g., associated with blockchain technology). The verification platform may then receive a transaction identifier from the secure, distributed ledger and mark the subset of industrial asset data in the data store as being valid after using the transaction identifier to verify that the recorded hash value matches a hash value of an independently created version of the compressed representation of the subset of industrial asset data combined with metadata.
An electronic device is provided. The electronic device includes a communication interface including circuitry, a memory, and a processor which, based on receiving ID information generated by performing a first encryption process on biometric information and password information generated by performing a second encryption process on the biometric information from an external electronic device through the communication interface, is configured to control the electronic device to: store the ID information and the password information in the memory. The processor, based on receiving first ID information and first password information from the external electronic device, is configured to control the electronic device to: acquire at least one candidate ID information from the memory based on the first ID information, compare password information corresponding to each of the acquired at least one candidate ID information with the first password information to identify one of the candidate ID information, and perform user authentication based on the identified candidate ID information and corresponding password information.
A secure access control system configured to control access to sensitive data stored on disparate systems is disclosed. A first entity is designated to control access to second entity data. An authentication token, generated using a key derivation function, is used to authenticate the first entity. The authenticated first entity is granted access to second entity data. An access control interface is generated configured to selectively grant or withdraw access to second entity data. The access control interface identifies entities associated with respective access controls. The access control interface is instantiated on a first entity device. Activation indications of access controls is received over a network. Access to second entity data is accordingly granted or withdrawn. Access control transition event rules and/or access control transition time rules are retrieved. Using monitored events and the access control transition event rules, and/or a monitored current time and the access control transition time rules, a determination is made as to transition access control of the second entity data first entity to the second entity.
A secret key value that is inaccessible to software is scrambled according to registers consisting of one-time programmable (OTP) bits. A first OTP register is used to change the scrambling of the secret key value whenever a lifecycle event occurs. A second OTP register is used to undo the change in the scrambling of the secret key. A third OTP register is used to affect a permanent change to the scrambling of the secret key. The scrambled values of the secret key (whether changed or unchanged) are used as seeds to produce keys for cryptographic operations by a device.
A scheme for securely transferring a patient data file to an intended recipient regardless of a transfer mode selected by a sender. Encryption system executing at the sender device is operative to encrypt each plaintext data line of a file, one by one, using a symmetric key and a starting IV that is incremented per each line, resulting in corresponding ciphertext lines added to an encrypted file. A hash is generated based on the encrypted file. An encrypted header containing the symmetric key, starting IV and the hash is generated using a public key of the recipient, which is appended to the encrypted file. The encrypted header and associated encrypted file are transmitted to the recipient in any manner. Upon receipt, the recipient decrypts the encrypted header using a private key to obtain the symmetric key, starting IV and the hash, which are used by the recipient to validate and decrypt the encrypted file on a line-by-line basis.
Disclosed approaches for validating initialization vectors determining by a configuration control circuit whether or not an input initialization vector is within a range of valid initialization vectors. In response to determining that the initialization vector is within the range of valid initialization vectors, the configuration control circuit decrypts the ciphertext into plaintext using the input initialization vector and configures a memory circuit with the plaintext. In response to determining that the first initialization vector is outside the range of valid initialization vectors, the configuration control circuit signals that the first initialization vector is invalid.
A method and an apparatus for determining an RBG size are provided. In the method, a network device or a terminal determines an RBG size set, where the RBG size set may include one or more possible RBG sizes; and determines a first RBG size included in the RBG size set. The network device allocates a resource to the terminal by using the determined first RBG size. The terminal determines, based on the determined first RBG size, the resource allocated by the network device to the terminal.
Disclosed are a method for configuring a scheduling request, a network device, a terminal device, and a computer storage medium. The method comprises: receiving at least one bandwidth part (BWP) configured by a network side; and receiving configuration parameters of at least one scheduling request configured by the network side for each BWP, wherein the configuration parameters of the scheduling request have a mapping relationship with a logical channel.
According to certain embodiments, a method in a network node (100A) for determining spectrum utilization for a plurality of numerologies transmitted within an allocated bandwidth includes selecting one or more of the plurality of numerologies. For each of the one or more selected numerologies, a spectrum utilization is determined. The spectrum utilization is based on the spectrum utilization that would be achieved if the selected numerology was transmitted across the allocated bandwidth. A physical resource block (PRB) allocation is calculated based on the allocated bandwidth and the spectrum utilization.
An embodiment method for managing uplink transmission includes dividing, by a network controller, frequency resources in a single OFDM symbol into two sets of frequency resources. The method further includes signaling, by the network controller, to a UE to transmit data in a first set of the frequency resources and to transmit a pilot signal in a second set of the frequency resources.
A method performed by a terminal in a wireless communication system includes: receiving, from a base station, configuration information associated with a channel state information (CSI) report including at least one information associated with a CSI resource setting; receiving, from the base station, information associated with channel occupancy duration; determining whether at least one symbol for receiving a channel state information reference signal (CSI-RS) is within channel occupancy duration, based on the at least one information associated with the CSI resource setting and the received information associated with the channel occupancy duration; receiving, from the base station, at least one CSI-RS on the at least one symbol, based on a result of the determining; and when the CSI report is determined to be transmitted, transmitting; to the base station, the CSI report based on the configuration information associated with the CSI report and the received at least one CSI-RS.
Provided are a frame configuring unit configured to configure a frame using a plurality of orthogonal frequency-division multiplexing (OFDM) symbols, by allocating time resources and frequency resources to a plurality of transmission data, and a transmitter which transmits the frame. The frame includes a first period in which a preamble which includes information on a frame configuration of the frame is transmitted, a second period in which a plurality of transmission data are transmitted by time division, a third period in which a plurality of transmission data are transmitted by frequency division, and a fourth period in which a plurality of transmission data are transmitted by time division and frequency division.
An orthogonal frequency division multiple access (OFDMA) frame tone allocation includes a 256 tone payload consisting of 228 data and pilot tones and 28 null tones. The 28 null tones consist of guard tones and at least one direct current (DC) tone. In one example, the 256 tone payload consists of 224 data tones, 4 common pilot tones, and 28 null tones. In another example, the 256 tone payload consists of 222 data tones, 6 common pilot tones, and 28 null tones. In yet another example, the 256 tone payload may consist of 220 data tones, 8 common pilot tones, and 28 null tones. The OFDMA frame may be a downlink OFDMA frame or an uplink OFDMA frame.
A transmission device includes a frame processing unit, a redundant channel processing unit, a transmission and reception unit, and a channel selection unit. The frame processing unit generates division frames, adds error detection signals to the division frames, and outputs the division frames to which the error detection signals are added to a plurality of data channels. The redundant channel processing unit generates, from the division frames, one or more redundant frames including restoration information that enables restoration of the division frames, and outputs the generated redundant frames to a data channel. The transmission and reception unit outputs the division frames and the redundant frames to a transmission line. The channel selection unit allocates the division frames and the redundant frames to allocable transmission and reception units.
Methods, systems, and devices for wireless communications are described. In some systems, a base station may interrupt a user equipment (UE) during transport block (TB) encoding. The UE may cancel transmission (e.g., suppress processing) of a TB based on the interruption, such that a first subset of code blocks is encoded and a second subset is unencoded. In some cases, the UE may receive a re-transmission request for a code block including cyclic redundancy check (CRC) bits for the TB, where the CRC bits are not prepared. In one example, the UE may modify the CRC bits (e.g., set them to a common value, drop them, etc.) to reduce processing time. In another example, the base station may request re-transmission of all preempted code blocks, supporting TB CRC calculation. In another example, the base station or UE may extend a processing timeline for the re-transmission to support TB CRC calculation.
There is disclosed a method of operating a wireless device in a wireless communication network, the method comprising transmitting feedback signaling including feedback information, the feedback information being encoded with an error coding scheme, wherein an error coding size of the error coding scheme is dependent on a type of the feedback information. The disclosure also pertains to related devices and methods.
A method performed by a wireless device for performing an uplink control channel transmission in a serving cell in a wireless communications network is provided. The wireless device is configured with a set of serving cell(s) in the wireless communications network. First, the wireless device determines a number of serving cells of the set of serving cell(s) that are relevant to consider when performing the uplink control channel transmission in the serving cell. Secondly, the wireless device selects an uplink control channel format from a set of uplink control channel formats for uplink control channel transmissions based on the determined number of serving cells. Then, the wireless device performs the uplink control channel transmission in the serving cell using the selected uplink control channel format. A wireless device for performing an uplink control channel transmission in a serving cell in a wireless communications network is also provided.
A trigger signal provided via a pulse-per-second input port of a network interface controller is detected. In response to the trigger signal, an internal hardware clock value of the network interface controller is recorded. The recorded internal hardware clock value is reported, wherein the reported internal hardware clock value is reported for use in determining a timing error of the network interface controller based at least in part on a comparison with a time value of another device that also received the trigger signal.
A system (1000) is disclosed including a resource allocation optimization (RAO) platform (1002) for optimizing the allocation of resources in network (1004) for delivery of assets to user equipment devices (UEDs) (1012). The RAO platform (1002) determines probabilities that certain asset delivery opportunities (ADOs) will occur within a selected time window and uses these probabilities together with information concerning values of asset delivery to determine an optimal use of asset deliveries. In this regard, the RAO platform (1004) received historical data from repository (1014) that facilitates calculation of probabilities that ADOs will occur. Such information may be compiled based on asset delivery records for similar network environments in the recent past or over time.
A method is provided. The method includes estimating adjacent channel leakage ratios respectively corresponding based on a test output signal output from a power amplifier according to a test input signal corresponding to a plurality of frequencies; selecting a test delay value corresponding to a largest value among the estimated adjacent channel leakage ratios; and providing a supply voltage to the power amplifier based on an envelope signal delayed according to the selected test delay value. For each of the plurality of test delay values, a corresponding adjacent channel leakage ratio is estimated based on a ratio of a magnitude of a component included in the test output signal and a magnitude of an inter-modulated component.
A radio transmitter adjusts its radio frequency (RF) fingerprint to defeat RF fingerprinting identification without destroying the content of its transmissions. The radio transmitter comprises a frequency-upconverter configured to upconvert a baseband or intermediate-frequency signal to an RF signal, and an amplifier to amplify the RF signal to produce a transmission signal. An RF fingerprint control circuit changes the non-linear behavior of the frequency-upconverter or the amplifier in order to change the RF fingerprint. The transmitter may create RF fingerprint “personalities” to be paired with different radio protocol behaviors and subscriber terminal identification codes (e.g., MAC addresses or SMSIs) for generating different radio identities.
A base station (UE) is configured to perform a computer-implemented method for antenna fault detection and correction. The computer-implemented method includes acquiring one or more sounding reference signals (SRSs) received from at least one gNB antenna; detecting an antenna failure based on the one or more SRSs; estimating a noise power based on the antenna failure and a history of received SRSs; detecting a missing SRS based on the noise power and the history of received SRSs; and handling the missing SRS. Handling the missing SRS is based on performing at least one of: replacing an SRS measurement with a predicted SRS value for the missing SRS when the predicted SRS is available; or avoiding use of the missing SRS in a sequential SRS prediction when the predicted SRS is unavailable.
Apparatuses and methods for far-end monitoring of transmitter IQ skew in a DSCM system are described. Soft symbols for a given subchannel and a corresponding mirror subchannel are used as joint inputs to a MIMO equalizer. The hard decision symbols for the given subchannel and mirror subchannel are used as references to compute the equalizer coefficients. An estimated phase or estimated transmitter IQ skew is computed for at least the given subchannel using the equalizer coefficients. The computation is repeated to obtain estimated phase or estimated transmitter skew for all subchannels. The transmitter IQ skew is computed using the estimates from all subchannels. The computation is performed for each polarization. The computed transmitter IQ skew is communicated back to the transmitter via optical path (for correcting the skew).
An optical transmission system including an optical transmitter and an optical receiver, wherein the optical transmitter includes a signal coding unit that performs non-linear block coding on an M (M is an integer greater than or equal to 1)-value symbol sequence or a bit sequence input as data information to generate an L (L is an integer greater than or equal to 2, L>M)-value symbol sequence that corresponds to the M-value symbol sequence or the bit sequence in one-to-one correspondence, a digital-to-analog conversion unit that converts the generated L-value symbol sequence to an analog signal, and a modulator that generates an optical modulation signal by performing modulation based on the analog signal, and the optical receiver includes a light receiving unit that receives the optical modulation signal transmitted from the optical transmitter and converts the optical modulation signal to an electrical signal, and a signal decoding unit that restores the M-value symbol sequence or the bit sequence by performing processing that is the reverse of processing performed by the signal coding unit, on the electrical signal.
A wireless device receives access network information indicating an access network type. Based on the access network type, a non-access stratum (NAS) period is selected among: a first value associated with a geostationary earth orbit (GEO) non-terrestrial network (NTN) access network type; and a second value associated with a low earth orbit (LEO) NTN access network type. A NAS procedure is initiated by sending a NAS request message. A start of the NAS period is based on the sending. The NAS procedure is aborted based on an expiry of the NAS period.
Disclosed are methods, systems and devices for channel state information feedback to facilitate, for example, high-performance beamforming or precoding in multiple input multiple output (MIMO) systems. One example method includes performing multiple transmissions of a channel measurement report on multiple transmission occasions. Another example method includes performing multiple receptions of a channel measurement report on multiple reception occasions, where the multiple receptions at a network node correspond to multiple transmissions from a wireless device. In both exemplary methods, a timing of the multiple transmissions is based on at least one of a number of the multiple transmission occasions, a time gap between adjacent transmission occasions of the multiple transmission occasions, and one or more timeslots that include the multiple transmission occasions.
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may determine that a base station has scheduled the UE for one or more downlink transmissions, each of the one or more downlink transmissions having an associated repetition factor that corresponds to one of a plurality of configured repetition factors configured at the UE. The UE may identify an applied repetition factor to apply to feedback codebook generation for the one or more downlink transmissions. The UE may generate a feedback codebook for reporting feedback for the one or more downlink transmissions, the feedback codebook populated based at least in part on the applied repetition factor and on whether the one or more downlink transmissions were successfully received and decoded. The UE may transmit to the base station a feedback report that includes the feedback codebook.
For improved messaging reliability in 5G and 6G, mobile users and their base stations can adjust their transmission power according to the current location of the mobile user. Each entity can maintain a map of known attenuation values, including “dead zones”, and can adjust their transmission power and/or reception gain to compensate. Instead of constantly exchanging location-update messages, the users can indicate their speed and direction, and the base station (or other users) can extrapolate the location versus time to determine a future location, and thereby determine the attenuation factor at the new position. In addition, the base station can use a map to follow the mobile user device's progress, and can thereby update the attenuation factor in real-time. If the mobile user makes a change, it can inform the base station at that time, or during initial access. Result: improved reliability, lower energy consumption, improved traffic safety.
A near field communication system can include a near field generator configured to generate a near field detectable information signal. The near field generator and supporting circuitry also produces incidental electromagnetic radiation. A masking signal transmitter is used with the near field generator and radiates a masking electromagnetic signal. The masking electromagnetic signal may substantially mask the incidental electromagnetic radiation.
A phone stand with a storage compartment, for supporting an object such as a cell phone is comprised of a section with a trough in the front in which to place the cell phone or mobile device, which in some embodiments has springy tabs comprising the front of the trough, a backwall of the trough that is slanted and is the front section of the storage compartment, and a storage compartment having a cavity, the storage compartment may have a top, either whole or with a cutout for access, and may be of different sizes, and the top may be fixed, or it may be hinged, or it may lift off, another embodiment forms a storage compartment with a flat surface that it is placed on, another embodiment permits side access to the storage compartment, a third embodiment with a raised trough allows cables to be routed through the storage compartment to the cell phone or mobile device.
A front-end circuit includes an antenna connection terminal, a selection terminal, and a selection terminal, a switching circuit including a common terminal and selection terminals, a receive filter configured to pass a radio-frequency signal in Band B, a signal path connecting the selection terminal and the selection terminal and including the receive filter, a signal path connecting the selection terminal and the selection terminal and defining and functioning as a bypass path without any filter, and a filter coupled between the antenna connection terminal and the common terminal and configured to pass a first frequency range group including Band B.
In certain aspects, a device for wireless transmission includes a transmission path, a feedback path, and a DPD control module. The transmission path includes a digital pre-distortion (DPD) conversion module configured to perform pre-distortion processing on an amplitude and a phase of a transmission signal based on a pre-distortion processing strategy. The transmission path further includes a power amplifier coupled to a downstream of the DPD conversion module and configured to amplify a power of the transmission signal. The feedback path is coupled to the transmission path at the downstream of the power amplifier and configured to generate a feedback signal. The feedback path includes a static gain compensation module configured to be activated during an initial time period of each frame to track and update a static gain for the feedback signal and configured to hold the static gain after the initial time period of each frame. The DPD control module is coupled to the feedback path and the DPD conversion module and configured to adjust the pre-distortion processing strategy based on an amplitude difference and a phase difference between the transmission signal and the feedback signal.
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 16200 and a code rate of 3/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for quadrature phase shift keying (QPSK) modulation.
A circuit for analog-digital conversion, which includes a first connection and a second connection and a third connection and a fourth connection for connecting a sensor, an analog-digital converter (ADC), whose first input is connected to the first connection and whose second input is connected to the second connection, a first current source circuit for outputting a first output current, a first switching device for the switchable connection of the first current source circuit to the first connection or to the third connection, a current source/sink circuit for outputting a second output current, a second switching device for the switchable connection of the current source/sink circuit to a reference potential or to the second connection, and a third switching device for the switchable connection of the reference potential to the second connection or to the fourth connection.
An ADC circuit (50) is disclosed. It comprises a global input configured to receive an input voltage (Vin) and a plurality of converter circuits (1051-105N). Each converter circuit (105j) comprises a comparator circuit (70j) having a first input connected to the global input, a second input, and an output configured to output a one-bit output signal of the comparator circuit (70j). Furthermore, each converter circuit (105j) comprises a one-bit current-output DAC (110j) having an input directly controlled from the output of the comparator circuit (70j) and an output connected to the second input of the comparator circuit (70j). The second inputs of all comparator circuits are interconnected. The ADC circuit (50) further comprises a digital output circuit (130) configured to generate an output signal z[n] of the ADC circuit (50) in response to the one-bit output signals of the comparator circuits (70j).
Alternative data selector, a full adder, and a ripple carry adder are disclosed. The alternative data selector includes: a NOR logic circuit configured to receive a selection signal and an inverted first input and generate an intermediate result; and an AND-OR-NOT logic circuit configured to receive the selection signal, a second input, and the intermediate result of the NOR logic circuit and generate an inverted output.
A method includes pre-charging a parasitic capacitance of a control node that is coupled to a control terminal of first and second transistors that have respective current paths that form a switched current path coupled between a load node and a storage node. Pre-charging the parasitic capacitance includes: making conductive a first auxiliary transistor that has a current path coupled between the storage node and the control node, or making conductive a second auxiliary transistor that has a current path coupled between the load node and the control node. The method further includes, after pre-charging the parasitic capacitance, making the switched current path conductive to couple the load node to the storage node.
A power-on reset circuit with reduced detection time. One example power-on reset circuit generally includes a voltage sensing circuit having an input coupled to a first power supply rail; a variable resistance component having a control input coupled to an output of the voltage sensing circuit and having a first terminal coupled to the first power supply rail; and an amplitude detection circuit having a first input coupled to the first power supply rail and having a second input coupled to a second terminal of the variable resistance component, the amplitude detection circuit being configured to generate a power-on reset signal at an output of the amplitude detection circuit based on a difference between a first voltage of the first power supply rail and a second voltage at the second terminal of the variable resistance component.
A pre-charge control circuit includes a control unit, a conversion unit, and a pre-charge switch. The control unit provides a control signal according to a PWM signal, and the conversion unit provides a control voltage according to the control signal. The pre-charge switch adjusts a magnitude of the current flowing through the input path of the electronic circuit according to the control voltage.
A bootstrapped switch includes a first transistor, a second transistor, a first capacitor, three switches, and a switch circuit. The switch circuit includes a first switch, a second switch, a second capacitor, and an inverter circuit. The first transistor receives the input voltage and outputs the output voltage. The first terminal of the second transistor receives the input voltage, and the second terminal of the second transistor is coupled to the first terminal of the first capacitor. The control terminal of the first switch receives a clock. The first switch is coupled between a node and a reference voltage. The second switch is coupled between the control terminal of the first transistor and the node. The input terminal of the inverter circuit is coupled to the control terminal of the first switch. The second capacitor is coupled between the node and the output terminal of the inverter circuit.
An integrated circuit (IC) for clock and phase aligning and synchronization between physical (PHY) layers and a communications controller is provided. The IC includes a clock multiplier configured to multiply a frequency of the clock signal from a plurality of PHY layers to match a frequency of a clock signal of the controller, wherein the clock signal from the plurality of PHY layers is less than the frequency of the clock signal of the controller. IC support circuitry is configured to provide the multiplied clock signal to the controller. The IC includes a first clock divider configured to divide the frequency of the multiplied clock signal and to output the divided clock signal to the controller. The IC includes a phase alignment circuit configured to align phases of one or more data signals based on a phase of the clock signal and a phase of the multiplied clock signal.
A level shifter includes a control circuit and a bias circuit. The control circuit receives a bias voltage, a first signal associated with a first voltage domain, and supply voltages associated with a second voltage domain, and outputs a second signal that is associated with the second voltage domain. The bias circuit generates the bias voltage that is indicative of the duty cycle of the second signal, and provides the bias voltage to the control circuit to control the duty cycle of the second signal. The duty cycle of the second signal is controlled such that a difference between a duty cycle of the first signal and an inverse of the duty cycle of the second signal is less than a tolerance limit.
Nonlinear acoustic media and related methods are described herein. The nonlinear acoustic media are configured to generate higher harmonic output signals from a single-frequency input signal. The higher harmonic output signals can be generated through the coupling of an acoustic dielectric medium to a nonlinear piezoelectric medium having four ports.
A packaged acoustic wave component is disclosed. The packaged acoustic wave component can include a first acoustic wave resonator that includes a first interdigital transducer electrode that is positioned over a first piezoelectric layer. The packaged acoustic wave component can also include a second acoustic wave resonator including a second interdigital transducer electrode positioned over a second piezoelectric layer. The second piezoelectric layer is bonded to the first piezoelectric layer. The packaged acoustic wave component can further include a stopper structure that is positioned over the first piezoelectric layer. The first stopper structure is positioned above a via and extends through the first piezoelectric layer. The stopper structure is in electrical communication with the first interdigital transducer electrode and includes a material which reflects at least fifty percent of light having a wavelength of 355 nanometers.
Frequency domain compensation is provided for spectral impairment resulting from the audio path characteristics for a given audio device in a given listening space. Selected segments of an audio stream are recorded at a listener position to measure degradation in the audio path and to update compensation filter characteristics of the audio device. Recorded transmitted and received audio sequences are aligned based and compared in the frequency domain. The difference between the aligned transmitted and received sequences represents the frequency domain degradation along the acoustic path due to the speaker, the physical attributes of the room, and noise. A dynamically updated noise model is determined for adjusting compensation filter characteristics of the audio device, which can be updated during use of the audio device. A compensation curve is derived which can adapt the equalization of the audio device passively during normal usage.
An operational amplifier includes a first differential input pair, a first switch and a second switch. The first differential input pair includes a first input transistor and a second input transistor. The first input transistor has a gate terminal coupled to an output terminal of the operational amplifier. The second input transistor has a gate terminal. The first switch is coupled between the gate terminal of the first input transistor and the gate terminal of the second input transistor. The second switch is coupled between a first input terminal of the operational amplifier and the gate terminal of the second input transistor.
Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
A relaxation oscillator includes a resistor-capacitor (RC) circuit, an integration capacitor, a sampling circuit, and a controllable oscillator. The RC circuit performs an RC charging operation to set a first voltage, performs an RC discharging operation to set a second voltage, and performs a reset operation to reset the first voltage to a first reference voltage and reset the second voltage to a second reference voltage. The sampling circuit performs a charge delivery operation to sample a voltage difference between the first voltage and the second voltage, and transfers the voltage difference to the integration capacitor. The controllable oscillator generates an output clock in response to a control input provided by the integration capacitor.
An enabling system that includes a controller and processing circuitry, is configured to enable an external oscillator that operates in one of single-ended, differential, and crystal modes. To enable the external oscillator, the controller is configured to detect a mode of operation of the external oscillator, and the processing circuitry is configured to operate in the detected mode. The controller detects the mode of operation of the external oscillator by sequentially initializing the processing circuitry to operate in the single-ended, differential, and crystal modes, and determining whether the current operating mode of the processing circuitry is same as the mode of operation of the external oscillator based on a clock signal outputted by the processing circuitry during the corresponding mode.
A deflection pad may include a body including two peaks, and a recess in the body between the two peaks, the recess may be sized to accommodate a fastener such that when deployed, the fastener is below a height of the two peaks within the recess. The deflection pad may include arms projecting in a direction generally opposite the two peaks, the arms biased inward towards the recess. The deflection pad may be included in a system that includes a torsion beam and one or more support racks to which multiple PV modules may be attached, where the support are racks attached to the torsion beam. One or more deflection pads may be positioned on the support racks to be below the PV modules.
A magnet temperature estimating device for a motor including a rotor having magnets and configured to output a rotational motive force, and a stator having a plurality of coils opposing the rotor with a gap therebetween, is provided. The device includes a sensor configured to detect an induced voltage induced by rotation of the rotor, and a controller configured to control the motor by supplying power to the plurality of coils in response to an input of a detection signal from the sensor. Gaps adjacent to each magnet in a rotation direction of the rotor are formed in the rotor. The controller estimates a temperature of the magnet based on the induced voltage detected when the magnet opposes any one of the plurality of coils, according to the rotation of the rotor.
The object of the invention is a method of controlling a permanent-magnet synchronous or synchro-reluctant three-phase rotary machine (4), comprising the following steps:
measuring a current (iA, iB, iC) flowing through each phase of a stator of rotary machine (4);
first calculating, by use of a single proportional-integral controller, a switching control signal for controlling an inverter (10), according to each measured current (iA, iB, iC), and of a target value (Tref) of a mechanical torque provided by the rotary machine (4) or of a target value of an angular speed of a rotor of rotary machine (4) in relation to the stator wherein the inverter (10) is configured to convey electrical energy between a continuous electrical energy source (8) and each phase of the stator of rotary machine (4); and controlling the inverter (10) by use of the calculated switching control signal.
A door closer system is provided that includes a motor, a spring, a reduction gear set, and a rack and a pinion mechanism. The spring and pinion may be coupled to the rack, and the pinion may be selectively coupled to the gear set. The motor may be selectively mechanically coupled to the gear set. The pinion may rotate in a first direction via the rack as the spring is compressed in a second direction opposite the first direction as the spring is expanded. The motor is operable to rotate and act upon the pinion through the gear set, thereby rotating the pinion in the second direction and assist the spring in closing the door.
A voltage regulation circuit includes a switching output terminal, a high-side output transistor, a low-side output transistor, a high-side replica transistor, a low-side replica transistor, and a comparator circuit. The high-side output transistor is configured to drive the switching output terminal. The low-side output transistor is configured to drive the switching output terminal. The high-side replica transistor is coupled to the high-side output transistor. The low-side replica transistor is coupled to the high-side replica transistor and the low-side output transistor. The comparator circuit is coupled to the high-side replica transistor and the low-side replica transistor, and is configured to compare a signal received from both the high-side replica transistor and the low-side replica transistor to a ramp signal.
A power converter circuit included in a computer system that regulated a power supply voltage used by other circuits in the computer system. The power converter includes a primary control circuit that selectively activates multiple phase circuits coupled to respective driver circuits, which are coupled to a power supply node via respective inductors. Some of the driver circuits are located on a separate integrated circuit from the primary control circuit and the multiple phase circuits.
Various embodiments relate to a converter controller configured to control a resonant converter, including: an integrator configured to receive a current measurement signal from a current measurement circuit in the resonant converter and to produce a capacitor voltage signal indicative of the voltage at the resonant capacitor; a control logic configured to produce a high side driver signal, a low side driver signal, a symmetry error signal based upon the capacitor voltage signal and the current measurement signal; and a symmetry controller configured to produce a symmetry correction signal based upon the symmetry error signal, wherein the symmetry error signal is input into the integrator to control the duty cycle of the high side driver signal and the low side driver signal, wherein the high side driver signal and the low side driver signal control the operation of the resonant converter.
There is described a system comprising mechanical equipment and an apparatus for monitoring and/or controlling the mechanical equipment. The mechanical equipment vibrates at a frequency fvibration in use, and the apparatus is attached to the mechanical equipment such that the apparatus also vibrates when the mechanical equipment is in use. The apparatus comprises an electronics module and a resonant electric generator. The resonant electric generator has a resonant frequency f0 comparable to the vibrational frequency fvibration of the mechanical equipment. The resonant electric generator comprises a magnet having an associated a magnetic field, a coil electrically coupled to the electronics module, and a resilient member. The resilient member is configured, when the apparatus is vibrated at or around the resonant frequency f0, to cause relative oscillation of the coil and the magnet so as to induce an electric current in the coil to thereby power the electronics module.
The present application also relates to the apparatus for monitoring and/or controlling the mechanical equipment, and to a method of use of the apparatus with mechanical equipment.
In order to facilitate the production of coil windings in components of electrical machines a method and a device are provided for winding a wave winding mat for forming a coil winding of an electrical machine, wherein one or more wires are wound with a predefined wire spacing between wire sections, wherein the wire spacing is set differently for different regions of the wave winding mat.
A machined object that can prevent a coating material of a coating surface from peeling off when a machined surface that is adjacent to the coating surface is machined after coating of the coating surface. The machined object includes a main body and a coating material applied to the main body, the main body includes a machined surface that is machined, a coating surface that is arranged adjacent the machined surface via a boundary and to which a coating material is applied, and a recess formed in the main body and recessed toward an inner side of the main body from the machined surface and the coating surface at the boundary, and the recess extends along the boundary so as to separate the machined surface and the coating surface from each other.
A stator core is provided that can define a plurality of core slots in a surface thereof. The core slots can extend between a first and a second end portion of the stator core. A winding can be housed in the core slots. The winding can define a channel through at least a portion thereof. A cooling system can be operably coupled with the channel and can be configured to move a cooling fluid through the channel. A turbulator can be positioned within the channel. The turbulator can be within a flowpath of the cooling fluid and can be integrally formed with the winding.
A two degree-of-freedom brushless DC motor includes a stator, a rotor, a plurality of distributed stator windings, and a stator voice coil winding. The stator includes an inner stator structure and a plurality of arc-shaped stator poles. The inner stator structure includes a main body and a plurality of spokes that are spaced apart from each other to define a plurality of stator slots. Each arc-shaped stator pole is connected to a different one of the spokes. The rotor is spaced apart from the stator, includes a plurality of magnets, and is configured to rotate about a plurality of perpendicular axes. The distributed stator windings are wound around the plurality of spokes and extend through the stator slots. The stator voice coil winding is wound around the outer surfaces of the arc-shaped stator poles. The arc-shape and spacing of the stator poles define the stator as being spherically shaped.
The present invention suppresses leakage magnetic field. A power transfer coil configured to transmit or receive power includes: an inner coil; a first outer coil formed so as to surround the inner coil such that a magnetic flux opposite in phase to a magnetic flux outside the inner coil is generated outside the first outer coil, the first outer coil having one end connected to a first terminal and the other end connected to one end of the inner coil; and a second outer coil formed so as to surround the inner coil such that a magnetic flux opposite in phase to the magnetic flux outside the inner coil is generated outside the second outer coil, the second outer coil having one end connected to a second terminal and the other end connected to the other end of the inner coil.
A system and method to detect the presence of conductive foreign objects for a multi-coil wireless power system is described. A wireless power receiver resonant circuit quality information may be obtained without any costly hardware or termination of power delivery to the power receiver load. The power receiver free-running coil current or voltage may be measured during a very short time window. In this time window, the measurement may be unaffected by transmitter and receiver load due to the transmitter coil disconnection and because the wireless power receiver has sufficient DC-bus capacitance.
Some embodiments include a radiographic imaging system, comprising: a radiographic imager, including: an imaging array; imager control logic configured to control the imaging array; a power system configured to supply power to at least the imaging array and the imager control logic; a wireless power receiver configured to receive energy wirelessly and provide at least part of that energy to the power system; and a wireless communication transmitter; and a charging mat, including: a wired power input; a wireless power transmitter configured to transmit energy wirelessly; and a wireless communication receiver; wherein the wireless power receiver, the wireless power transmitter, the wireless communication receiver, and the wireless communication transmitter are positioned such that the radiographic imager can be placed on the charging mat where, simultaneously, the wireless power receiver is aligned with the wireless power transmitter and the wireless communication receiver is aligned with the wireless communication transmitter.
A battery charging system includes a battery removably mounted on an electric power device using electric power, a charging device configured to charge the battery using renewable power which is electric power generated from renewable energy, and a server configured to communicate with the charging device. The charging device is configured to control charging of the battery accommodated in an accommodation unit on the basis of reception information received from the server. The server is configured to compare receivable power, which is the renewable power capable of being received by the charging device, with a threshold value and configured to transmit transmission information for causing the charging device to control the charging of the battery to the charging device on the basis of a result of comparing the receivable power with the threshold value.
A wireless charging device includes a casing, a transmitter driving board and a transmitter coil assembly. The wireless charging device is used for charging a receiver coil of a mobile device. The transmitter driving board generates a first heat source. The transmitter driving board has a first thermal resistance. The transmitter coil assembly generates a second heat source. The transmitter coil assembly has a second thermal resistance. There is an interfacial thermal resistance between the transmitter coil assembly and the transmitter driving board. A product of a power dissipation of the second heat source and the second thermal resistance is lower than 15. The interfacial thermal resistance is higher than or equal to two times the first thermal resistance. A product of a power dissipation of the first heat source and the first thermal resistance is lower than or equal to 80.
Various embodiments of the present technology may provide methods and apparatus for a battery. The apparatus may be configured to prevent leakage current from the battery to a number of sub-systems by selectively operating switches that connect the battery to the sub-systems. Operation of the switches may be based on whether the battery is charging or discharging and the capacity of the battery.
A frequency stabilization arrangement for a power transmission grid has a modular multi-level converter with a first terminal for electrical connection to a power transmission grid, and an electrical resistor unit with a second terminal for electrical connection to the power transmission grid.
The present disclosure discloses a self-check chip of a leakage protector. The self-check chip includes a power-on reset circuit, used for resetting the self-check chip after being powered-on; a reference voltage module, used for providing a reference voltage for a comparator module; a bias circuit, used for providing direct-current bias for the reference voltage module, the comparator module and a ring oscillator; the comparator module, used for monitoring an open-circuit condition of a trip coil and the change of a thyristor anode voltage and generating a power frequency clock; the ring oscillator, used for providing a clock for a counting module and a digital processing module; the counting module, used for generating a self-check signal, a leakage trigger signal, a PHASE pin detection signal and a reset signal of the counting module and the digital processing module; a trip enabling signal generation module; and the digital processing module.
A power interrupter device includes a solid-state bidirectional switch and control circuitry to control the solid-state bidirectional switch. The bidirectional switch is connected between input and output terminals of the power interrupter device. The control circuitry includes driver circuitry and fault detection circuitry. The driver circuitry generates a regulated direct current (DC) voltage using current drawn from an input power source applied to the input terminal and applies the regulated DC voltage to a control input of the bidirectional switch. The fault detection circuitry is configured to sense a level of load current flowing in an electrical path between the input and output terminals, to detect an occurrence of a fault condition based on the sensed load current level, and to short the control input of the bidirectional switch to place the bidirectional switch in a switched-off state, in response to detecting the occurrence of a fault condition.
The present disclosure relates to an assembly having a cable support and a cable inserted in the support, the latter may include: at least one base, made of a rigid material, having at least one receptacle provided with a longitudinal axis and, of which the inner dimension Dint is given, and at least one strap, made of a material more flexible than that of the base, having at least two lips on the one hand arranged opposite one another to define a slot for the passage of a cable between the lips and on the other hand, shaped to define an orifice, wherein the cable is inserted, this orifice, provided with a longitudinal axis, communicating with the slot along this longitudinal axis of the orifice, the lips having, together, an outer dimension D′ext equal or greater than the inner dimension of the receptacle.
A switch-gear or control-gear system for medium or high voltage use includes an external housing containing the switch-gear or control-gear system, which is configured for unmanned operation and maintenance. The switch-gear or control-gear system is configured for unmanned operation and maintenance with a robotic system or manipulator and the robotic system or manipulator is provided with a camera system and an image recognition system. The robotic system is provided with a data network or an external data communication interface.
A self-cleaning ion generator device includes a housing having a bottom portion and a top portion selectively secured to each other, the top portion contains a base portion extending to an outer edge and having an internal side and an external side, a first pair of opposed sidewalls and a second pair of opposed sidewalls extend from the outer edge of the base portion forming a cavity therein. Ion terminals extend from the housing, and a cleaning apparatus for cleaning the two ion terminals.
A beam shaping system including an all-optical liquid crystal beam shaper, the beam shaper including a photoswitchable alignment material including at least one of a PESI-F, SPMA:MMA 1:5, SPMA:MMA 1:9, ora SOMA:SOMA-p:MMA 1:1:6 material, at least some of the liquid crystals of the beam shaper including at least one of a phenylcyclohexane, cyclo-cyclohexane, or a perfluorinated material.
A first component, such as an electrical connector, can be mechanically connected to a second component, such as a surface, and separately electrically bonded to the second component using a third component, such as foil. The third component can be ultrasonically welded to the first component and separately ultrasonically welded to the second component. In some cases, multiple third components can be utilized to cover a seam between the first and second components.
A Peripheral Component Interconnect Express/Serial Attached SCSI (PSAS) female connector includes a frame member, a terminal member, and a cover member; the frame member including a terminal groove disposed in the frame member and a tilt portion disposed in the terminal groove adjacent to a plug end; the terminal member inserted in the frame member and including a Serial Advanced Technology Attachment (SATA) 7 pin terminal, a Serial Attached SCSI (SAS) 40 pin terminal, a 15 Pin signal terminal, a 6 Pin terminal, and a 4 Pin terminal. When the PSAS female connector is engaged with the male connector, the SATA 7 Pin terminal and the SAS 40 Pin terminal are pressed by a terminal of the male connector to be bent toward an outer lateral side of the terminal groove to contact the elastic plate of the cover member. The present invention effectively improves the cross interference during high speed transmission, thereby achieving the Generation 5 performance requirement.
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
A connector with a grommet includes a housing and a grommet. A panel hooking portion, a flange, and a locking projection are formed on an outside of the housing. The grommet includes a panel contact part that comes into tight contact with an edge of a mounting hole of a panel. A flexible arm is formed on the flange so as to protrude from the flange. The locking projection is provided at a front of the flexible arm. A sensing part configured to sense whether the locking projection is locked to the panel, is provided at a rear of the flexible arm so as to protrude outward than the flange. The sensing part is received in a receiving part formed on the panel contact part. When the locking projection is not locked to the panel, the sensing part and the receiving part tilt.
A receiving electrical connector includes a body, a slide movably connected to the body and defining a cam surface, and an elastic element biasing the slide relative to the body in a first direction. The cam surface is adapted to bias a mating connector received by the receiving connector from a mated position into a partially mated position in response to a force placed on the slide in a direction opposite the first direction and against an elastic return force imparted on the slide by the elastic element. The cam surface is further adapted to bias the mating connector from the partially mated position to an ejected position under a force applied on the slide by the elastic element.
A connector for a coaxial cable includes a coupler configured to engage another coaxial cable connector, a body configured to be disposed at least partially within the coupler, and an outer conductor engager made of a conductive material disposed within the body and the coupler. An interior of the body includes a biasing element, and a compression sleeve is disposed at an opposite axial side of the outer conductor engager relative to the biasing element. The compression sleeve, the outer conductor engager, and the body are configured such that opposite axial forces applied to the compression sleeve and the outer conductor engager cause the outer conductor engager to move axially relative to one another and to cause the outer conductor engager to move axially relative to the body when the connector is coupled to the coaxial cable. The outer conductor engager is configured to be compressed by the biasing member when the outer conductor engager portion moves relative to the body such that an interior surface of the outer conductor engager portion is compressed radially inward against an outer conductor of the coaxial cable.
An electronic device includes a housing including a front plate and a rear plate disposed opposite the front plate, and a display disposed in a space between the front plate and the rear plate, and disposed at least partially along the front plate. The electronic device further includes a first antenna structure disposed in the space and configured to transmit or receive a first signal in a first frequency band, wherein the first antenna structure includes at least one first conductive pattern. The electronic device also includes a second antenna structure disposed in the space without being overlapped with the first conductive pattern when viewed from above the rear plate, and configured to transmit or receive a second signal in a second frequency band different from the first frequency band. In addition, the electronic device includes a conductive sheet disposed in the space and on the rear plate. The conductive sheet is physically separated from the first conductive pattern, and at least partially overlapped with the first conductive pattern when viewed from above the rear plate.
A simple multi-directional, multi-port array antenna structure is disclosed that can be used for a variety of applications, including but not limited to direction finding (DF) and beam-forming applications in receive and transmit modes, respectively. The disclosed antenna structure offers unique functionalities in both receive and transmit modes. For DF applications in the receive mode, the back-end of the antenna structure features a power sensing mechanism to monitor the power received at all ports. In the transmit mode, the disclosed antenna structure is used for beamforming applications by providing individual port excitation and using antenna arrays.
Provided is an electronic device including a multi-input multi-output antenna structure configured on a substrate, and the multi-input multi-output antenna structure includes two dipole antennas and two second grounded radiators. Each dipole antenna is used for resonating a first frequency band and a second frequency band. Each dipole antenna includes a feed-in radiator and a first grounded radiator. The feed-in radiator has a feed-in end. The first grounded radiator is disposed beside the feed-in radiator and has a first grounded end. The two second grounded radiators are positioned between the two dipole antennas, the two second grounded radiators are separated from the two first grounded radiators and are respectively corresponding to the two first grounded radiators, and a bent gap is formed between the two second grounded radiators.
An apparatus is disclosed for bidirectional amplification with phase-shifting. In example implementations, an apparatus includes a phase shifter with a bidirectional amplifier. The bidirectional amplifier includes a first transistor coupled between a first plus node and a second minus node, a second transistor coupled between a first minus node and a second plus node, a third transistor coupled between the first plus node and the second minus node, and a fourth transistor coupled between the first minus node and the second plus node. The bidirectional amplifier also includes a fifth transistor coupled between the first plus node and the second plus node, a sixth transistor coupled between the first minus node and the second minus node, a seventh transistor coupled between the first plus node and the second plus node, and an eighth transistor coupled between the first minus node and the second minus node.
A single stage unequal power combiner is proposed. Instead of conventional combiner plus impedance transformer of 2-stage unequal combiner, the single stage combiner gets rid of the input impedance transformer. The single stage combiner supports adjustable transmission line impedance and reasonable mismatch loss, assuming the that power ratio of the input signals is within a certain range. The single stage combiner also has an adjustable isolation resistor for different power ratios. A structure of switchable branch characteristic impedance, switchable isolation resistor for the unequal combiner is proposed as the preferred embodiment. In one advantageous aspect, broader coverage angle in a single array module can be realized via an antenna diversity switch.
A base station antenna comprises a plurality of columns of first radiating elements configured for operating in a first operational frequency band, each column of first radiating elements comprising a plurality of first radiating elements arranged in a longitudinal direction and an isolation wall positioned between adjacent columns of first radiating elements and extending in the longitudinal direction. The isolation wall comprises a frequency selective surface configured such that electromagnetic waves within the first operational frequency band are substantially blocked by the isolation wall.
An antenna module includes a first antenna element disposed at a first dielectric substrate, a second antenna element disposed at a second dielectric substrate, a joint connecting the first dielectric substrate and the second dielectric substrate, and a power supply line. The second dielectric substrate is different from the first dielectric substrate with respect to the normal direction. The power supply line extends from the first dielectric substrate via the joint to the second antenna element and is configured to communicate a radio-frequency signal to the second antenna element. At least a part of the power supply line at the joint is formed in a direction crossing the polarization plane of radio waves radiated by the first antenna element and the second antenna element.
An electronic device may include a transceiver, first and second antennas, and a passive radio-frequency power distribution circuit. The distribution circuit may have a first port coupled to the transceiver, a second port coupled to the first antenna, and a third port coupled to the third antenna. The distribution circuit may include a transformer coupled between the ports. The transformer may have at least two intertwined inductors formed from conductive traces on a dielectric substrate. The intertwined inductors may be concentric about a common point. The intertwined inductors may extend from the common point to the second and third ports. The intertwined inductors may have a coil or spiral shape and may wind around the common point at least once. Intertwining the inductors may serve to minimize the lateral footprint of the distribution circuit in the device.
In an embodiment, an electronic device may include a first cover covering an upper portion of a main body and containing a first antenna module disposed on a lateral portion thereof, a spacer member disposed over the first cover, and a second cover disposed over the spacer member. The first and second covers may be spaced apart from each other at a predetermined distance due to the spacer member, and a separation space between the first and second covers may be configured to operate as a second antenna module. It is therefore possible to guarantee high-efficiency wireless performance having iso-directionality without compromising the design of the electronic device. Other embodiments are also possible.
A waveguide filter having a core including an external face and internal faces defining a channel for filtering and guiding the waves. The channel includes several slots, each having a first and a second face. The first face is inclined in relation to the second face. A method for manufacturing the waveguide filter.
Set forth herein are compositions comprising A.(LiBH4).B.(LiX).C.(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1≤A≤3, 0.1≤B≤4, and 0≤C≤9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A.(LiBH4).B.(LiX).C.(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A.(LiBH4).B.(LiX).C.(LiNH2) compositions and other materials.
Disclosed herein is a battery case configured to receive an electrode assembly and an electrolytic solution therein, the electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, the battery case including a layer structure and a gas adsorption layer formed on the inner surface of the layer structure, the gas adsorption layer including a gas adsorption material layer configured to adsorb a reaction gas that may be generated within the battery case during abnormal functioning of the electrode assembly, and a blocking layer formed on an exposed surface of the gas adsorption material layer, the blocking layer configured to prevent the gas adsorption material layer from being exposed to an ambient gas during assembly of the battery case.
A management device 50 for power storage elements is provided with a cause analysis unit 51 that, when the voltages of power storage elements B1-B4 are reduced to a prescribed level or physical quantities correlated with the voltages are reduced to prescribed values after the supply of power to the power storage elements B1-B4 has been stopped, analyzes the cause of the voltage reduction in power storage elements B1-B4 or the cause of the reduction in the physical quantities correlated with voltages to the prescribed values, on the basis of measurement data of the power storage elements B1-B4 measured after the supply of power has been stopped.
A discharge energy recovery and formation capacity grading apparatus for a soft-package power battery comprises a rack, a condition-variable charge and discharge power box arranged on the rack, a battery formation capacity-grading clamping movement mechanism for clamping positive and negative electrode lugs of the soft-package power battery, a battery tray for, a movement mechanism control assembly for controlling the movement of the battery formation and capacity grading clamping movement mechanism, a safety protection sensor assembly, and a battery formation capacity-grading control mechanism. The charge and discharge power box, the battery formation capacity-grading clamping movement mechanism, the battery tray, the movement mechanism control assembly, and the safety protection sensor assembly are all in signal connection with the battery formation capacity-grading control mechanism. The power transmission end of the charge and discharge power box is electrically connected with the power transmission end of the battery formation capacity-grading clamping movement mechanism.
The present invention provides a composition for a gel polymer electrolyte, the composition including: an oligomer represented by Formula 1; an additive; a polymerization initiator; a lithium salt; and a non-aqueous solvent, the additive including at least one compound selected from the group consisting of a substituted or unsubstituted phosphate-based compound and a substituted or unsubstituted benzene-based compound, a gel polymer electrolyte prepared using the same, and a lithium secondary battery.
Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy for lithium ion migration in the solid state lithium ion electrolytes is 0.5 eV or less and room temperature conductivities are greater than 100.5 S/cm. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided.
Solid-state lithium ion electrolytes of lithium metal nitride based compounds are provided which contain an anionic framework capable of conducting lithium ions. Materials of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium metal nitride based composites are also provided.
A wastewater to chemical fuel conversion device is provided that includes a housing having a first chamber and a second chamber, where the first chamber includes a bio-photoanode, where the second chamber includes a photocathode, where a backside of the bio-photoanode abuts a first side of a planatized fluorine doped tin oxide (FTO) glass, where a backside of the photocathode abuts a second side of the FTO glass, where a proton exchange membrane separates the first chamber from the second chamber, where the first chamber includes a wastewater input and a reclaimed water output, where the second chamber includes a solar light input and a H2 gas output, where the solar light input is disposed for solar light illumination of the first chamber and the second chamber.
A carbon dioxide production system 10A includes: a fuel cell stack 16; a separation unit 20 that separates anode off-gas into a non-fuel gas including at least carbon dioxide and water and a regenerative fuel gas; a second heat exchanger 32 that separates water from the non-fuel gas; a water tank 42; and a carbon dioxide recovery tank 48 that recovers the carbon dioxide after the water has been separated.
A sheet attaching apparatus includes a gripping mechanism that grips one end portion, in a longitudinal direction, of a first sheet that has been drawn out from a first supply roll; a moving mechanism that allows the first sheet to be attached to a second sheet by moving the gripping mechanism to cause the first sheet to approach and contact the second sheet that passes through an attaching portion provided in a feeding path; and a releasing mechanism that releases a grip of the gripping mechanism on the first sheet, after the first sheet has contacted the second sheet.
An elastomeric cell frame for a fuel cell includes an insert which includes: a membrane electrode assembly including a polymer electrolyte membrane and a pair of electrode layers respectively disposed on opposite sides of the polymer electrolyte membrane; and a pair of gas diffusion layers disposed and bonded on upper and lower surfaces of the membrane electrode assembly, respectively. The insert further includes an elastomeric frame disposed in an external region of the insert. The elastomeric frame surrounds one of opposite edge surfaces of the insert and a side surface of the insert, the elastomeric frame being interface-bonded, through thermal bonding, to portions of the polymer electrolyte membrane and the electrode layers exposed at the one of opposite edge surfaces of the insert and the side surface of the insert.
A lithium secondary battery includes a cathode formed of a cathode active material including a lithium metal oxide particle having a concentration gradient, and a coating formed on the lithium metal oxide particle, the coating including aluminum, titanium and zirconium, an anode, and a separator interposed between the cathode and the anode. The cathode active material includes 2,000 ppm to 4,000 ppm of aluminum, 4,000 ppm to 9,000 ppm of titanium and 400 ppm to 700 ppm of zirconium, based on the total weight of the cathode active material. The performance of the secondary battery may be maintained under a high temperature condition.
A submicron sized Si based powder having an average primary particle size between 20 nm and 200 nm, wherein the powder has a surface layer comprising SiOx, with 0
There is provided a positive electrode for an alkaline secondary battery and an alkaline secondary battery having good output properties and cycle life. To that end, a positive electrode (10) for alkaline secondary battery is obtained by laminating a flexible metal substrate (11) having flexibility; a primer layer (12) having conductivity provided on one or both surfaces of the substrate (11); and a positive electrode composite material layer (13) provided on the primer layer (12) and containing a positive electrode active material, a binder resin, and a first conductive material.
The present invention relates an electrode notching apparatus. The electrode notching apparatus comprises: a notching unit shaping an electrode into a predetermined pattern; a heating unit drying the electrode processed by the notching unit; and a collecting unit collecting the electrode dried by the heating unit, wherein the heating unit comprises: a heating body having a drying space through which the electrode supplied by the notching unit passes; and heating members directly heating a surface of the electrode passing through the drying space to dry moisture remaining on the electrode.
A display panel and a method of fabricating the same are provided. The display panel includes: a base substrate; a first electrode disposed on the base substrate; a hole injection layer disposed on the first electrode, wherein a surface of the hole injection layer away from the first electrode is scattering surface. In the present invention, the surface of the hole injection layer away from the first electrode is set as the scattering surface, and changes of brightness and chromaticity caused by a change of viewing angles is weakened by the scattering surface, thereby expanding viewing angles of the display panel.
This disclosure relates to the field of display technologies and, in particular to a thin film packaging structure and a display panel. A thin film packaging structure includes a first inorganic packaging layer for covering a device to be packaged; an organic packaging layer formed at a side of the first inorganic packaging layer; a second inorganic packaging layer formed at a side of the organic packaging layer facing away from the first inorganic packaging layer; and at least one first inorganic adjusting layer formed at a side of the first inorganic packaging layer facing away from the device to be packaged. The at least one first inorganic adjusting layer has an elasticity modulus greater than that of the first inorganic packaging layer or the second inorganic packaging layer.
Method of making a current collecting grid for solar cells, including the steps of a) providing a continuous layer stack (1) on a substrate (8), the layer stack (1) including an upper (2) and a lower (3) conductive layer having a photoactive layer (4) interposed there between; b) selectively removing the upper conductive layer (2) and the photoactive layer (4) for obtaining a first contact hole (10) extending through the upper conductive layer (2) and photoactive layer (4) exposing the lower conductive layer (3); c) printing a front contact body (4) on the upper conductive layer (2) and a back contact body (5) in the first contact hole (10) on the lower conductive layer (3) and forming an electrically insulating first gap surrounding the back contact body (5) between the upper conductive layer (2) and the back contact body (2).
A mobile terminal according to an embodiment includes a display panel having flexibility, and a support plate configured to support the display panel and to include a curved edge, at least a part of which is surrounded by the display panel. The display panel includes a base substrate, a light-emitting layer provided on the base substrate and configured to include a light-emitting element, a thin-film encapsulation layer configured to seal the light-emitting element, and a thin-film transistor (TFT) film configured to supply a signal to the light-emitting element, a polarizing film provided on the light-emitting layer, and a protective film provided on the polarizing film. The TFT film is extended from the base substrate at the curved edge to cover an edge of the base substrate.
A display device has a first non-foldable area, a second non-foldable area spaced apart from the first non-foldable area, and a foldable area disposed between the first non-foldable area and the second non-foldable area. The display device includes: a support member; a first adhesive layer disposed on the support member; a buffer member disposed on the first adhesive layer; a second adhesive layer disposed on the buffer member; and a flexible display panel disposed on the second adhesive layer. At least one of the support member and the buffer member includes a first area overlapping the foldable area having at least one first uneven area to facilitate bending, the at least one first uneven area being formed on a surface of the first area.
An organic electroluminescence device (OLED) of an embodiment includes a first electrode, a second electrode, and an emission layer disposed between the first electrode and the second electrode The emission layer may include a condensed polycyclic compound represented by Formula 1, which is connected to two or three substituents represented by Formula 2, and the OLED may exhibit excellent luminous efficiency:
A mounting structure includes: a first substrate that has a first surface on which a functional element is provided; a wiring portion that is provided at a position, which is different from a position of the functional element on the first surface, and is conductively connected to the functional element; a second substrate that has a second surface that is opposite to the first surface; and a conduction portion that is provided on the second surface, is connected to the wiring portion, and is conductively connected the functional element. The shortest distance between the functional element and the second substrate is longer than the longest distance between the second substrate and a position where the wiring portion is connected to the conduction portion.
A semiconductor structure is provided. The semiconductor structure includes a substrate, a first piezoelectric layer, and a first dummy layer. The first piezoelectric layer is over the substrate, and the first piezoelectric layer has a first top surface. The first dummy layer is over the first piezoelectric layer, and the first dummy layer has a second top surface. And an average roughness of the first top surface is greater than an average roughness of the second top surface. A method for manufacturing the semiconductor structure is also provided.
A method and a device for preparing an inductance element, an inductance element, and a superconducting circuit are provided. The method includes acquiring a compound for preparing an inductance element, a superconducting coherence length and a magnetic field penetration depth of the compound meeting a preset condition; and annealing the compound to cause decomposition between a non-superconductor phase and a superconductor phase in the compound to generate the inductance element, the kinetic inductance of the inductance element being greater than the geometric inductance of the inductance element.
A method for producing a chip of a thermoelectric conversion material formed of a thermoelectric semiconductor composition, including a step of forming a sacrificial layer on a substrate, (B) a step of forming a thermoelectric conversion material layer of a thermoelectric semiconductor composition on the sacrificial layer, (C) a step of annealing the thermoelectric conversion material layer, (D) a step of transferring the annealed thermoelectric conversion material layer to a pressure-sensitive adhesive layer, (E) a step of individualizing the thermoelectric conversion material layer into individual chips of a thermoelectric conversion material, and (F) a step of peeling the individualized chips of a thermoelectric conversion material; and a method for producing a thermoelectric conversion module using the chip produced according to the production method.
A package includes a first lead including a first electrode terminal, a second lead including a second electrode terminal, a first molded body holding the first lead, and a second molded body holding the second lead. The second lead is provided on the first lead in an overlapping direction such that the first electrode terminal of the first lead overlaps with the second electrode terminal of the second lead when viewed in the overlapping direction. The first electrode terminal and the second electrode terminal are electrically connected to each other without adding additional material. A part of the first molded body and a part of the second molded body are in contact with each other.
A display substrate includes a drive substrate and a welding pad provided on the drive substrate and electrically connected with the drive substrate. The display substrate further includes an insulating construction layer provided on the welding pad. The insulating construction layer is provided with a groove for exposing the welding pad. A bonding material is accommodated in the groove, and a micro light emitting diode is electrically connected with the welding pad through the bonding material.
A semiconductor structure includes a group IV substrate and a patterned group III-V device over the group IV substrate. Precursor stacks having at least one precursor metal are situated over at least one portion of the patterned group III-V device. A blanket dielectric layer is situated over the patterned group III-V device. Contact holes in the blanket dielectric layer are situated over each precursor stack. A filler metal is situated in each contact hole and over each precursor stack. The patterned group III-V device can be optically and/or electrically connected to group IV devices in the group IV substrate. Additional contact holes in the blanket dielectric layer can be situated over the group IV devices and filled with the filler metals.
A semiconductor device can include: a substrate having a first doping type; a first well region located in the substrate and having a second doping type, where the first well region is located at opposite sides of a first region of the substrate; a source region and a drain region located in the first region, where the source region has the second doping type, and the drain region has the second doping type; and a buried layer having the second doping type located in the substrate and below the first region, where the buried layer is incontact with the first well region, where the first region is surrounded by the buried layer and the first well region, and the first doping type is opposite to the second doping type.
A semiconductor device with favorable electrical characteristics is provided. A semiconductor device with stable electrical characteristics is provided. A highly reliable semiconductor device is provided. A semiconductor layer is formed, a gate insulating layer is formed over the semiconductor layer, a metal oxide layer is formed over the gate insulating layer, and a gate electrode which overlaps with part of the semiconductor layer is formed over the metal oxide layer. Then, a first element is supplied through the metal oxide layer and the gate insulating layer to a region of the semiconductor layer that does not overlap with the gate electrode. Examples of the first element include phosphorus, boron, magnesium, aluminum, and silicon. The metal oxide layer may be processed after the first element is supplied to the semiconductor layer.
Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first plurality of conductive interconnect lines in and spaced apart by a first ILD layer, wherein individual ones of the first plurality of conductive interconnect lines comprise a first conductive barrier material along sidewalls and a bottom of a first conductive fill material. A second plurality of conductive interconnect lines is in and spaced apart by a second ILD layer above the first ILD layer, wherein individual ones of the second plurality of conductive interconnect lines comprise a second conductive barrier material along sidewalls and a bottom of a second conductive fill material, wherein the second conductive fill material is different in composition from the first conductive fill material.
A capacitor is provided which comprises: a first structure comprising metal; a second structure comprising metal; and a third structure between the first and second structures, wherein the third structure comprises an improper ferroelectric material. In some embodiments, a field effect transistor (FET) is provided which comprises: a substrate; a source and drain adjacent to the substrate; and a gate stack between the source and drain, wherein the gate stack includes: a dielectric; a first structure comprising improper ferroelectric material, wherein the first structure is adjacent to the dielectric; and a second structure comprising metal, wherein the second structure is adjacent to the first structure.
A semiconductor device with different configurations of gate structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a gate opening on the fin structure, forming an interfacial oxide layer on the fin structure, forming a first dielectric layer over the interfacial oxide layer, forming a dipole layer between the interfacial oxide layer and the first dielectric layer, forming a second dielectric layer on the first dielectric layer, forming a work function metal (WFM) layer on the second dielectric layer, and forming a gate metal fill layer on the WFM layer. The dipole layer includes ions of first and second metals that are different from each other. The first and second metals have electronegativity values greater than an electronegativity value of a metal or a semiconductor of the first dielectric layer.
A semiconductor structure includes a first stack of semiconductor layers disposed over a semiconductor substrate, where the first stack of semiconductor layers includes a first SiGe layer and a plurality of Si layers disposed over the first SiGe layer and the Si layers are substantially free of Ge, and a second stack of semiconductor layers disposed adjacent to the first stack of semiconductor layers, where the second stack of semiconductor layers includes the first SiGe layer and a plurality of second SiGe layers disposed over the first SiGe layer, and where the first SiGe layer and the second SiGe layers have different compositions. The semiconductor structure further includes a first metal gate stack interleaved with the first stack of semiconductor layers to form a first device and a second metal gate stack interleaved with the second stack of semiconductor layers to form a second device different from the first device.
A method and apparatus include an n-doped layer having a first applied charge, and a p−-doped layer having a second applied charge. The p−-doped layer may be positioned below the n-doped layer. A p+-doped buffer layer may have a third applied charge and be positioned below the p−-doped layer. The respective charges at each layer may be determined based on a dopant level and a physical dimension of the layer. In one example, the n-doped layer, the p−-doped layer, and the p+-doped buffer layer comprise a lateral semiconductor manufactured from silicon carbide (SiC).
Methods and semiconductor circuits are described in which a polysilicon resistor body is formed over a semiconductor substrate. A first dopant species is implanted into the polysilicon resistor body at a first angle about parallel to a surface normal of a topmost surface of the polysilicon resistor body. A second dopant species is implanted into the polysilicon resistor body at a second angle greater than about 10° relative to the surface normal. The combination of implants reduces the different between the temperature coefficient (tempco) of resistance of narrow resistors relative to the tempco of wide resistors, and brings the tempco of the resistors closer to a preferred value of zero.
A display device having a display region and a peripheral region in contact with the display region above a substrate is provided. The display region has a plurality of pixels each including a transistor, an insulating film above the transistor, a pixel electrode arranged above the insulating film and electrically connected to the transistor, and a common electrode above the insulating film, a video signal line and a gate signal line electrically connected to the transistor, and liquid crystal layer above the plurality of pixels. The peripheral region has a terminal electrically connected to the video signal line, a wiring arranged parallel to the gate wiring between the display region and the terminal, and a plurality of first electrodes above the wiring. The insulating film covers the wiring, and the wiring is electrically connected to the plurality of first electrodes via an opening in the insulating film.
A display device includes a display panel including a first display area including first pixels, and a second display area including a pixel portion, in which second pixels are disposed, and a transmission portion through which light is transmitted. The pixel portion of the second display area includes a base member, a metal layer disposed on the base member to define the transmission portion, a first active layer disposed on the metal layer and including a first material, and a first gate layer disposed on the first active layer. A hole is defined through the metal layer to overlap at least a part of the first active layer in a thickness direction.
A display device including: a substrate; an active layer, and including channel and conductive regions; a first conductive layer including a driving gate electrode and a scan line in a first direction; a second conductive layer including a storage line; a third conductive layer including a first connecting member above the storage line; an insulating layer between the storage line and the first connecting member; and a data line and a driving voltage line crossing the scan line in a second direction, wherein the first connecting member electrically connects the driving gate electrode and a conductive region, the driving voltage line overlaps the first connecting member, the insulating layer includes first and second sub-insulating layers, and an edge of the second sub-insulating layer substantially overlaps an edge of the first connecting member in a thickness direction of the display device.
A display panel and a display device are provided, and the display panel includes a bonding area, a thin film transistor functional layer, and a conductive structure layer disposed in order. A part of the thin film transistor functional layer disposed on the bonding area includes a first inorganic layer and a plurality of signal lines. The conductive structure layer includes a second inorganic layer and a conductive layer disposed in order, and a part of the second inorganic layer disposed in the bonding area is disposed on the signal line and is directly disposed on the first inorganic layer.
A display substrate, a manufacturing method therefor and a pixel driving circuit, the display substrate includes: a base substrate; a first conductive layer, which includes a first signal line, a second signal line, and an additional pad layer, on the base substrate; a pixel defining layer on the first conductive layer and having an opening; and an electroluminescent material layer in the opening and including a first end portion and a second end portion, an orthographic projection of the first end portion on the base substrate falls within that of the first signal line, an orthographic projection of the second end portion on the base substrate falls within that of the additional pad layer, and the orthographic projections of the first end portion and the second end portion are respectively located on both sides of an orthographic projection of the second signal line on the base substrate.
A display apparatus includes first and second subpixel electrodes on a planarization layer including first and second via holes. The first subpixel includes a first pixel definition layer including a first opening exposing a portion of a first pixel electrode corresponding to a first emission portion. The first pixel electrode is connected to a first pixel circuit through the first via hole. The second subpixel includes a second pixel definition layer including a second opening exposing a portion of a second pixel electrode corresponding to a second emission portion. The second pixel electrode is connected to a second pixel circuit through the second via hole. A second distance defined as a shortest distance from an inner surface of the second opening to the second via hole is greater than a first distance defined as a shortest distance from an inner surface of the first opening to the first via hole.
A method of manufacturing a display apparatus includes forming a thin-film transistor on a substrate and forming a planarization layer to cover the thin-film transistor, forming, on the planarization layer, a pixel electrode electrically connected to the thin-film transistor and a pixel defining layer exposing at least a center portion of the pixel electrode, and defining at least one groove having a closed curve shape at a location corresponding to a second non-display area. When the thin-film transistor is formed, a voltage line is also formed at a location corresponding to a first non-display area. When the at least one groove is formed, a portion of the planarization layer disposed between the pad area and the display area is simultaneously removed such that a portion of the voltage line between the pad area and the display area is exposed.
An organic light-emitting device and display apparatus, the device including a first electrode; a second electrode facing the first electrode; an emission layer between the first and second electrode; a hole control layer between the first electrode and the emission layer; and an electron control layer between the emission layer and the second electrode, wherein the emission layer includes a plurality of sub-emission layers to emit light having different wavelengths, at least portions of the plurality of sub-emission layers do not overlap one another, the plurality of sub-emission layers include: a first sub-emission layer including a first color light-emitting dopant, and a second sub-emission layer including a second color light-emitting dopant, the first and second sub-emission layers each include a hole-transporting and electron-transporting host which form an exciplex, and a triplet energy of the exciplex is equal to or greater than triplet energies of the first and second color light-emitting dopant.
A preparation method of a display panel includes: forming multiple compensation groups on a substrate to obtain an array substrate, where the multiple compensation groups include at least first compensation group and second compensation group, and brightness difference of light-emitting elements of same light-emitting color in the first compensation group and the second compensation group under a same gray scale is larger than a preset value; calculating thicknesses of first color film layer, second color film layer and third color film layer corresponding to each of the multiple compensation groups respectively; forming the first color film layer, the second color film layer and the third color film layer on light-emitting side of the first light-emitting element, the second light-emitting element, and the third light-emitting element respectively according to the thicknesses of the first color film layer, the second color film layer and the third color film layer obtained by calculation.
A light emitting device, includes: a substrate; a light emitting element on the substrate, the light emitting element having a first end portion and a second end portion arranged in a longitudinal direction; one or more partition walls disposed on the substrate, the one or more partition walls being spaced apart from the light emitting element; a first reflection electrode adjacent the first end portion of the light emitting element; a second reflection electrode adjacent the second end portion of the light emitting element; a first contact electrode connected to the first reflection electrode and the first end portion of the light emitting element; an insulating layer on the first contact electrode, the insulating layer having an opening exposing the second end portion of the light emitting element and the second reflection electrode to the outside; and a second contact electrode on the insulating layer.
A pixel includes a workpiece having a protrusion and a bulk, wherein the protrusion extends from an upper surface of the bulk. The pixel further includes a protrusion doping region in the protrusion. The pixel further includes a photosensitive device comprising a plurality of first regions, wherein each of the plurality of first regions is in the bulk and the protrusion.
According to one embodiment, an optical sensor device includes an insulating substrate, a first conductive layer and an optical sensor element disposed between the insulating substrate and the first conductive layer. The optical sensor element is electrically connected to the first conductive layer and covered by the first conductive layer. The optical sensor element includes a first semiconductor layer formed of an oxide semiconductor and controls an amount of charge flowing to the first conductive layer according to an amount of incident light to the first semiconductor layer.
A semiconductor optical sensor (1) is provided with: a substrate (2) integrating a plurality of photodetector active areas (4); and a CMOS layer stack (6) arranged on the substrate (2) and including a number of dielectric (6a) and conductive (6b) layers. UV conversion regions (10) are arranged above a number of first photodetector active areas (4) to convert UV light radiation into visible light radiation towards the first photodetector active areas (4), so that the first photodetector active areas (4) are designed to detect UV light radiation. In particular, the first photodetector active areas (4) are alternated to a number of second photodetector active areas (4), designed to detect visible light radiation, in an array (15) of photodetection units (16) of the optical sensor (1), defining a single image detection area (15′), sensitive to both UV and visible light radiation with a same spatial resolution.
An image sensor and a method of manufacturing thereof are provided. The image sensor includes a substrate, a grid structure, and color filters. The substrate includes a pixel separation structure defining pixel regions, and a sub-pixel regions for each pixel region. The grid structure is disposed on the substrate and includes first fence segments provided between the sub-pixel regions, and second fence segments provided between neighboring pixel regions. The grid structure defines openings corresponding respectively to the sub-pixel regions. The color filters are disposed in the openings defined by the grid structure. Each of the color filters has a flat top surface and the flat top surface of each color filter is parallel to a bottom surface thereof.
There is provided a solid-state imaging device including a substrate having a surface over which a plurality of photodiodes are formed, and a protection film that is transparent, has a water-proofing property, and includes a side wall part vertical to the surface of the substrate and a ceiling part covering a region surrounded by the side wall part, the side wall part and the ceiling part surrounding a region where the plurality of photodiodes are arranged over the substrate.
An image sensor includes a pixel with a photosensitive region accommodated within a semiconductor substrate and a MOS capacitive element with a conducting electrode electrically isolated by a dielectric layer. The dielectric layer forms an interface with both the photosensitive region and the semiconductor substrate, the interface of the dielectric layer including charge traps. A control circuit biases the electrode of the MOS capacitive element with a charge pumping signal designed to generate an alternation of successive inversion regimes and accumulation regimes in the photosensitive region. The charge pumping signal produces recombinations of photogenerated charges in the charge traps of the interface of the dielectric layer and the generation of a substrate current to empty recombined photogenerated charges.
An array substrate includes a substrate, a protection layer, and a photodiode. The protection layer is disposed over the substrate, has a single layer-structure, and is provided with a through-hole therein. The photodiode includes a lower electrode, a PN junction and an upper electrode, which are sequentially over the substrate. The PN junction is within the through-hole. The protection layer and the PN junction of the photodiode have a substantially same thickness. The array substrate further includes a thin-film transistor over the substrate. An orthographic projection of an active layer of the thin-film transistor on the substrate does not overlap with an orthographic projection of the PN junction of the photodiode on the substrate.
In some embodiments, the present disclosure relates to an integrated chip that includes a gate electrode arranged over a substrate. A gate dielectric layer is arranged over the gate electrode, and an active structure is arranged over the gate dielectric layer. A source contact and a drain contact are arranged over the active structure. The active structure includes a stack of cocktail layers alternating with first active layers. The cocktail layers include a mixture of a first material and a second material. The first active layers include a third material that is different than the first and second materials. The bottommost layer of the active structure is one of the cocktail layers.
An integrated circuit device includes: a lower memory stack including a plurality of lower word lines located on a substrate, an upper memory stack located on the lower memory stack and including a plurality of upper word lines, at least one first lower interconnection layer extending in a horizontal direction at a first vertical level between the lower memory stack and the upper memory stack, and configured to be electrically connected to at least one lower word line selected from the plurality of lower word lines, a separate insulating film covering at least one first lower interconnection layer, and at least one first upper interconnection layer extending in the horizontal direction at a second vertical level higher than the upper memory stack, and configured to be electrically connected to at least one upper word line selected from the upper word lines.
A semiconductor memory includes metallic lines on a substrate and including an uppermost metallic line, a semiconductor conduction line on the uppermost metallic line, a vertical structure penetrating the semiconductor conduction line and metallic lines, and including a vertical structure that includes an upper channel film, a first lower channel film, and an upper connection channel film connecting the upper channel film and the first lower channel film between a bottom of the semiconductor conduction line and a bottom of the uppermost metallic line, and a first cutting line through the metallic lines and the semiconductor conduction line, and including a first upper cutting line through the semiconductor conduction line, and a first lower cutting line through the plurality of metallic lines, a width of the first upper cutting line being greater than a width of an extension line of a sidewall of the first lower cutting line.
Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a memory stack including interleaved conductive layers and dielectric layers above the substrate, and a memory string extending vertically through the memory stack. The memory string includes a single crystalline silicon plug in a lower portion of the memory string, a memory film above the single crystalline silicon plug and along a sidewall of the memory string, and a single crystalline silicon channel over the memory film and along the sidewall of the memory string.
A three-dimensional semiconductor memory device is disclosed. The device may include a substrate including a cell array region and a connection region provided at an end portion of the cell array region, an electrode structure extending from the cell array region to the connection region, the electrode structure including electrodes sequentially stacked on the substrate, an upper insulating layer provided on the electrode structure, a first horizontal insulating layer provided in the upper insulating layer and extending along the electrodes, and first contact plugs provided on the connection region to penetrate the upper insulating layer and the first horizontal insulating layer. The first horizontal insulating layer may include a material having a better etch-resistive property than the upper insulating layer.
Integrated circuit (“IC”) layouts are disclosed for improving performance of memory arrays, such as static random access memory (“SRAM”). An exemplary IC device includes an SRAM cell and an interconnect structure electrically coupled to the SRAM cell. The interconnect structure includes a first metal layer electrically coupled to the SRAM cell that includes a bit line, a first voltage line having a first voltage, a word line landing pad, and a second voltage line having a second voltage that is different than the first voltage. The first voltage line is adjacent the bit line. The word line landing pad is adjacent the first voltage line. The second voltage line is adjacent the word line landing pad. A second metal layer is disposed over the first metal layer. The second metal layer includes a word line that is electrically coupled to the word line landing pad.
Semiconductor device is provided. The semiconductor device includes a base substrate including a first region, a second region, and a third region arranged along a first direction, a first doped layer in the base substrate at the first region and a second doped layer in the base substrate at the third region, a first gate structure on the base substrate at the second region, a first dielectric layer on the base substrate coving the first doped layer, the second doped layer, and sidewalls of the first gate structure, first trenches in the first dielectric layer at the first region and the third region respectively, a first conductive layer in the first trenches, a second conductive layer on a surface of the first conductive layer at the second sub-regions after forming the first conductive layer, and a third conductive layer on the contact region of the first gate structure.
A method of manufacturing a semiconductor device includes forming a first pattern structure having a first opening and a second pattern structure having a second opening on a substrate, forming a gap fill layer in the second opening, forming fences and contact structures in the first opening, removing the gap fill layer in the second opening, forming an upper conductive layer to cover the first and second pattern structures, the fences, and the contact structures, forming a mask pattern based on a photolithography process using the second pattern structure covered by the upper conductive layer as an align mark, and etching the upper conductive layer using the mask pattern to form upper conductive patterns. A width of the second opening is larger than a width of a first opening. A thickness of the upper conductive layer is smaller than a depth of the second opening.
Disclosed herein are IC structures, packages, and devices that include III-N transistors integrated on the same support structure as non-III-N transistors (e.g., Si-based transistors), using semiconductor regrowth. In one aspect, a non-III-N transistor may be integrated with an III-N transistor by depositing a III-N material, forming an opening in the III-N material, and epitaxially growing within the opening a semiconductor material other than the III-N material. Since the III-N material may serve as a foundation for forming III-N transistors, while the non-III-N material may serve as a foundation for forming non-III-N transistors, such an approach advantageously enables implementation of both types of transistors on a single support structure. Proposed integration may reduce costs and improve performance by enabling integrated digital logic solutions for III-N transistors and by reducing losses incurred when power is routed off chip in a multi-chip package.
An electronic circuit includes a first electronic component formed above a buried insulating layer of a substrate and a second electronic component formed under the buried insulating layer. The insulating layer is thoroughly crossed by a semiconductor well. The semiconductor well electrically couples a terminal of the first electronic component to a terminal of the second electronic component.
A semiconductor package includes a redistribution structure including an insulating layer and a redistribution layer on the insulating layer, and having a first surface and a second surface opposing the first surface, and an under-bump metal (UBM) structure including an UBM pad protruding from the first surface of the redistribution structure, and an UBM via penetrating through the insulating layer and connecting the redistribution layer and the UBM pad. A lower surface of the UBM via has a first area in contact with the UBM pad, and a second area having a step configuration relative to the first area and that extends outwardly of the first area.
A semiconductor device according to an embodiment includes: a bonding substrate which includes a first chip forming portion having first metal pads provided at a semiconductor substrate and a first circuit connected to the first metal pads, and a second chip forming portion having second metal pads joined to the first metal pads and a second circuit connected to the second metal pads and being bonded to the first chip forming portion; and an insulating film which is filled into a non-bonded region between the first chip forming portion and the second chip forming portion at an outer peripheral portion of the bonding substrate. At least a part of the insulating film contains at least one selected from the group consisting of silicon nitride and nitrogen-containing silicon carbide.
A semiconductor device package includes a substrate and a shielding layer. The substrate has a first surface, a second surface opposite to the first surface and a first lateral surface extending between the first surface and the second surface. The substrate has an antenna pattern disposed closer to the second surface than the first surface. The shielding layer extends from the first surface toward the second surface of the substrate. The shielding layer covers a first portion of the first lateral surface adjacent to the first surface of the substrate. The shielding layer exposes a second portion of the first lateral surface adjacent to the second surface of the substrate.
Embodiments include semiconductor packages. A semiconductor package includes a plurality of build-up layers and a plurality of conductive layers in the build-up layers. The conductive layers include a first conductive layer and a second conductive layer. The first conductive layer is over the second conductive layer and build-up layers, where a first via couples the first and second conductive layers. The semiconductor package also includes a thin film capacitor (TFC) in the build-up layers, where a second via couples the TFC to the first conductive layer, and the second via has a thickness less than a thickness of the first via. The first conductive layer may be first level interconnects. The build-up layers may be dielectrics. The TFC may include a first electrode, a second electrode, and a dielectric. The first electrode may be over the second electrode, and the dielectric may be between the first and second electrodes.
An integrated circuit includes a substrate, an interconnection part, and an isolating region located between the substrate and the interconnection part. A decoy structure is located within the isolating region and includes a silicided sector which is electrically isolated from the substrate.
The present disclosure provides a semiconductor device structure with a manganese-containing interconnect structure and a method for forming the semiconductor device structure. The semiconductor device structure includes a first interconnect structure disposed in a semiconductor substrate, a dielectric layer disposed over the semiconductor substrate, and a second interconnect structure disposed in the dielectric layer and electrically connected to the first interconnect structure. The first interconnect structure includes a first conductive line, and a first manganese-containing layer disposed over the first conductive line. The second interconnect structure includes a second conductive line, and a second manganese-containing layer disposed between the second conductive line and the dielectric layer.
A semiconductor package is provided. The semiconductor package includes a lower structure including an upper insulating layer and an upper pad; and a semiconductor chip provided on the lower structure and comprising a lower insulating layer and a lower pad. The lower insulating layer is in contact with and coupled to the upper insulating layer and the lower pad is in contact with and coupled to the upper pad, and a lateral side of the semiconductor chip extends between an upper side and a lower side of the semiconductor chip and comprises a recessed portion.
A semiconductor device including an interlayer insulating layer on a substrate; a conductive line on the interlayer insulating layer; and a contact plug penetrating the interlayer insulating layer, the contact plug being connected to the conductive line, wherein the contact plug includes an upper pattern penetrating an upper region of the interlayer insulating layer, the upper pattern protruding upwardly from a top surface of the interlayer insulating layer, the upper pattern includes a first portion penetrating the upper region of the interlayer insulating layer; and a second portion protruding upwardly from the top surface of the interlayer insulating layer, and a width of a lower region of the second portion in a direction parallel to a top surface of the substrate is greater than a width of an upper region of the second portion in the direction parallel to the top surface of the substrate.
A semiconductor module includes at least two semiconductor elements connected in parallel; a control circuit board placed between the at least two semiconductor elements; a control terminal for external connection; a first wiring member that connects the control terminal and the control circuit board; and a second wiring member that connects a control electrode of one of the at least two semiconductor elements and the control circuit board, wherein the second wiring member is wire-bonded from the control electrode towards the control circuit board, and has a first end on the control electrode and a second end on the control circuit board, the first end having a cut end face facing upward normal to a surface of the control electrode and the second end having a cut end face facing sideways parallel to a surface of the control circuit board.
There is described a spray chamber for cooling a computer processor on a circuit board. The spray chamber comprises: a wall assembly for sealable mounting on an exposed cooling surface of the computer processor defining an enclosure having a top opening and a bottom opening which opens on the top surface of the computer processor; and a lid for covering the top opening of the wall assembly in a sealable manner, the lid having a nozzle which sprays coolant that impinges on the exposed cooling surface of the computer processor.
Some implementations of the disclosure are directed to a thermal interface material. In some implementations, a method comprises: applying a solder paste between a surface of a heat generating device and a surface of a heat transferring device to form an assembly; and reflow soldering the assembly to form a solder composite, wherein the solder composite provides a thermal interface between the heat generating device and the heat transferring device, wherein the solder paste comprises: a solder powder; particles having a higher melting temperature than a soldering temperature of the solder paste, wherein the solder paste has a volume ratio of solder powder to high melting temperature particles between 5:1 and 1:1.5; and flux.
A semiconductor device has an electronic component assembly with a substrate and a plurality of electrical components disposed over the substrate. A conductive post is formed over the substrate. A molding compound sheet is disposed over the electrical component assembly. A carrier including a first electrical circuit pattern is disposed over the molding compound sheet. The carrier is pressed against the molding compound sheet to dispose a first encapsulant over and around the electrical component assembly and embed the first electrical circuit pattern in the first encapsulant. A shielding layer can be formed over the electrical components assembly. The carrier is removed to expose the first electrical circuit pattern. A second encapsulant is deposited over the first encapsulant and the first electrical circuit pattern. A second electrical circuit pattern is formed over the second encapsulant. A semiconductor package is disposed over the first electrical circuit pattern.
An IC structure includes a semiconductor fin, first and second gate structures, and an isolation structure. The semiconductor fin extends from a substrate. The first gate structure extends above a top surface of the semiconductor fin by a first gate height. The second gate structure is over the semiconductor fin. The isolation structure is between the first and second gate structures, and has a lower dielectric portion embedded in the semiconductor fin and an upper dielectric portion extending above the top surface of the semiconductor fin by a height that is the same as the first gate height. When viewed in a cross section taken along a longitudinal direction of the semiconductor fin, the upper dielectric portion of the isolation structure has a rectangular profile with a width greater than a bottom width of the lower dielectric portion of the isolation structure.
Implementations of methods of singulating a plurality of die included in a substrate may include forming a plurality of die on a first side of a substrate, forming a backside metal layer on a second side of a substrate, applying a photoresist layer over the backside metal layer, patterning the photoresist layer along a die street of the substrate, and etching through the backside metal layer located in the die street of the substrate. The substrate may be exposed through the etch. The method may also include singulating the plurality of die included in the substrate through removing a substrate material in the die street.
The present disclosure relates to the field of semiconductor packaging processes, and provides a semiconductor structure and a forming method thereof. The forming method includes: providing a semiconductor substrate, where a surface of the semiconductor substrate is provided with an exposed conductive structure; forming a passivation layer on the surface of the semiconductor substrate and a surface of the exposed conductive structure; etching the passivation layer to form a recess, where a bottom of the recess exposes one end of the conductive structure; forming an adhesion layer on a surface of the recess; and etching to form a hole in the bottom of the recess.
A method comprises forming a gate structure between gate spacers; etching back the gate structure to fall below top ends of the gate spacers; forming a gate dielectric cap over the etched back gate structure; performing an ion implantation process to form a doped region in the gate dielectric cap; depositing a contact etch stop layer over the gate dielectric cap and an ILD layer over the contact etch stop layer; performing a first etching process to form a gate contact opening extending through the ILD layer and terminating prior to reaching the doped region of the gate dielectric cap; performing a second etching process to deepen the gate contact opening, wherein the second etching process etches the doped region of the gate dielectric cap at a slower etch rate than etching the contact etch stop layer; and forming a gate contact in the deepened gate contact opening.
Disclosed is an electrostatic chuck with a cooling structure using a cooling gas. The electrostatic chuck comprises: an electrostatic chuck plate that includes a plurality of first cooling gas holes formed in a first region and a plurality of second cooling gas holes formed in a second region; and a base member that includes a first flow path pattern connected to the plurality of first cooling gas holes, a second flow path pattern connected to the plurality of second cooling gas holes, and an inlet moving pattern changing a position of an inlet of a cooling gas injected into the first flow path pattern.
Environmental control material holders can retain environmental control material within wafer carriers, allowing the environmental control material to protect wafers from moisture while also securing the environmental control material. The environmental control material holders may include a baseplate and tabs defining spaces to hold environmental control material, and can be configured to engage a handle of a wafer cassette. The environmental control material holders may retain one or more environmental control materials. Additionally, the environmental control material holders can be configured to also retain a humidity indicator.
Disclosed is a substrate treating apparatus that performs a cleaning treatment on substrates. A treating block includes a plurality of treating units in an upper and lower stages, respectively. The treating block includes a front face cleaning unit and a back face cleaning unit, each being at least one in number, in the upper stage. The treating block includes at least one tower unit including the front face cleaning unit and the back face cleaning unit, each being at least one in number, in the lower stage. Moreover, a transportation block is provided that includes a center robot in each of the upper and lower stages.
The disclosure describes devices, systems, and methods for integrating load locks into a factory interface footprint space. A factory interface for an electronic device manufacturing system can include an interior volume defined by a bottom, a top and a plurality of sides, a first load lock disposed within the interior volume of the factory interface, and a first factory interface robot disposed within the interior volume of the factory interface, wherein the first factory interface robot is configured to transfer substrates between a first set of substrate carriers and the first load lock.
A substrate debonding apparatus configured to separate a support substrate attached to a first surface of a device substrate by an adhesive layer, the substrate debonding apparatus including a substrate chuck configured to support a second surface of the device substrate, the second surface being opposite to the first surface of the device substrate; a light irradiator configured to irradiate light to an inside of the adhesive layer; and a mask between the substrate chuck and the light irradiator, the mask including an opening through which an upper portion of the support substrate is exposed, and a first cooling passage or a second cooling passage, the first cooling passage being configured to provide a path in which a coolant is flowable, the second cooling passage being configured to provide a path in which air is flowable and to provide part of the air to a central portion of the opening.
A wafer drying method that detects molecular contaminants in a drying gas as a feedback parameter for a multiple wafer drying process is disclosed. For example, the method includes dispensing, in a wafer drying module, a drying gas over a batch of wafers. Further, the method includes collecting the drying gas from an exhaust of the wafer drying module and determining the concentration of contaminants in the drying gas. The method also includes re-dispensing the drying gas over the batch of wafers if the concentration of contaminants is greater than a baseline value and transferring the batch of wafers out of the wafer drying module if the concentration is equal to or less than the baseline value.
A semiconductor package and a method of forming the semiconductor package are provided. The method includes providing a first substrate, forming a wiring structure containing at least two first wiring layers, disposing a first insulating layer between adjacent two first wiring layers, and patterning the first insulating layer to form a plurality of first through-holes. The adjacent two first wiring layers are electrically connected to each other through the plurality of first through-holes. The method also includes providing at least one semiconductor element each including a plurality of pins. In addition, the method includes disposing the plurality of pins of the each semiconductor element on a side of the wiring structure away from the first substrate. Further, the method includes encapsulating the at least one semiconductor element, and placing a ball on a side of the wiring structure away from the at least one semiconductor element.
A semiconductor device includes: an isolation insulating layer; fin structures protruding from the isolation insulating layer; gate structures, each having a metal gate and a cap insulating layer disposed over the metal gate; a first source/drain epitaxial layer and a second source/drain epitaxial layer disposed between two adjacent gate structures; and a first conductive contact disposed on the first source/drain epitaxial layer, and a second conductive contact disposed on the second source/drain epitaxial layer; a separation isolation region disposed between the first and second conductive contact; and an insulating layer disposed between the separation isolation region and the isolation insulating layer. The separation isolation region is made of a different material than the insulating layer.
A method of fabricating semiconductor fins, including, patterning a film stack to produce one or more sacrificial mandrels having sidewalls, exposing the sidewall on one side of the one or more sacrificial mandrels to an ion beam to make the exposed sidewall more susceptible to oxidation, oxidizing the opposite sidewalls of the one or more sacrificial mandrels to form a plurality of oxide pillars, removing the one or more sacrificial mandrels, forming spacers on opposite sides of each of the plurality of oxide pillars to produce a spacer pattern, removing the plurality of oxide pillars, and transferring the spacer pattern to the substrate to produce a plurality of fins.
A substrate bonding apparatus for bonding a first substrate to a second substrate includes a first bonding chuck supporting the first substrate, a second bonding chuck disposed above the first bonding chuck and supporting the second substrate, a resonant frequency detector detecting a resonant frequency of a bonded structure with the first substrate and the second substrate which are at least partially bonded to each other, and a controller controlling a distance between the first bonding chuck and the second bonding chuck according to the detected resonant frequency of the bonded structure.
Systems and methods for use in introducing samples to an analytical instrument. The systems and methods are adaptable to process either a liquid sample or a gaseous sample, including samples containing particle contaminants, for subsequent analysis using an analytical instrument.
The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.
Lithographic apparatuses suitable for complementary e-beam lithography (CEBL) are described. In an example, a method of forming a pattern for a semiconductor structure includes forming a pattern of parallel lines above a substrate. The method also includes aligning the substrate in an e-beam tool to provide the pattern of parallel lines parallel with a scan direction of the e-beam tool. The e-beam tool includes a column having a blanker aperture array (BAA) with a staggered pair of columns of openings along an array direction orthogonal to the scan direction. The method also includes forming a pattern of cuts or vias in or above the pattern of parallel lines to provide line breaks for the pattern of parallel lines by scanning the substrate along the scan direction. A cumulative current through the column has a non-zero and substantially uniform cumulative current value throughout the scanning.
A system includes a dry contact with a first pair of switchable electrodes, a wet contact with a second pair of switchable electrodes, an arc suppressor, and a controller circuit operatively coupled to the arc suppressor and the first and second pairs of switchable electrodes. The controller circuit is configured to detect a failure of the wet contact and determine a stick duration associated with the first pair of switchable electrodes. The stick duration is based on a duration between an instance when a coil of the dry contact is deactivated and an instance of separation of the first pair of switchable electrodes during deactivation of the coil. The controller circuit generates, in-situ and in real-time, health assessment for the first pair of switchable electrodes based on a comparison of the determined stick duration with an average stick duration associated with a window of observation.
A multilayer ceramic capacitor includes a ceramic body including a dielectric layer and first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween, and first and second external electrodes disposed outside of the ceramic body and connected to the first and second internal electrodes, respectively. The ceramic body includes an active portion including of the first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween to form capacitance, and a cover portion disposed in upper and lower portions of the active portion. The cover portion has a larger number of pores than the dielectric layer of the active portion, and the cover portion includes a ceramic-polymer composite filled with a polymer in the pores of the cover portion.
A multilayer ceramic capacitor (10) has a laminate body (20) constituted by dielectric layers (17) and internal electrode layers (18) stacked alternately. The dielectric layers (17) contain (Ba(1-x-y)CaxSry)m(Ti(1-z)Zrz)O3, where 0.03≤x≤0.16, 0≤y≤0.02, 0
A ceramic electronic component includes a multilayer chip having a substantially rectangular parallelepiped shape and including dielectric layers and internal electrode layers that are alternately stacked, the internal electrode layers being alternately exposed to two edge faces of the multilayer chip facing each other, and a pair of external electrodes respectively formed on the two edge faces so as to be connected to the internal electrode layers exposed on the respective edge faces, each external electrode extending to at least one side face of the multilayer chip, wherein in the multilayer chip, oxides including Zn and Ni are present around the internal electrode layer in a vicinity of a connection part connecting the internal electrode layer to the external electrode.
A carrier includes first and second container portions that are assembled together to provide a structure the supports and retains a capacitor. The first container portion and the second container portion are assembled together in a configuration in which the edges of the first wall structures face corresponding ones of the edges of the second wall structures, and the edges of the first wall structures are overlapping with respect to the corresponding ones of the edges of the second wall structures when the carrier is viewed in side view.
Asymmetric AC to DC autotransformer for turboelectric propulsion, and associated systems and methods are described herein. In one embodiment, an asymmetric AC to DC autotransformer includes: a first coil, a second coil and a third coil of a delta winding Each coil is energized at its corresponding input phase. A first plurality of correction windings coupled to the first coil, a second plurality of correction windings coupled to the second coil, and a third plurality of correction windings coupled to the third coil. A bridge rectifier having a plurality of rectifiers is coupled to respective individual correction windings. Phases of the individual correction windings are asymmetric such that individual phase voltages are controlled relative to the opposite input phase. Voltages are unbalanced relative to neutral.
A reactor includes a plurality of windings, a coupling core, and an inductor core. A coupling core configured to form a coupling closed magnetic circuit that magnetically couples the plurality of windings, the plurality of windings being wound around the coupling core; and. An inductor core, which includes a main part, a first projection part projecting from one end of the main part, and a second projection part projecting from another end of the main part, and each of the first projection part and the second projection part is magnetically connected to the coupling core. The inductor core forms an inductor closed magnetic circuit together with a part of the coupling core around which one winding of the plurality of windings is wound.
A magnetic device comprises two base portions and magnetic pillars, wherein each of the two base portions has a first surface and the two first surfaces are faced to each other, and the magnetic pillars are disposed between the two first surfaces along a first direction, wherein, in the first direction, two of the magnetic pillars located at the outermost side of the base portion are a first corner pillar and a second corner pillar respectively, n of the magnetic pillars having the same cross-sectional area and located at the center position of the base portion are n center pillars, and cross-sectional area of the magnetic pillars are gradually increased from the first corner pillar to the center pillar closest to the first corner pillar, and from the second corner pillar to the center pillar closest to the second corner pillar.
To provide a waterproof cable that is easily manufactured and improves waterproofness.
The waterproof cable includes: a first cable; a second cable, an end of which is connected with an end of the first cable; a first resin member that coats a connecting part and is formed by insert-molding; a second resin member that coats the first resin member and is formed by insert-molding; and a third resin member that coats the second resin member and is formed by insert-molding.
An object of the present invention is to provide a charge stripping film in a charge stripping device of an ion beam, which has high heat resistance and no toxicity, with which there is no risk of activation, with which an ion beam can be made multivalent even if the charge stripping film is thin, and which is resistant to high-energy beam radiation over an extended period of time. The present invention comprises a charge stripping film used in a device which strips a charge of an ion beam, wherein the charge stripping film is a rotary charge stripping film comprising a carbon film having a thermal conductivity of 20 W/mK or more in a film surface direction at 25° C., and a film thickness of the carbon film is more than 3 μm and less than 10 μm. The present invention also comprises a charge stripping film used in a device which strips a charge of an ion beam, wherein the charge stripping film is a rotary charge stripping film comprising a carbon film produced by a polymer annealing method, and a film thickness of the carbon film is more than 3 μm and less than 10 μm.
A method of decommissioning a nuclear facility including a plurality of sandboxes that cover a plurality of upper penetration holes, includes: exposing the plurality of pipes through the plurality of upper penetration holes by removing the plurality of sandboxes; and cutting the plurality of pipes through the plurality of upper penetration holes.
An example method includes directing gas, via one or more first valves, from within an inner electrode to an acceleration region between the inner electrode and an outer electrode that substantially surrounds the inner electrode, directing gas, via two or more second valves, from outside the outer electrode to the acceleration region, and applying, via a power supply, a voltage between the inner electrode and the outer electrode, thereby converting at least a portion of the directed gas into a plasma saving a substantially annular cross section, the plasma flowing axially within the acceleration region toward a first end of the inner electrode and a first end of the outer electrode and, thereafter, establishing a Z-pinch plasma that flows between the first end of the outer electrode and the first end of the inner electrode. Related plasma confinement systems and methods are also disclosed herein.
A system for updating a descriptor trail using artificial intelligence. The system is configured to display on a graphical user interface operating on a processor connected to a memory an element of diagnostic data. The system is configured to receive from a user client device an element of user constitutional data. The system is configured to display on a graphical user interface the element of user constitutional data. The system is configured to prompt an advisor input on a graphical user interface. The system is configured to receive from an advisor client device an advisor input containing an element of advisory data. The system is configured to generate an updated descriptor trail as a function of the advisor input. The system is configured to display the updated descriptor trail on a graphical user interface.
A method, computer program product, and computing system for proactive encounter scanning is executed on a computing device and includes obtaining encounter information of a patient encounter. The encounter information is proactively processed to determine if the encounter information is indicative of one or more medical conditions and to generate one or more result set. The one or more result sets are provided to the user.
Methods and apparatus of a smart electronic health records platform for veterinarians and human providers are disclosed. The platform integrates clinical IT systems with patient tracking whiteboards, billing processes and artificial intelligence software to increase efficiency of the patient treatment process. By aggregating many services into one platform, interaction and communication between clinics and patients will be enhanced and streamlined.
The present invention relates to a method for reducing the complexity of bio-crudes. The method includes (a) obtaining experimental data of quantitative and qualitative analyses for the bio-crudes, (b) grouping compounds contained in the bio-crudes according to a predetermined basis based on the experimental data, (c) selecting representative compounds from among the compounds belonging to the same group, and (d) reconstituting the bio-crudes as a mixture of the representative compounds.
A high-throughput virtual drug screening system based on molecular fingerprints and deep learning, includes a deep-learning model online-modeling subsystem and an online virtual-screening subsystem. The system combines the molecular fingerprints and a deep neural network method to construct a high-throughput virtual drug screening system. The system includes built-in structural-diversity screening libraries and realizes the online automatic construction of deep learning models and virtual screening. The system helps researchers in the drug discovery industry such as medicinal chemistry to conduct rapid screening through their desired targets to obtain potential active compounds and accelerate drug discovery.
A storage device includes 3D NAND including layers of multi-level cells. Test reads are performed by reading only LSB pages and reading layers in a repeating pattern of reading two and skipping two. A test read of a block is performed when its read count reaches a threshold. The counter threshold is updated according to errors detected during the test read such that the frequency of test reads increases with increase in errors detected. Counter thresholds according to errors may be specified in a table. The table may be selected as corresponding to a range of PEC values including the current PEC count of the 3D NAND. Each table further specifies a number of errors that will result in garbage collection being performed.
According to one embodiment, a memory system includes a non-volatile memory and a controller. The memory includes a plurality of storage areas. Each of the storage areas includes a plurality of memory cells to which threshold voltages are set in accordance with data. The controller acquires a first threshold voltage distribution of memory cells in a first storage area of the storage areas. The controller acquires a second threshold voltage distribution of memory cells in a second storage area of the storage areas. The controller detects non-normalcy in the first storage area or the second storage area from a first divergence quantity between the first threshold voltage distribution and the second threshold voltage distribution.
A memory sub-system configured to use first values of a plurality of optimized read voltages to perform a first read calibration, which determines second values of the plurality of optimized read voltages. A plurality of shifts, from the first values to the second values respectively, can be computed for the plurality of optimized read voltages respectively. After recognizing a pattern in the plurality of shifts that are computed for the plurality of voltages respectively, the memory sub-system can control and/or initiate a second read calibration based on the recognized pattern in the shifts.
Embodiments of erasing methods for a three-dimensional (3D) memory device are disclosed. The 3D memory device includes multiple decks vertically stacked over a substrate, wherein each deck includes a plurality of memory cells. The erasing method includes checking states of the plurality of memory cells of an erase-inhibit deck and preparing the erase-inhibit deck according to the states of the plurality of memory cells. The erasing method also includes applying an erase voltage at an array common source, applying a hold-release voltage on unselected word lines of the erase-inhibit deck, and applying a low voltage on selected word lines of a target deck.
A nonvolatile memory apparatus includes a memory cell array and a memory control circuit. The memory cell array includes a plurality of sub arrays each including a plurality of memory cells coupled to a plurality of bit lines. The memory control circuit sequentially couples thereto, based on a single read command signal, at least a single bit line disposed on the respective sub arrays to sequentially access a memory cell coupled to the at least single bit line.
Various embodiments provide methods for configuring a phase-change random-access memory (PCRAM) structures, such as PCRAM operating in a single-level-cell (SLC) mode or a multi-level-cell (MLC) mode. Various embodiments may support a PCRAM structure being operating in a SLC mode for lower power and a MLC mode for lower variability. Various embodiments may support a PCRAM structure being operating in a SLC mode or a MLC mode based at least in part on an error tolerance for a neural network layer.
A CAM array of compare memory cell circuits includes a decode column corresponding to each set, and each set includes at least one row of the compare memory cell circuits. Each decode column receives a set clock signal addressing the corresponding set and generates a set match signal in each row of the corresponding set. A column compare circuit generates compare data indicating a bit of a compare tag. A row match circuit generates, for each row, in response to the set match signal, a row match signal indicating the compare tag matches the binary tag stored in the row. Circuits and loads in a decode column employed to generate the set clock signal correspond to circuits generating the row match signal in each column of the CAM array to reduce a timing margin of the match indication and decrease the access time for the CAM array.
A sub-sense amplifier includes a semiconductor substrate, a first pair of complementary transistors, a second pair of complementary transistors, and at least one ground transistor. The first pair and second pair of complementary transistors and the ground transistor are formed on the semiconductor substrate. The first pair of complementary transistors are disposed in line symmetry with a center line of the sub-sense amplifier as a symmetry axis, and gates of the first pair of complementary transistors are coupled to a node. The second pair of complementary transistors are also disposed in line symmetry with the center line, wherein the current directions of the second pair of complementary transistors are the same. Sources and drains of the first pair of complementary transistors are coupled to gates and sources of the second pair of complementary transistors, respectively. The ground transistor connects in series with the second pair of complementary transistors.
A memory device, such as an MRAM memory, includes a memory array with a plurality of bit cells. The memory array is configured to store trimming information and store user data. A sense amplifier is configured to read the trimming information from the memory array, and a trimming register is configured to receive the trimming information from the sense amplifier. The sense amplifier is configured to receive the trimming information from the trimming register so as to operate in a trimmed mode for reading the user data from the memory array.
The magnetic tape includes a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which the magnetic layer includes one or more components selected from the group consisting of fatty acid and fatty acid amide, a C—H derived C concentration calculated from a C—H peak area ratio of C1s spectra obtained by X-ray photoelectron spectroscopic analysis performed on a surface of the magnetic layer at a photoelectron take-off angle of 10 degrees is equal to or greater than 45 atom %, and an absolute value ΔN of a difference between a refractive index Nxy measured regarding an in-plane direction of the magnetic layer and a refractive index Nz measured regarding a thickness direction of the magnetic layer is 0.25 to 0.40.
A speech-processing system configured to determine entities corresponding to ambiguous words such as anaphora (“he,” “she,” “they,” etc.) included in an utterance. The system may associate incoming utterances with a speaker identification (ID), device ID, and other data. The system then tracks entities referred to in utterances so that if a later utterance includes an ambiguous entity reference, the system may take the speaker ID, device ID, etc. from the ambiguous reference, along with the text of the utterance and other data, and compare that information to previously mentioned entities (or other entities that may be relevant) to identify the entity mentioned in the ambiguous statement. Once the entity is determined, the system may then complete command processing of the utterance using the identified entity.
Systems and processes for providing user-specific acoustic models are provided. In accordance with one example, a method includes, at an electronic device having one or more processors, receiving a plurality of speech inputs, each of the speech inputs associated with a same user of the electronic device; providing each of the plurality of speech inputs to a user-independent acoustic model, the user-independent acoustic model providing a plurality of speech results based on the plurality of speech inputs; initiating a user-specific acoustic model on the electronic device; and adjusting the user-specific acoustic model based on the plurality of speech inputs and the plurality of speech results.
A method includes receiving a designated event related to a second application while an execution screen of a first application is displayed on a display. The method also includes executing an artificial intelligent application in response to the designated event. The method further includes transmitting data related to the designated event to an external server, based on the executed artificial intelligent application. Additionally, the method includes sensing a user utterance related to the designated event for a designated period of time. The method also includes transmitting the user utterance to the external server. The method further includes receiving an action order for performing a function related to the user utterance from the external server. The method also includes executing the second application at least based on the received action order. The method further includes outputting a result of performing the function by using the second application.
Aspects of the subject disclosure may include, for example, a method in which a processing system generates a list of communications desired by a user, and determines an attentiveness level of the user with respect to equipment of the user currently in use, to determine whether the user is available to participate in a desired communication. The method also includes accessing equipment of a target party of the communication to determine an attentiveness level of the target party with respect to equipment of the target party, to determine whether the target party is available to participate in the communication. The method also includes generating a notice at the equipment of the user that the target party is available; and initiating the communication between the equipment of the user and the equipment of the target party. Other embodiments are disclosed.
The present disclosure provides a photo album management method. The method includes obtaining voice search information from a user, performing intent recognition on the voice search information to obtain an intent recognition result which indicates an intent of the user for a photo album, obtaining a voiceprint feature from the voice search information to determine identity information of the user, sending the intent recognition result and the identity information of the user, and opening the photo album according to the intent recognition result and the identity information.
In one embodiment, a domain-name based framework implemented in a digital assistant ecosystem uses domain names as unique identifiers for request types, requesting entities, responders, and target entities embedded in a natural language request. Further, the framework enables interpreting natural language requests according to domain ontologies associated with different responders. A domain ontology operates as a keyword dictionary for a given responder and defines the keywords and corresponding allowable values to be used for request types and request parameters. The domain-name based framework thus enables the digital assistant to interact with any responder that supports a domain ontology to generate precise and complete responses to natural language based requests.
A speech-processing system receives input data representing text. A first encoder processes segments of the text to determine embedding data representing the text, and a second encoder processes corresponding audio data to determine prosodic data corresponding to the text. The embedding and prosodic data is processed to create output data including a representation of speech corresponding to the text and prosody.
One embodiment of the invention provides a method for speaker identity and content de-identification under privacy guarantees. The method comprises receiving input indicative of privacy protection levels to enforce, extracting features from a speech recorded in a voice recording, recognizing and extracting textual content from the speech, parsing the textual content to recognize privacy-sensitive personal information about an individual, generating de-identified textual content by anonymizing the personal information to an extent that satisfies the privacy protection levels and conceals the individual's identity, and mapping the de-identified textual content to a speaker who delivered the speech. The method further comprises generating a synthetic speaker identity based on other features that are dissimilar from the features to an extent that satisfies the privacy protection levels, and synthesizing a new speech waveform based on the synthetic speaker identity to deliver the de-identified textual content. The new speech waveform conceals the speaker's identity.
A musical sound processing apparatus, a musical sound processing method, and a storage medium capable of generating musical sound full of interest are provided. The musical sound processing apparatus includes a first control unit configured to control a timing of sounding of a first tone in steps that come with an interval therebetween and a second control unit configured to control a timing of sounding of a second tone following or overlapping the first tone according to a first tempo, wherein the first control unit is configured to control the timing of sounding of the first tone according to the first tempo when timing information has not been acquired from outside and control the timing of sounding of the first tone according to a second tempo which is based on the timing information and different from the first tempo when the timing information has been acquired.
A computer implemented method for energy or resource management of a human-machine interface comprises the following steps carried out by computer hardware components of the human-machine interface: determining a level of attention of a user of the human-machine interface to the human-machine interface; and setting an energy and/or resource utilization related setting of the human-machine interface based on the determined level of attention.
An image display system includes a graphic processor which generates an image signal, a control signal, and a variable frequency signal; and a display device which displays an image at a frame frequency corresponding to the variable frequency signal from the graphic processor. The display device includes pixels connected to emission control lines, data lines, and scan lines; a controller which provides reference data including information on reference cycles, which are cycles in which an emission control start signal is output, to the graphic processor, outputs the emission control start signal based on the control signal, and adjusting an output timing of a scan start signal based on the variable frequency signal; an emission driver which supplies emission control signals to the emission control lines based on the emission control start signal; and a scan driver which supplies scan signals to the scan lines based on the scan start signal.
The present disclosure relates to a circuit of controlling a common voltage of a liquid crystal panel. According to an embodiment of the present disclosure, a voltage control circuit is configured to provide a common voltage to a common electrode of a liquid crystal panel. The liquid crystal panel includes M rows and N columns of pixel units. Each pixel unit is coupled to the common electrode. The voltage control circuit includes an operational amplifier arranged in a negative feedback configuration. The operational amplifier includes: an input stage, a gain stage and an output stage. The output stage includes a second NMOS transistor and a second PMOS transistor. A gate of the second NMOS transistor receives a first control signal, a drain of the second NMOS transistor is coupled to a gate of a first PMOS transistor, and a source of the second NMOS transistor is coupled to a second reference voltage. A gate of the second PMOS transistor receives a second control signal, a drain of the second PMOS transistor is coupled to a gate of a first NMOS transistor, and a source of the second PMOS transistor is coupled to a third reference voltage.
The present invention provides improved driving methods for four particle electrophoretic displays. The driving methods improve the color state performance when a first pixel is displaying a mixed state of a first highly-charged particle and a second lower-charged particle of the opposite polarity, while a neighboring pixel is displaying a state of a second highly-charged particle having the opposite polarity to the first highly-charged particle. The particles can be, for example, all reflective or one type of particle can be partially light transmissive.
The display device includes at least one pixel having a first capacitive element having a first terminal and a transistor connected to the first terminal and having a second terminal and a gate electrode. A driving method of the display device including in a first frame, a signal with a first pulse width is supplied to the gate electrode of the transistor, and a first voltage is written from the second terminal to the first terminal. In the second frame after the first frame, a signal with a second pulse width is supplied to the gate electrode, and the first terminal holds the first voltage. In the third frame after the second frame, a signal with a third pulse width is supplied to the gate electrode, and the second voltage is written from the second terminal to the first terminal.
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.
An electroluminescent device includes a light-emitting element, a drive transistor that supplies a driving current corresponding to a gradation voltage to the light-emitting element, a first conductive layer that is electrically connected to a gate of the drive transistor, and a second conductive layer that is supplied a fixed potential and that is disposed on a same layer as the first conductive layer. The first conductive layer and the second conductive layer are disposed apart and electrically insulated from one another, and in plan view, the first conductive layer is surrounded by the second conductive layer.
The present disclosure relates to the technical field of display panels, in particular to a driving method and driving apparatus of a display panel. The driving method may include in response to detecting that the display panel is switched from a dynamic picture to a static picture, generating a refresh rate adjustment instruction; according to the refresh rate adjustment instruction, switching the picture refresh rate of the display panel from a first picture refresh rate to a second picture refresh rate and generating a voltage adjustment instruction; obtaining a target cathode power supply voltage matching the second picture refresh rate; and based on the voltage adjustment instruction and the target cathode power supply voltage, adjusting the display panel to change a working current of each pixel in the display panel.
Disclosed are a pixel driving circuit and method, and a display device. The pixel driving circuit includes: the first port of the operation module is electrically connected via the first switch unit to the compensation wire connected to the pixel driving module, the second port of the operation module is electrically connected to the compensation wire through the second switch unit; the first switch unit is configured to transmit the driving data provided by the pixel driving module to the operation module in the self-discharge phase, and the operation module is configured to perform the calculation on the driving data in the self-discharge phase to obtain compensation data; the second switch unit is configured to write the compensation data into the pixel driving module through the compensation wire in the data writing stage.
An electroluminescence display apparatus includes a display panel including a first pixel and a second pixel, a first current integrator connected to the first pixel through a first sensing channel to sense a first current from the first pixel to generate a first output voltage, a second current integrator connected to the second pixel through a second sensing channel to sense a second current from the second pixel to generate a second output voltage, and a sampling capacitor connected to an output terminal of the first current integrator at one electrode thereof and connected to an output terminal of the second current integrator at the other electrode thereof, thereby sampling the first output voltage and the second output voltage.
A luminance calibration system and method of mobile device display for medical images is provided, and allows a mobile device display to display the medical images complying with grayscale standard display function (GSDF) defined by Digital Imaging and Communications in Medicine (DICOM) under any environmental light sources; for example, the medical images displayed by the mobile device display can meet a Just-Noticeable Difference (JND) defined by DICOM to facilitate medical diagnosis for medical staffs. In addition, the luminance calibration system and method of mobile device display for medical images only adjusts the medical images inside the operating window of the mobile device display, while any image outside the operating window of the mobile device display is reserved; as a result, the luminance calibration system and method of mobile device display for medical images makes the mobile device display to be a medical image screen as well as a regular screen.
The present disclosure relates to a driving unit. The driving unit may include a first driving sub-circuit, a second driving sub-circuit, and a driving control circuit. The first driving sub-circuit may include a plurality of first switching elements, and at least some of the plurality of first switching elements may be configured to output a first signal to a first output terminal of the driving unit in response to a control signal from the driving control circuit. The second driving sub-circuit may include one or more second switching elements, and at least one of the one or more second switching elements may be configured to output a second signal to a second output terminal of the driving unit in response to the control signal from the driving control circuit. The driving control circuit may be configured to output the control signal at a control signal output terminal.
A display device includes a display panel including a first partial panel region and a second partial panel region, and a panel driver which drives the display panel. The panel driver determines a first driving frequency for the first partial panel region and a second driving frequency for the second partial panel region. In a case where the first driving frequency and the second driving frequency are different from each other, the panel driver sets a boundary portion including a boundary between the first partial panel region and the second partial panel region, and determines a third driving frequency for the boundary portion to be between the first driving frequency and the second driving frequency.
A virtual reality system providing a virtual robotic surgical environment, and methods for using the virtual reality system, are described herein. Within the virtual reality system, various user modes enable different kinds of interactions between a user and the virtual robotic surgical environment. For example, one variation of a method for facilitating navigation of a virtual robotic surgical environment includes displaying a first-person perspective view of the virtual robotic surgical environment from a first vantage point, displaying a first window view of the virtual robotic surgical environment from a second vantage point and displaying a second window view of the virtual robotic surgical environment from a third vantage point. Additionally, in response to a user input associating the first and second window views, a trajectory between the second and third vantage points can be generated sequentially linking the first and second window views.
A learning management system may be configured to retrieve roster data from a roster database and determine from the roster data whether a pilot has a scheduled downtime during a flight or a layover time before the flight. The system may further retrieve flight data associated with the flight from the learning management system and determine a training concept associated with the flight. The system may also select a training exercise from multiple training exercises, where the training exercise is associated with the training concept. A notification may be sent to an electronic device associated with the pilot, where the notification includes an offer to perform the training exercise.
An AR-based supplementary teaching system for guzheng and method thereof, the system includes an AR device, a data processing device and positioning devices for key positions, the data processing device is signal-connected to the AR device, and the positioning devices is installed on the guzheng code of guzheng, the positioning devices corresponds to the guzheng code of guzheng one by one; the AR device is used to obtain real scene data; the data processing device is used to guzheng and the positioning devices identify and generate string distribution data; also used to obtain operation instruction based on user actions, execute the operation instruction and generate virtual data; the AR device is also used to convert all data based on the string distribution data The virtual data and the real scene data are superimposed and displayed.
Systems and vehicle are provided. A vehicle system for a vehicle includes: a trajectory selection module configured to select a potential vehicle path relative to a current vehicle movement condition; a trajectory movement condition module configured to estimate a modeled movement condition of the vehicle along the potential vehicle path; a limit comparison module configured to determine whether the modeled movement condition violates vehicle limits; and a violation indicator module configured to generate an indication of impending violation.
A method, apparatus and computer program product are provided to determine lane status confidence indicators of lane status predictions such as closures and/or shifting. Lane statuses and corresponding confidence indicators are determined based on probe data, such as probe data collected from vehicle and/or mobile devices traveling along a road segment. Probe data may be partitioned into clusters and compared to partitioned subsets of the probe data. Cluster stability for the segment and corresponding lane status confidence indicators can be determined based on the comparison. Accordingly, determinations of whether to transmit predicted lane statuses to another system, service, and/or user device may be made.
A device, method and system for assigning alerts to sensor analytics engines is provided. A device one or more of generates and receives an alert to perform a search for a target object. The device determines a geographic area in which to perform the search for the target object. The device determines sensors available in the geographic area for use in the search for the target object. The device, in response to the sensors meeting a threshold condition, assigns the alert to a sensor analytics engine to search for the target object using the sensors. The device, in response to the sensors not meeting the threshold condition, provides the alert to one or more communication devices to initiate a human-based search for the target object.
A smoke detector and method for testing a smoke detector are provided. The smoke detector includes a housing defining a chamber, an emitter, and a receiver. The housing includes an inlet port and an outlet port configured to allow an airflow to pass through the chamber. The emitter is configured to emit light into the chamber. The receiver is configured to receive light reflected by ambient materials in the airflow passing through the chamber. The smoke detector includes an entry point and an exit point, defining a channel therebetween. At least a portion of the airflow passes through the channel. The channel is in fluid communication with a sensor. The sensor is configured to detect at least one of a pressure differential and a mass flow of the airflow. The smoke detector and method for testing the smoke detector enable in situ testing of the smoke detector.
A method for determining and providing signal displays is provided. The method can include receiving data characterizing signal values. The data can be received from a sensor monitoring an asset, such as a rotating machinery asset. The method can also include receiving data characterizing a threshold trigger level associated with the asset. The method can further include determining a signal display for the asset. The method can also include providing the signal display in a graphical user interface. Monitoring systems for monitoring industrial assets and providing signal displays corresponding to an operation of the industrial assets are also provided.
Embodiments disclosed herein generally relate to line-powered wireless communications systems, and more specifically to methods and apparatus for providing persistent and ubiquitous wireless communications and sensor networks in physical premises to enable a wide variety of different applications and use cases.
A system for operating a sports gaming event using a graphical interface of a computing device application, the system including: a processor; and a memory coupled to the processor, wherein the memory stores instructions that, when executed by the processor, cause the processor to: receive sports data about a sporting event via a network; access a database of historical statistics relating to the sporting event and to players playing in the sporting event; select at least one betting scenario from a betting scenario database based on the sports data and the historical statistics; calculate an initial probability of the betting scenario occurring based on the sports data and the historical statistics; generate an initial price of the betting scenario based on the initial probability; display the betting scenario and the initial price on the graphical interface; and receive a response to the betting scenario from at least one user.
An electronic gaming machine (EGM) or another type of gaming device may be configured to provide games that involve “WYSIWYG” (what you see is what you get) symbols or “prize on” symbols. The gaming device may be configured to provide the value of all “prize on” symbols that land during a single instance of a game if a prize on trigger symbol, which also may be referred to herein as a blast symbol, lands during the same instance of the game. In some examples, the game may be a base game. According to some examples, a feature does not need to be triggered during the instance of the base game for the value of all prize on symbols that land during the instance of the base game to be awarded. In other examples, the game may be a feature game, such as a “hold and spin” game.
It is provided a method for controlling access to a physical space using a co-sign delegation. The method is performed in a lock device and comprises the steps of: receiving an access request from an electronic key; obtaining a plurality of delegations, wherein each delegation is a delegation from a delegator to a delegatee, the plurality of delegations collectively forming a chain of delegations; determining that a delegation is a co-sign delegation, indicating that all further delegations need to be cryptographically signed by both the delegator of the respective delegation and by an access controller; and granting access to the physical space when the chain of delegations start in an owner of the lock device and ends in the electronic key; and when all delegations in the chain of delegations after the co-sign delegation are cryptographically signed by both the delegator of the respective delegation and by the access controller.
A job site security system contains a wireless communications node and a device such as a tool, a battery, a charger, etc., which contains a controller. Each tool has a locked state and an unlocked state as determined by the controller. Each tool is (initially) in the locked state. When the wireless communications node transmits a signal to the device the controller changes the locked state to the unlocked state allowing the device to be used. A method for securing a job site is also provided.
A portable electronic device to be used as a keyless device of a vehicle includes a controlling circuit which includes a physiological feature detection module and a processing circuit. The physiological feature detection module is used for detecting a physiological feature of a person. The processing circuit is coupled to the physiological feature detection module and used for determining whether the person is an authorized user of the vehicle according to the detected physiological feature of the person, and for opening a car door of the vehicle or starting the vehicle when the person is identified by the processing circuit as the authorized user.
Techniques are described for correlating entity identification information with refuse containers being serviced by a refuse collection vehicle (RCV). Location data can be collected by location sensor(s) on the RCV at a time when a triggering condition is present, such as a time when a lift arm is operating to empty a refuse container into the hopper of the RCV. The location data can be provided as input to an algorithm that estimates a container location through a vector offset to account for the distance and direction of the RCV lift arm relative to the location sensor in the RCV. The container location can be correlated with parcel data to determine the parcel that the container was on or near to when it was serviced, and the customer or other entity associated with the parcel can be correlated to the particular container based on the analysis.
Systems and methods are provided for requirements engineering, and may include: receiving as input, time series data from at least one of a simulation of a vehicle run on a simulation system, or from the vehicle in operation; a requirements monitoring system checking to determine whether a plurality of requirements for operation of the vehicle are met, wherein the requirements are expressed in signal temporal logic form and a requirement includes at least an associated minimal sampling rate and a filtering policy applicable to the requirement; determining a quantitative conformance for each of selected requirements of the plurality of requirements; and add requirements to a verified requirements set based on the qualitative conformance of the requirements.
A vehicle system may include a memory of a vehicle configured to maintain at least one smart contract between a manufacturer of the vehicle and a supplier of components to the manufacturer, and a processor of the vehicle configured to receive at least one diagnostic code from the vehicle, the diagnostic code being associated with at least one vehicle component, in response to the code being identified by the processor as being associated with the at least one smart contract, update the at least one smart contract within the memory with the code, and transmit the smart contract, as updated, to a third party associated with the vehicle component.
An apparatus for determining a passing time of a passive RFID sports timing transponder includes a housing for protecting the apparatus; an RFID reader unit connected to an RFID antenna for remotely determining an identity and a passing time of the transponder; a location unit for determining a location of the apparatus; a mobile communication unit connected to a mobile communication antenna for transmitting the identity and the passing time of the transponder and the location of the apparatus to a processing unit; and a communication unit for communicating with another similar apparatus in an immediate spatial vicinity to synchronize operation of the RFID reader unit and an RFID reader unit of the similar apparatus to avoid interference. The RFID reader unit, the RFID antenna, the location unit, the mobile communication unit and the neighbor communication unit are integrated in a common printed circuit board that is mounted within the housing.
The present disclosure relates to an updating method for configuration parameters of an electronic device, a device and a computer-readable medium, wherein the updating method includes: acquiring fingerprint information collected by a fingerprint sensor at the electronic device; determining whether the fingerprint information is collected in a trusted mode; acquiring, in response to determining that the fingerprint information is collected in the trusted mode, a target configuration parameter of the electronic device for anti-spoofing detection according to the fingerprint information; and updating, in response to that the target configuration parameter of the electronic device and/or a current configuration parameter of the electronic device satisfies a preset condition, the current configuration parameter of the electronic device based on the target configuration parameter of the electronic device, wherein the current configuration parameter is used by the electronic device for anti-spoofing detection of a fingerprint in fingerprint information to be recognized. The solution of the present disclosure can update configuration parameters of the electronic device under certain conditions, thereby realizing high precision of anti-spoofing detection.
A control apparatus is provided, including: an other-vehicle emotion acquiring unit configured to acquire an other-vehicle emotion indicating an emotion of an occupant of a second vehicle different from a first vehicle; a determination unit configured to determine whether to perform notification to an occupant of the first vehicle based on the other-vehicle emotion; and a notification control unit configured to perform control to notify the occupant of the first vehicle of notification information based on the other-vehicle emotion when the determination unit determines to perform the notification.
An under-screen fingerprint sensing device and fingerprint sensing method are provided. The under-screen fingerprint sensing device includes a fingerprint sensor and a processor. The processor performs a first FFC on a first color original value, a second color original value, and a third color original value provided by the fingerprint sensor to determine whether a target object is a real finger. When the processor determines that the target object is an unreal finger, the processor performs a second FFC on the first color original value, the second color original value, and the third color original value to determine again whether the target object is the real finger.
A method for monitoring a mobile input device with a screen on which information can be displayed in a first pixel raster of image elements and which comprises a flat optical fingerprint reader and a second pixel raster of light-sensitive sensor elements. A fingerprint and fingerprint characteristics, comprising position of the finger on the screen are detected. The sensor elements detect the light intensity incident on them. The intensity levels are assembled into a static pattern of the fingerprint. The combination of the static pattern and the fingerprint characteristics are compared with a database. If the combination is in the database, a check is carried out whether an action is associated with this combination, which is then carried out, or whether no action is associated with this combination, whereupon a first standard action is carried out. If the combination is not stored, a second standard action is carried out.
A sensor is provided and includes a first control line; a first signal line; a first auxiliary line; a first detection electrode; a first detection switch connected to the first detection electrode, the first control line and the first signal line; and a first shielding electrode connected to the first auxiliary line, wherein the first shielding electrode is located to overlap the first signal line via an insulating film.
Examples provide a self-supervised language model for document-to-document similarity scoring and ranking long documents of arbitrary length in an absence of similarity labels. In a first stage of a two-staged hierarchical scoring, a sentence similarity matrix is created for each paragraph in the candidate document. A sentence similarity score is calculated based on the sentence similarity matrix. In the second stage, a paragraph similarity matrix is constructed based on aggregated sentence similarity scores associated with the first candidate document. A total similarity score for the document is calculated based on the normalize the paragraph similarity matrix for each candidate document in a collection of documents. The model is trained using a masked language model and intra-and-inter document sampling. The documents are ranked based on the similarity scores for the documents.
Disclosed is an effective domain name defense solution in which a domain name string may be provided to or obtained by a computer embodying a visual domain analyzer. The domain name string may be rendered or otherwise converted to an image. An optical character recognition function may be applied to the image to read out a text string which can then be compared with a protected domain name to determine whether the text string generated by the optical character recognition function from the image converted from the domain name string is similar to or matches the protected domain name. This visual domain analysis can be dynamically applied in an online process or proactively applied in an offline process to hundreds of millions of domain names.
An image processing method for identifying text on production line components obtains an image to be recognized and a standard image for reference and extracts a first text area of the image to be recognized. A second text area of the standard image is obtained, and a text window is extracted based on the second text area. The method further obtains a target text area of the image to be recognized based on the first text area and the text window, and obtains a first set of first text sub-areas, and obtains a second set of second text sub-areas, by dividing the second text area into sub-windows of the text window. The method further marks the image to be recognized as a qualifying image when each first text sub-area of the first set is the same as a corresponding second text sub-area of the second set.
A scalable tracking system processes video of a space to track the positions of objects within a space. The tracking system determines local coordinates for the objects within frames of the video and then assigns these coordinates to time windows based on when the frames were received. The tracking system then combines or clusters certain local coordinates that have been assigned to the same time window to determine a combined coordinate for an object during that time window.
Systems, methods, and computer-readable for multi-spatial scale object detection include generating one or more object trackers for tracking at least one object detected from on one or more images. One or more blobs are generated for the at least one object based on tracking motion associated with the at least one object. One or more tracklets are generated for the at least one object based on associating the one or more object trackers and the one or more blobs, the one or more tracklets including one or more scales of object tracking data for the at least one object. One or more uncertainty metrics are generated using the one or more object trackers and an embedding of the one or more tracklets. A training module for detecting and tracking the at least one object using the embedding and the one or more uncertainty metrics is generated using deep learning techniques.
Methods, systems, and media for adaptive presentation of a video content item based on an area of interest are provided. In some embodiments, the method comprises: causing a video content item to be presented within a viewport having first dimensions in connection with a web page, wherein the video content item is associated with area of interest information corresponding to one or more frames of the video content item; determining that the first dimensions associated with the viewport have changed in which the viewport is currently associated with second dimensions; determining that a modified video content item should be presented within the viewport having the second dimensions in response to determining that the first dimensions associated with the viewport have changed, wherein the modified video content item includes an area of interest based on the area of interest information associated with the video content item and wherein portions of at least one frame of the modified video content item are removed based on the second dimensions of the viewport; and causing the modified video content item to be presented within the viewport having the second dimensions.
Systems and methods for improved operations of ski lifts increase skier safety at on-boarding and off-boarding locations by providing an always-on, always-alert system that “watches” these locations, identifies developing problem situations, and initiates mitigation actions. One or more video cameras feed live video to a video processing module. The video processing module feeds resulting sequences of images to an artificial intelligence (AI) engine. The AI engine makes an inference regarding existence of a potential problem situation based on the sequence of images. This inference is fed to an inference processing module, which determines if the inference processing module should send an alert or interact with the lift motor controller to slow or stop the lift.
Aspects of the subject disclosure may include, for example, observing a plurality of objects viewed through a smart lens, wherein the plurality of objects are in a frame of an image viewed by the smart lens, determining an identification for an object of the plurality of objects, assigning tag information for the object based on the identification, storing the tag information for the object and the frame in which the object was observed, receiving a recall request for the object, retrieving the tag information for the object and the frame responsive to the receiving the recall request, and displaying the tag information and the frame. Other embodiments are disclosed.
Aspects of the subject disclosure may include, for example, a camera positioned to capture image information of an immersive experience presented to one or more users engaged in the immersive experience and located in an immersive experience space, a processing system and a memory that stores executable instructions to facilitate performance of operations including receiving the image information from the camera, detecting objects located in the immersive experience space with the one or more users, the objects including at least one virtual object created by the immersive experience, determining the at least one virtual object is a projected virtual object of the immersive experience, generating a signal indicating the at least one virtual object is a projected virtual object, and a projector, responsive to the signal, to provide a visual indication in the immersive experience space to identify the projected virtual object as a virtual object to the one or more users engaged in the immersive experience. Other embodiments are disclosed.
Systems, methods and techniques for automatically recognizing two-dimensional real world objects with an augmented reality display device, and augmenting or enhancing the display of such real world objects by superimposing virtual images such as a still or video advertisement, a story or other virtual image presentation. In non-limiting embodiments, the real world object includes visible features including visible security features and a recognition process takes the visible security features into account when recognizing the object and/or displaying superimposed virtual images.
An electronic device according to various embodiments includes a communication circuit, a memory, and a processor, and the processor is configured to: receive a first image from a first external electronic device by using the communication circuit; perform image recognition with respect to the first image by using the first image; generate information regarding an external object included in the first image, based on a result of the recognition; based on the information regarding the external object satisfying a first designated condition, transmit at least a portion of the first image to a second external electronic device corresponding to the first designated condition; and, based on the information regarding the external object satisfying a second designated condition, transmit the at least portion of the first image to a third external electronic device corresponding to the second designated condition.
Embodiments described herein provide systems and processes for scene-aware object detection. This can involve an object detector that modulates its operations based on image location. The object detector can be a neural network detector or a scanning window detector, for example.
The information processing apparatus (2000) includes a feature point detection unit (2020), a determination unit (2040), an extraction unit (2060), and a comparison unit (2080). A feature point detection unit (2020) detects a plurality of feature points from the query image. The determination unit (2040) determines, for each feature point, one or more object images estimated to include the feature point. The extraction unit (2060) extracts an object region estimated to include the object in the query image in association with the object image of the object estimated to be included in the object region, on the basis of the result of the determination. The comparison unit (2080) cross-checks the object region with the object image associated with the object region and determines an object included in the object region.
A method for dynamically quantizing feature maps of a received image. The method includes convolving an image based on a predicted maximum value, a predicted minimum value, trained kernel weights and the image data. The input data is quantized based on the predicted minimum value and predicted maximum value. The output of the convolution is computed into an accumulator and re-quantized. The re-quantized value is output to an external memory. The predicted min value and the predicted max value are computed based on the previous max values and min values with a weighted average or a pre-determined formula. Initial min value and max value are computed based on known quantization methods and utilized for initializing the predicted min value and predicted max value in the quantization process.
Methods and systems are disclosed for displaying an augmented reality virtual object on a multimedia device. One method comprises detecting, in an augmented reality environment displayed using a first device, a virtual object; detecting, within the augmented reality environment, a second device, the second device comprising a physical multimedia device; and generating, at the second device, a display comprising a representation of the virtual object.
An information processing apparatus creates a first virtual object expressing a physical object that is detected from physical object information obtained from a physical object information acquisition unit. The information processing apparatus determines a display state of the first virtual object in accordance with a result of detecting collision between the first virtual object and a second virtual object. The information processing apparatus creates, on the basis of a virtual space including the first virtual object and the second virtual object, position-orientation of an HMD, the determined display state, and a physical space image obtained from the HMD, a mixed reality image in combination of an image of the virtual space and the physical space image, and displays the created mixed reality image on the HMD.
Radar, lidar, and other active 3D imaging techniques require large, heavy sensors that consume lots of power. Passive 3D imaging techniques based on feature matching are computationally expensive and limited by the quality of the feature matching. Fortunately, there is a robust, computationally inexpensive way to generate 3D images from full-motion video acquired from a platform that moves relative to the scene. The full-motion video frames are registered to each other and mapped to the scene coordinates using data about the trajectory of the platform with respect to the scene. The time derivative of the registered frames equals the product of the height map of the scene, the projected angular velocity of the platform, and the spatial gradient of the registered frames. This relationship can be solved in (near) real time to produce the height map of the scene from the full-motion video and the trajectory.
A method for generating a three-dimensional (3D) model of an object includes: capturing images of the object from a plurality of viewpoints, the images including color images; generating a 3D model of the object from the images, the 3D model including a plurality of planar patches; for each patch of the planar patches: mapping image regions of the images to the patch, each image region including at least one color vector; and computing, for each patch, at least one minimal color vector among the color vectors of the image regions mapped to the patch; generating a diffuse component of a bidirectional reflectance distribution function (BRDF) for each patch of planar patches of the 3D model in accordance with the at least one minimal color vector computed for each patch; and outputting the 3D model with the BRDF for each patch.
An information display control device displays, in a display region, an image of a virtual object for indicating a position of an object. The device includes: a determiner to determine a size of the virtual object based on the position of the object; a drawer to generate an image of the virtual object by placing the virtual object at the position of the object and performing a perspective projection of the virtual object onto a virtual region with a viewpoint of a user as a reference; a generator to generate a table representing a relationship between grid points in the virtual region and points corresponding to the grid points in a plane including the display region; a transformer to generate a display image of the virtual object by transforming the image of the virtual object using the table; and a controller to display the display image in the display region.
A vehicle generates a city-scale map. The vehicle includes one or more Lidar sensors configured to obtain point clouds at different positions, orientations, and times,
one or more processors, and a memory storing instructions that, when executed by the one or more processors, cause the system to perform registering, in pairs, a subset of the point clouds based on respective surface normals of each of the point clouds; determining loop closures based on the registered subset of point clouds; determining a position and an orientation of each of the subset of the point clouds based on constraints associated with the determined loop closures; and generating a map based on the determined position and the orientation of each of the subset of the point clouds.
A computing device is provided, comprising a processor configured to execute a physics engine. The physics engine is configured to, during narrowphase collision detection of a collision detection phase, identify a set of convex polyhedron pairs, each including a first convex polyhedron from a first rigid body and a second convex polyhedron from a second rigid body. The physics engine is further configured to, for each convex polyhedron pair, determine a separating plane. The physics engine is further configured to perform neighbor welding on pair combinations of the convex polyhedron pairs during the narrowphase collision detection to thereby modify the separating planes of at least a subset of the convex polyhedron pairs. The physics engine is further configured to determine collision manifolds for the convex polyhedron pairs, including for the subset of convex polyhedron pairs having the modified separating planes.
Various methods and systems are provided for artifact reduction with resolution preservation. In one example, a method includes obtaining projection data of an imaging subject, identifying a metal-containing region in the projection data, interpolating the metal-containing region to generate interpolated projection data, extracting high frequency content information from the projection data in the metal-containing region, adding the extracted high frequency content information to the interpolated projection data to generate adjusted projection data, and reconstructing one or more diagnostic images from the adjusted projection data.
The subject matter described herein includes methods, systems, and computer readable media for mask embedding for realistic high-resolution image synthesis. According to one method for mask embedding for realistic high-resolution image synthesis includes receiving, as input, a mask embedding vector and a latent features vector, wherein the mask embedding vector acts as a semantic constraint; generating, using a trained image synthesis algorithm and the input, a realistic image, wherein the realistic image is constrained by the mask embedding vector; and outputting, by the trained image synthesis algorithm, the realistic image to a display or a storage device.
A deep learning-based method for calculating an overhang of a battery includes the following steps: obtaining a training sample image set; training a neural network according to the training sample image set to obtain a segmentation network model; detecting an object detection image of the battery to be detected according to the segmentation network model to obtain a corresponding first binarized image; obtaining top coordinates of each of a positive electrode and a negative electrode of the battery to be detected according to the first binarized image; and calculating the overhang of the battery to be detected according to the top coordinates.
Described herein are a system and methods for efficiently using depth and image information for a space to generate a 3D representation of that space. In some embodiments, an indication of one or more points is received with respect to image information, which is then mapped to corresponding points within depth information. A boundary may then be calculated to be associated with each of the points based on the depth information at, and surrounding, each point. Each of the boundaries are extended outward until junctions are identified as bounding the boundaries in a direction. The system may determine whether the process is complete or not based on whether any of the calculated boundaries are currently unlimited in extent in any direction. Once the system determines that each of the boundaries is limited in extent, a 3D representation of the space may be generated based on the identified junctions and/or boundaries.
Method of generating depth estimate based on biometric data starts with server receiving positioning data from first device associated with first user. First device generates positioning data based on analysis of a data stream comprising images of second user that is associated with second device. Server then receives a biometric data of second user from second device. Biometric data is based on output from a sensor or a camera included in second device. Server then determines a distance of second user from first device using positioning data and biometric data of the second user. Other embodiments are described herein.
Aspects of the present disclosure relate to systems and methods for active depth sensing. An example apparatus configured to perform active depth sensing includes a projector. The projector is configured to emit a first distribution of light during a first time and emit a second distribution of light different from the first distribution of light during a second time. A set of final depth values of one or more objects in a scene is based on one or more reflections of the first distribution of light and one or more reflections of the second distribution of light. The projector may include a laser array, and the apparatus may be configured to switch between a first plurality of lasers of the laser array to emit light during the first time and a second plurality of laser to emit light during the second time.
An image processing apparatus, includes a memory; and a processor coupled to the memory and configured to: generate a trained machine learning model by learning a machine learning model using a first set of image data, output an inference result by inputting a second set of image data to the trained machine learning model, and process a region of interest at a time of inference with respect to image data for which an inference result is correct in the second set of image data.
Methods and systems for determining a plurality of sequences of nucleic acid (e.g., DNA) molecules in a sequencing-by-synthesis process are provided. In one embodiment, the method comprises obtaining images of fluorescent signals obtained in a plurality of synthesis cycles. The images of fluorescent signals are associated with a plurality of different fluorescence channels. The method further comprises preprocessing the images of fluorescent signals to obtain processed images. Based on a set of the processed images, the method further comprises detecting center positions of clusters of the fluorescent signals using a trained convolutional neural network (CNN) and extracting, based on the center positions of the clusters of fluorescent signals, features from the set of the processed images to generate feature embedding vectors. The method further comprises determining, in parallel, the plurality of sequences of DNA molecules using the extracted features based on a trained attention-based neural network.
A method of inspecting images on printed products by a computer in a printing machine. Printed products are recorded and digitized by an image sensor of an image inspection system in the course of the image inspection process, and the computer compares them to a digital reference image. If deviations are found, the defective printed products are removed. The computer analyzes the deviations found in the course of the image inspection process together with further data from other system parts and from the machine, determines specific defect classes and the causes thereof based on the defects by machine learning processes, assigns the defects found in the image inspection process to the defect classes in a corresponding way, and displays the classified detected defects with their defect classes and causes to an operator of the machine so that the operator can initiate specific measures to eliminate the defect causes.
Embodiments relate to a method and system for determining a situation of a facility by imaging a sensing data of the facility including receiving sensing data through a plurality of sensors at a query time, generating a situation image at the query time, showing the situation of the facility at the query time based on the sensing data, and determining if an abnormal situation occurred at the query time by applying the situation image to a pre-learned situation determination model.
Systems and methods for automatically grading a user device are provided. Such systems and methods can include (1) a lighting element positioned at an angle relative to a platform, (2) an imaging device positioned at the angle relative to the platform such that light emitted from the lighting element and a field of view of the imaging device form a right angle where the light emitted from the lighting element and the field of view meet at a user device when the user device is positioned at a predetermined location on the platform, and (3) control circuitry that can activate the lighting element, instruct the imaging device to capture an image of a screen of the user device while the user device is at the predetermined location and is being illuminated by the first lighting element, and parse the image to determine whether the screen is damaged.
A high efficiency method of processing images to provide perceptual high-contrast output. Pixel intensities are calculated by a weighted combination of a fixed number of static bounding rectangle sizes. This is more performant than incrementally growing the bounding rectangle size and performing expensive analysis on resultant histograms. To mitigate image artifacts and noise, blurring and down-sampling are applied to the image prior to processing.
Methods and systems for automatically providing dynamic content for facilitating a transaction are described herein. An online marketplace is accessed by a client device over a network. A user identifier associated with the client device is passed to a payment service provider via a merchant system associated with the online market place. Dynamic content is generated by the payment service provider in response to the user identifier and subsequently served to the client device over the network.
[Object] The object is to present a technical solution for a bank to disclose information on a deposit account directly to a third party.
[Solution Means] The owner of a virtual currency address or real-currency deposit account provides a disclosure key to a disclosee (third party). The third party accesses a disclosure server 6 by operating a disclosee terminal 7, and transmits a disclosure request with the disclosure key. The disclosure server 6 accesses to an opener bank server 1, 8, acquires the virtual currency address owner information or the instant real-currency deposit account balance information, transmits it to the disclosee terminal 7, and make it browsable on the disclosee terminal 7.
A management server is configured to perform a process including: a step of obtaining a utilization history of each user in the previous month when a condition for performing a dividing ratio setting process is satisfied; a step of updating a utilization record evaluation; a step of calculating a first dividing ratio; a step of updating a driving record evaluation; a step of calculating a second dividing ratio; and a step of setting a dividing ratio.
Systems and methods to extract and utilize textual semantics are described. The system receives item information that describes an item for sale on a network-based marketplace and analyzes the item information to generate application information that identifies a plurality of applications. The plurality of applications includes a first application that further includes the item as a first component of the first application. The system stores a listing in a database that includes the application information and the item information and publishes the listing on the network-based marketplace to sell the item via the network-based marketplace.
Disclosed are one or more embodiments for a unique and personalized experience for a user interacting with an electronic commerce site by identifying user-preferred item attributes using supervised machine learning and presenting items to the user in an arrangement that is based on the identified item attributes. A shopping mission is determined according to user interactions with an electronic commerce site. The shopping mission is applied to an attribute prediction model that is trained to detect user-preferred item attributes for items included the item category and estimate a likelihood that an item containing a particular attribute will be purchased or interacted with during the interactions with the electronic commerce site.
An example apparatus includes: at least one memory; instructions in the apparatus; and processor circuitry to execute the instructions to: access a cookie at a client device, the cookie including a priority listing indicative of an order in which beacon requests are to be sent to ones of a plurality of database proprietors; cause a first beacon request to be sent to a first database proprietor server, the first database proprietor server corresponding to a highest priority in the priority listing of the cookie, the first beacon request indicative of access to media at the client device; and cause a second beacon request to be sent to a second database proprietor server, the second database proprietor server corresponding to a lower priority than the highest priority in the priority listing of the cookie, the second beacon request indicative of the access to the media at the client device.
In accordance with an embodiment, an information processing apparatus acquires a rank of a visiting user and an amount according to the ranking. The information processing apparatus acquires a price at an own store of a commodity that the user has selected for purchase. The information processing apparatus acquires a price at another store of the commodity that the user has selected for purchase. In a case in which the price at the own store is higher than the price at the other store, the information processing apparatus adds an amount based on a difference in price therebetween to the amount according to the ranking, which is acquired by a first acquisition means.
An automated advertising scheduling and distribution process reacts to the effectiveness of sales data. A hosted platform creates location-specific playlists based on key consumer variables that impact buying behavior, and dynamically performs data analytics. Utilizing a programmatic system and machine learning algorithmic methodology, the platform gathers data from the retailer's data warehouse and automatically pulls location-by-location sales data while simultaneously collecting playback data. If sales are not being affected on the particular item that is being promoted, then the platform may be configured to replace that message with a promotional message for another product with a higher likelihood of engagement and conversion. This virtual feedback loop ensures that the platform is optimizing the most effective series of promotional messages for any given location. The content management administrator accordingly delivers relevant advertising/messages to various display screens integrated into fuel pumps, through the store, and to retailer loyalty program applications.
A system and method for predicting behavior and/or outcomes related to a consumer's experience with an organization are implemented. Household data for households that are associated with a customer service interaction as of a certain date is collected, the household data having been created over a first pre-determined period of time preceding the certain date. The household data is analyzed to identify positive household data sets and negative household data sets. The positive household data sets relate to customer service interactions which preceded a high level customer service interaction within a subsequent period of time and the negative household data sets relate to customer service transactions which did not precede a high level customer service interaction with the subsequent period of time. The positive household data sets and the negative household data sets are processed in the aggregate, using a trained support vector machine model, to determine cumulative differences between data contained within the positive household data sets and the negative household data sets. Each day, daily household data is collected. The daily household data describes individual customer service transactions occurring during a previous calendar day. The daily household data is processed using the model to determine whether each individual customer service transaction occurring during the previous calendar day is more similar to the positive household data sets or to the negative household data sets. The individual customer service transactions that are more similar to the positive household data sets are flagged for proactive intervention.
Method, device, and system of detecting a mule bank account, or a bank account used for terror funding or money laundering. A method includes: monitoring interactions of a user with a computing device during online access with a bank account; and based on the monitoring, determining that the bank account is utilized as a mule bank account to illegally receive and transfer money, or is used for money laundering or terror funding. The method takes into account one or more indicators, such as, utilization of a remote access channel, utilization of a virtual machine or a proxy server, unique behavior across multiple different accounts, temporal correlation among operations, detection of a set of operations that follow a pre-defined mule account playbook, detection of multiple incoming fund transfers from multiple countries that are followed by a single outgoing fund transfer to a different country, and other indicators.
A user device is associated with a dynamic trust score that may be updated as needed, where the trust score and the updates are based on various activities and information associated with the mobile device. The trust score is based on both parameters of the device, such as device type, registered device location, device phone number, device ID, the last time the device has been accessed, etc. and activities the device engages in, such as amount of transactions, dollar amount of transactions, amount of denied requests, amount of approved requests, location of requests, etc. Based on a transaction request from the user device, the trust score and a network reputation score is used to determine an overall trust/fraud score associated with the transaction request.
Methods and apparatus consistent with the present disclosure allow a customer or payor to select from a plurality of nearby vendors or payees when a computing device of the payor is physically close to electronic devices of the payees. Payee devices and locations of those payee devices may be identified and displayed on a display of a payor device. Once displayed, a specific payee device may be selected by the customer and an order for a product or service may be sent to the selected payee device from the payor device. After the product or service has been provided to the customer, information that confirms that purchase may be sent to any of the selected payee device, the payor device, or a payment processing computer and funds to pay for the product or service may be deposited into an account of the payee based on the confirmation.
A system and method for predictive pre-authorization of subsidiary accounts using passive biometrics which uses wireless mobile devices and biometric scanning to automatically predict pre-authorized transaction amounts for a plurality of subsidiary accounts in a secure manner without requiring the customer to handle his or her mobile device. The system and method uses a payment facilitation device at the business location which automatically detects and recognizes registered mobile devices, displays a photo of the customer to a business employee for identity confirmation, verifies the customer with a biometrics verification database, generates a pre-authorization amount with an authorization generator, and automatically deducts payments for purchases from a pre-authorized customer account. The system and method may further include capabilities for facilitating offline transactions using accounts enabled as offline accounts.
A method and system are disclosed in an electronic payment network, for associating a payment card of a cardholder with a personal computing device of the cardholder, then authenticating the payment card in electronic transactions processed in the network. The card and a device activation code are input to the cardholder device by the cardholder, then communicated sent to a remote server for obtaining a card token. The server generates a device token and an authorisation token, stores the generated tokens together with the card token, and sends the card and device tokens to the cardholder device for storage. Whenever a transaction is processed in the network, the payment card is authenticated by inputting authenticating data to the cardholder device for generating an authorisation token, which is sent to the server with the stored card and device tokens, for a matching operation against the card, device and authorisation tokens at the server.
A blockchain value transfer method including receiving a transfer request, executing a first smart contract function to perform data analytics on the transfer request and a second smart contract function to implement a security response responsive to compliance with a security criterion, and recording a result of execution of the second smart contract function to at least one of a relational database, a non-relational database, and an analytics service.
Methods and systems are provided for crowdsourced funding via a blockchain system. A token contract, associated with a token issuer, is generated on a blockchain system. Tokens are issued to a plurality of token holders. Each of the plurality of token holders is allowed access to a feedback mechanism associated with the token issuer. A performance of the token issuer in an associated field is monitored to provide at least one performance metric. A dividend is paid to each token holder proportional to a number of tokens held by the token holder after a predetermined amount of time based on the at least one performance metric.
A method and system include providing a user interface associated with an issuer of an account; receiving, at the user interface, a request to generate a token associated with a user account; generating at least one token associated with the user account; authenticating one or more elements associated with the user account, wherein authentication may be one of prior to and subsequent to the generation of the at least one token; and receiving the at least one token. Numerous other aspects are provided.
Methods and systems are provided for verifying the possession of a card, such as a credit card or a debit card, by a card user. Possession of the card can be verified, for example, when a purchase transaction, such as a telephone purchase transaction or an online purchase transaction, is attempted with the card and the purchase transaction is denied due to suspected account take over. Possession of the card can be verified by detecting the present of the card with a mobile device of the user, such as a smart phone. For example, possession of the card can be verified by near field communication (NFC) between the card and the mobile device, wherein the communication is sufficient to adequately determine the presence of the card.
Methods, systems, apparatus, and non-transitory computer readable media are described for using a vehicle as a payment device. Various aspects may include receiving a selection of a stored financial card or financial account at a vehicle head unit. The selected financial card or financial account may be transmitted to a point-of-sale (POS) terminal for making a payment by transmitting a tokenized card number to the POS terminal. The tokenized card number may be transmitted over a very short-range communication link to ensure that the transmission is secure. For example, electronic circuitry may be attached to the exterior of the vehicle, where the electronic circuitry may be within a threshold distance (e.g. one inch, three inches, six inches, one foot, three feet, etc.) of the POS terminal. The tokenized card number may be transmitted from the vehicle head unit to the electronic circuitry and then to the POS terminal.
Improvements to existing technologies associated with point-of-sale transactions and merchant ecosystems to, among other things, reduce in-person contact and, in some examples, improve the efficiency at which point-of-sale transactions are completed (i.e., reduce friction) are described. In some examples, such reduced in-person contact and/or improved efficiencies can limit transmission of infectious diseases. As such, techniques described are directed to modifying aspects of point-of-sale transactions such that they occur on different computing devices (e.g., customer computing devices instead of merchant computing devices), are automated, and/or occur at different times than with conventional point-of-sale transactions. Furthermore, in at least one example, techniques described can leverage a distributed, network-based merchant ecosystem—comprising multiple merchant computing devices and/or customer computing devices that are specially configured to communicate with a service provider—to facilitate social distancing, which can reduce in-person contact and, in some examples, improve the efficiency at which point-of-sale transactions are completed.
A smart street parking management system includes a smart street parking meter a smart cloud parking management server connected to the smart street parking meter through a wireless networking technology and configured to regularly receive parking information of a vehicle parked on a smart street parking grid and status information of the smart street parking meter uploaded by the smart street parking meter. The status information of the smart street parking meter includes an empty-space status of the street parking grid detected by the smart street parking meter and a battery status of a rechargeable battery of the smart street parking meter. The parking information of the vehicle includes the plate number of the vehicle, the parking fee of the vehicle, and a payment status of the parking fee of the vehicle.
Systems and methods for facilitating a disbursement of funds to a payee are provided. The methods include receiving a payment request from a payor; generating a code, such as barcode, a Quick Response (QR) code, a Near Field Communication (NFC) code, or a textual string, that corresponds to the received payment request; transmitting the generated code to the payee; validating the code when the code is entered into a payment disbursement machine, such as an automated teller machine; and disbursing at least one of the funds and a payment voucher via the payment disbursement machine.
Embodiments of the present disclosure include apparatuses, computer-implemented methods, and computer program products for automatic product verification and shelf product gap analysis. Some embodiments utilize a multi-imager imaging engine to capture at least two image data objects associated with at least a near field and a far field via corresponding near and far-field imagers. The far field image data object in some embodiments is processed to identify, and/or detect and decode, product information on a product label at a shelving location for future processing. The near-field image data object may be processed to identify a product set located within the environment surrounding the product label. The information identified from each image data object may be processed to identify whether one or more product mismatches, pricing mismatches, and/or product gaps are present at the shelving location, with improved likelihood of success for each task.
A receptacle for detecting delivery and retrieval events has a door sensor, an item sensor, a scanner, and a control unit for operating the sensors, and transmitting the sensor information for processing and analysis. A system can determine whether an event was a delivery or retrieval event based on sensor information and item tracking information. A system can further include an item configured to interact with a computing device.
The technology relates to cargo vehicles. National, regional and/or local regulations set requirements for operating cargo vehicles, including how to distribute and secure cargo, and how often the cargo should be inspected during a trip. However, such regulations have been focused on traditional human-driven vehicles. Aspects of the technology address various issues involved with securement and inspection of cargo before a trip, as well as monitoring during the trip so that corrective action may be taken as warranted. For instance, imagery and other sensor information may be used to enable proper securement of cargo before starting a trip. Onboard sensors along the vehicle monitor the cargo and securement devices/systems during the trip to identify issues as they arise. Such information is used by the onboard autonomous driving system (or a human driver) to take corrective action depending on the nature of the issue.
Systems, apparatuses, and methods include an intraocular lens (IOL) cart that may assist with inventory management and may help users identify an IOL for use in a particular surgical application. The IOL cart may include sensors and indicators that provide information to a user and may update IOL inventory automatically whenever the IOL cart is accessed by a user.
A method and system for capturing research decision flow in a Research and Development (R&D) activity are provided. The method includes defining an objective of the R&D activity and determining one or more requirements for fulfilling the objective of the R&D activity. Further, the method includes identifying a set of risks associated with failure to satisfy the one or more requirements. Furthermore, the method also includes defining a set of tests to verify that the requirements are satisfied or the risks have been mitigated. Furthermore, the method also includes developing a task plan to satisfy the one or more requirements and mitigate one or more risks of the set of risks. Furthermore, the method also includes linking the objective, the one or more requirements, the set of risks and the task plan, to generate a linked information record.
An information processing apparatus includes an accumulation unit that accumulates history information regarding a flight history of an aircraft. A specification unit, based on the history information accumulated by the accumulation unit, specifies a candidate to be an operation assistant who assists an operation planned by an assisted operator. An output unit outputs information regarding the candidate to be the operation assistant specified by the specification unit.
A method for generating a report is provided. The method may include acquiring a key word related to an industry field, and acquiring one or more condition values related to the report to be generated. The method may also include determining a report template having one or more data query sections and one or more conclusion sections based on the industry field and the one or more condition values, and acquiring report data based on the one or more data query sections of the report template. The method may further include determining one or more conclusions based on the report data, and generating the report based the data acquired based on the report data, the one or more conclusions, and the template.
Techniques and solutions are described for facilitating the use of machine learning techniques. In some cases, filters can be defined for multiple segments of a training data set. Model segments corresponding to respective segments can be trained using an appropriate subset of the training data set. When a request for a machine learning result is made, filter criteria for the request can be determined and an appropriate model segment can be selected and used for processing the request. One or more hyperparameter values can be defined for a machine learning scenario. When a machine learning scenario is selected for execution, the one or more hyperparameter values for the machine learning scenario can be used to configure a machine learning algorithm used by the machine learning scenario.
An online system, such as a social networking system, generates shared models for one or more clusters of categories. A shared model for a cluster is common to the categories assigned to the cluster. In this manner, the shared models are specific to the group of categories (e.g., selected content providers) in each cluster while requiring a reasonable computational complexity for the online system. The categories are clustered based on the performance of a model specific to a category on data for other categories.
A model training method and an apparatus thereof are provided. The method includes reading a portion of sample data in a sample full set to form a sample subset; mapping a model parameter related to the portion of sample data from a first feature component for the sample full set to a second feature component for the sample subset; and training a model based on the portion of sample data having the second feature component. A size of a copy of model parameters(s) on a sample computer can be reduced after mapping, thus greatly reducing an amount of training data and minimizing the occupancy of memory of the computer. Memory of a sample computer is used to place vectors, and store and load samples, thereby performing machine learning and training large-scale models with relatively low resource overhead under a condition of minimizing the loss of efficiency.
A method for validation and runtime estimation of a quantum algorithm includes receiving a quantum algorithm and simulating the quantum algorithm, the quantum algorithm forming a set of quantum gates. The method further includes analyzing a first set of parameters of the set of quantum gates and analyzing a second set of parameters of a set of qubits performing the set of quantum gates. The method further includes transforming, in response to determining at least one of the first set of parameters or the second set of parameters meets an acceptability criterion, the quantum algorithm into a second set of quantum gates.
System monitors and methods of monitoring a system are disclosed. In one arrangement a system monitor predicts a future state of a system. A data receiving unit receives system data representing a set of one or more measurements performed on the system. A first statistical model is fitted to the system data. The first statistical model is compared to each of a plurality of dictionary entries in a database. Each dictionary entry comprises a second statistical model. The second statistical model is of the same general class as the first statistical model and obtained by fitting the second statistical model to data representing a set of one or more previous measurements performed on a system of the same type as the system being monitored and having a known subsequent state. A prediction of a future state of the system being monitored is output based on the comparison. The first statistical model and the second statistical model are each a stochastic process or approximation to a stochastic process.
One aspect of the disclosure relates to systems and methods for determining probabilities of successful synthesis of materials in the real world at one or more points in time. The probabilities of successful synthesis of materials in the real world at one or more points in time can be determined by representing the materials and their pre-defined relationships respectively as nodes and edges in a network form, and computation of the parameters of the nodes in the network as input to a classification model for successful synthesis. The classification model being configured to determine probabilities of successful synthesis of materials in the real world at one or more points in time.
A service identifies a level of specificity of one or more identified entities in a user input comprising a query, within one of multiple levels of a hierarchy of a hierarchical coding system. Responsive to determining that additional levels of specificity beyond the identified level of specificity are recommended to return a minimum answer set to the query, the service returns one or more answers requesting one or more additional inputs refining the query based on one or more values identified in a next level. Responsive to determining that no additional levels of specificity beyond the identified level of specificity are recommended to return the minimum answer set to the query, the service returns an answer set comprising a selection of information for the current level of specificity from an ingested corpus of knowledge mapped to the hierarchical coding system.
Due to the high language use variability in real-life, manual construction of semantic resources to cover all synonyms is prohibitively expensive and may result in limited coverage. Described herein are systems and methods that automate the process of synonymy resource development, including both formal entities and noisy descriptions from end-users. Embodiments of a multi-task model with hierarchical task relationship are presented that learn more representative entity/term embeddings and apply them to synonym prediction. In model embodiments, a skip-gram word embedding model is extended by introducing an auxiliary task “neighboring word/term semantic type prediction” and hierarchically organize them based on the task complexity. In one or more embodiments, existing term-term synonymous knowledge is integrated into the word embedding learning framework. Embeddings trained from the multi-task model embodiments yield significant improvement for entity semantic relatedness evaluation, neighboring word/term semantic type prediction, and synonym prediction compared with baselines.
A neural network pruning system can sparsely prune neural network models using an optimizer based approach that is agnostic to the model architecture being pruned. The neural network pruning system can prune by operating on the parameter vector of the full model and the gradient vector of the loss function with respect to the model parameters. The neural network pruning system can iteratively update parameters based on the gradients, while zeroing out as many parameters as possible based a preconfigured penalty.
A method for selectively dropping out feature elements from a tensor in a neural network is disclosed. The method includes receiving a first tensor from a first layer of a neural network. The first tensor includes multiple feature elements arranged in a first order. A compressed mask for the first tensor is obtained. The compressed mask includes single-bit mask elements respectively corresponding to the multiple feature elements of the first tensor and has a second order that is different than the first order of their corresponding feature elements in the first tensor. Feature elements from the first tensor are selectively dropped out based on the compressed mask to form a second tensor which is propagated to a second layer of the neural network.
Techniques in advanced deep learning provide improvements in one or more of accuracy, performance, and energy efficiency, such as accuracy of learning, accuracy of prediction, speed of learning, performance of learning, and energy efficiency of learning. An array of processing elements performs flow-based computations on wavelets of data. Each processing element has a respective compute element and a respective routing element. Each compute element has processing resources and memory resources. Each router enables communication via wavelets with at least nearest neighbors in a 2D mesh. Stochastic gradient descent, mini-batch gradient descent, and continuous propagation gradient descent are techniques usable to train weights of a neural network modeled by the processing elements. Reverse checkpoint is usable to reduce memory usage during the training.
Embodiments of the present disclosure include techniques for processing neural networks. Various forms of parallelism may be implemented using topology that combines sequences of processors. In one embodiment, the present disclosure includes a computer system comprising a plurality of processor groups, the processor groups each comprising a plurality of processors. A plurality of network switches are coupled to subsets of the plurality of processor groups. A subset of the processors in the processor groups may be configurable to form sequences, and the network switches are configurable to form at least one sequence across one or more of the plurality of processor groups to perform neural network computations. Various alternative configurations for creating Hamiltonian cycles are disclosed to support data parallelism, pipeline parallelism, layer parallelism, or combinations thereof.
Computations in Artificial neural networks (ANNs) are accomplished using simple processing units, called neurons, with data embodied by the connections between neurons, called synapses, and by the strength of these connections, the synaptic weights. Crossbar arrays may be used to represent one layer of the ANN with Non-Volatile Memory (NVM) elements at each crosspoint, where the conductance of the NVM elements may be used to encode the synaptic weights, and a highly parallel current summation on the array achieves a weighted sum operation that is representative of the values of the output neurons. A method is outlined to transfer such neuron values from the outputs of one array to the inputs of a second array with no need for global clock synchronization, irrespective of the distances between the arrays, and to use such values at the next array, and/or to convert such values into digital bits at the next array.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for detecting intermediate reinforcement learning goals. One of the methods includes obtaining a plurality of demonstration sequences, each of the demonstration sequences being a sequence of images of an environment while a respective instance of a reinforcement learning task is being performed; for each demonstration sequence, processing each image in the demonstration sequence through an image processing neural network to determine feature values for a respective set of features for the image; determining, from the demonstration sequences, a partitioning of the reinforcement learning task into a plurality of subtasks, wherein each image in each demonstration sequence is assigned to a respective subtask of the plurality of subtasks; and determining, from the feature values for the images in the demonstration sequences, a respective set of discriminative features for each of the plurality of subtasks.
An apparatus and a method use a convolutional neural network (CNN) including a plurality of convolution layers in the field of artificial intelligence (AI) systems and applications thereof. A computing apparatus using a CNN including a plurality of convolution layers includes a memory storing one or more instructions; and one or more processors configured to execute the one or more instructions stored in the memory to obtain input data; identify a filter for performing a convolution operation with respect to the input data, on one of the plurality of convolution layers; identify a plurality of sub-filters corresponding to different filtering regions within the filter; provide a plurality of feature maps based on the plurality of sub-filters; and obtain output data, based on the plurality of feature maps.