US11570941B2
There is provided a component feeding device including multiple component replenishing devices configured to replenish with components having different shapes; multiple stages on which the components replenished from the multiple replenishing devices are scattered, and a control section configured to cause the multiple replenishing devices to replenish the components to the respective stages at an arbitrary timing. There is provided a component feeding method for supplying components, having different shapes and being respectively replenished onto multiple stages from multiple replenishing devices, to a component mounting device with the components being respectively scattered on the multiple stages, wherein amounts of the components is capable of being respectively changed for each of the multiple stages.
US11570939B2
A lead-cutting system, comprising: a rotation device configured to rotate a rotary table; a cutting device, being disposed on the rotary table, which is configured to cut leads of a lead component inserted into through-holes in a board; and a container, being disposed on the rotary table together with the cutting device, which contains leads cut by the cutting device.
US11570935B2
The present application pertains to testing methods and apparatus useful in single phase or two-phase liquid immersion cooling systems. Single phase systems use a fluid similar to mineral oil in which to immerse the servers. As the fluid is heated by the operating servers the fluid is circulated to one or more heat exchangers for cooling so the fluid never boils. In contrast, two-phase systems cool heat generating computer components which cause a dielectric fluid in its liquid phase to vaporize. The dielectric vapor is then condensed back into a liquid phase and used to cool the computer components. Using the testing methods and apparatuses herein one may design and test more efficient components and systems. More specifically, the one or more heating elements are both passive and intelligent. They may be used to mimic the power load of a server which is used in the load testing of immersion cooling so actual servers are not required to test various aspects of the liquid immersion cooling units.
US11570933B2
Exfoliated graphite materials, and composite materials including exfoliated graphite, having enhanced through-plane thermal conductivity can be used in thermal management applications and devices. Methods for making such materials and devices involve processing exfoliated graphite materials such as flexible graphite to orient or re-orient the graphite flakes in one or more regions of the material.
US11570930B2
The disclosed IC package may include (1) an IC die carrying electronic circuitry, (2) an encapsulation material that at least partially covers the IC die, where the encapsulation material defines a plurality of cavities in a top surface of the encapsulation material, (3) a plurality of microfans located in the plurality of cavities, and (4) a plurality of sensors embedded in the encapsulation material, where each sensor of the plurality of sensors produces a signal indicating a temperature at a location of the sensor. Various other IC packages, as well as associated cooling systems and methods, are also disclosed.
US11570929B2
A fan receiver assembly (1200) includes a fan receiver (101). The fan receiver includes a rear wall (128) and at least one sidewall (112). At least one deformable clasp (105) is coupled to, and translatable along, the sidewall. The deformable clasp includes at least one latching arm (142) that is pivotable between an axially displaced open position occurring when the latching arm extends beyond a terminal end sidewall and a parallel position occurring when the latching arm is situated between the terminal end and the rear wall. The sidewall defines a d-track (111) having a terminal end (125) and an outward notch (126). A follower situates within the d-track between the deformable clasp and the sidewall. A fan module (102) latches to the fan receiver assembly when the follower situates within the outward notch.
US11570928B2
A server node connection system uses two or more proximity sensors per server node to determine progressive, real time changes in wipe length for each individual connector on the node that is connected to an opposing header connector on header connected to a midplane of the server assembly/rack. The system is capable of scanning, monitoring, trending, and alarming.
US11570907B2
A manufacturing method of a display device includes: loading, on a stage, a panel assembly including: a display panel drivable to display an image, and first and second printed circuit boards attached to the display panel, end portions of the first and second printed circuit boards overlapping each other; providing a jet of air to the overlapping end portion of the second printed circuit board to raise the overlapping end portion away from and expose the end portion of the first printed circuit board; fixing the raised end portion away from the exposed end portion of the first printed circuit board; pre-processing the exposed end portion of the first printed circuit board; and aligning a distal end of the pre-processed end portion of the first printed circuit board and a distal end of the end portion of the second printed circuit board.
US11570906B2
An assembling method for a multi-core cable having a plurality of electrical insulated wires is designed to connect one-end-portions of the electrical insulated wires to electrode patterns, respectively, of one circuit board, correspondingly connect other-end-portions of the electrical insulated wires to electrode patterns, respectively, of the other circuit board, compute intersection coefficients on one end side and the other of the cable, and iterate interchanging connecting destinations for the one-end-portions of the electrical insulated wires, correspondingly interchanging connecting destinations for the other-end-portions of the electrical insulated wires, and computing the intersection coefficients on the one end side and the other of the cable. The connecting destinations for the electrical insulated wires to the electrode patterns are determined in such a manner that a maximum intersection coefficient denoting either larger one of the respective intersection coefficients of the one end side and the other of the cable is made small.
US11570903B2
A process for conformally coating passive surface mount components soldered to a printed circuit substrate of a lidless flip-chip ball grid array package includes affixing a stiffener ring to the substrate before forming a conformal coating on the passive surface mount components. The stiffener ring is affixed to the substrate so that the plurality of passive surface mount components and the integrated circuit die are contained within an opening formed by the stiffener ring. After affixing the stiffener ring to the substrate, the conformal coating is formed on the passive surface mount components. The conformal coating extends over each of the passive surface mount components, around a periphery of each of the passive surface mount components, and under each of the passive surface mount components. A product made according to the process is also disclosed.
US11570901B2
A method for manufacturing an aluminum circuit board including a step of spraying a heated metal powder containing aluminum particles and/or aluminum alloy particles to a ceramic base material, and of forming a metal layer on a surface of the ceramic base material. A temperature of at least a part of the metal powder is higher than or equal to a softening temperature of the metal powder and lower than or equal to a melting point of the metal powder at a time point of reaching the surface of the ceramic base material. A velocity of at least a part of the metal powder is greater than or equal to 450 m/s and less than or equal to 1000 m/s at the time point of reaching the surface of the ceramic base material.
US11570899B2
A circuit board that has flexibility owing to an organic insulating layer and that still has high adhesion between metal wiring and the organic insulating layer; and a method for producing the circuit board without employing photolithography. The circuit board comprising a metal wiring arrangement portion and a metal wiring non-arrangement portion, wherein: in the metal wiring arrangement portion, metal wiring, a first diffusion layer, and a first organic insulating layer are stacked; in the metal wiring non-arrangement portion, a metal oxide layer, a second diffusion layer, and a second organic insulating layer are stacked; the metal wiring is made of a first metal element; and the first diffusion layer contains the first metal element and a second metal element.
US11570891B2
Various embodiments of the present disclosure are directed to electrically conductive connection between a first electrically conductive element and a second electrically conductive element on a textile carrier material. In one example embodiment, the electrically conductive connection includes an electrically conductive thermal transfer adhesive arranged on the carrier material and creates an electrically conductive connection between the first conductive element and the second conductive element. The electrically conductive connection is positioned in electrically conductive contact with the first conductive element and the second conductive element.
US11570885B2
A heat dissipating circuit board assembly includes a heat sink having a first wall, a second wall spaced from the first wall, and an end wall extending between the first and second walls. The first wall, the second wall, and the end wall collectively define a cavity. The assembly additionally includes a printed circuit board having a first face and a second face opposite the first face. The printed circuit board is located within the cavity such that the first wall of the heat sink extends over the first face and the second wall of the heat sink extends over the second face to allow heat to be transferred from the printed circuit board to the heat sink. The heat sink is configured to interface with a connector socket when the circuit board is connected to the connector socket for stabilizing the printed circuit board.
US11570884B2
A relay arrangement includes at least two series-connected relays, which are mechanically and electrically connected to a main printed circuit board via first terminals and second terminals, and at least one flat conductor for conducting current between the at least two series connected relays. The flat conductor is mechanically connected to the main printed circuit board and electrically and thermally connected to the first terminals of the relays, and the at least one flat conductor is configured to dissipate heat produced during operation of the relays.
US11570877B2
A display panel and a display apparatus are disclosed. The display panel comprises: a plurality of signal lines extending in a first direction; at least one first reference voltage bus which extends in a second direction intersecting the first direction; and a plurality of electrostatic discharge units divided into a plurality of electrostatic discharge unit groups, wherein the plurality of electrostatic discharge unit groups are arranged in the second direction and each of the plurality of electrostatic discharge unit groups comprises at least two electrostatic discharge units arranged in the first direction, wherein at least one of the plurality of signal lines is electrically connected to the first reference voltage bus through at least one of the plurality of electrostatic discharge units.
US11570875B2
A recessed light fixture includes an LED module, which includes a single LED package that is configured to generate all light emitted by the recessed light fixture. For example, the LED package can include multiple LEDs mounted to a common substrate. The LED package can be coupled to a heat sink for dissipating heat from the LEDs. The heat sink can include a core member from which fins extend. Each fin can include one or more straight and/or curved portions. A reflector housing may be coupled to the heat sink and configured to receive a reflector. The reflector can have any geometry, such as a bell-shaped geometry including two radii of curvature that join together at an inflection point. An optic coupler can be coupled to the reflector housing and configured to cover electrical connections at the substrate and to guide light emitted by the LED package.
US11570871B2
Systems and methods are provided for automatically controlling zone interactions in a three dimensional virtual environment. A computing device provides a graphical user interface (GUI) to assign zone attributes to a zone, which is a volume of space in the virtual environment. A virtual object is assigned to the zone, as well as an interaction and a responsive operation that follows the detected interaction. The virtual object's position in the virtual environment corresponds to a physical object's position in a physical environment. For example, when the computing system detects that the virtual object has entered or left the zone, according to an assigned interaction, then an assigned operation is executed to control a physical device in the physical environment.
US11570869B1
A processing system including at least one processor may detect at least one dark zone in a vicinity of a user, determine at least one lighting feature for an illumination of the at least one dark zone in accordance with a user profile of the user, identify at least one light source to provide the illumination of the at least one dark area in accordance with the at least one lighting feature that is determined, and transmit an instruction to the at least one light source to provide the illumination of the at least one dark zone in accordance with the at least one lighting feature that is determined.
US11570862B2
Certain exemplary embodiments relate to entertainment systems that interact with users to provide access to media appropriate to and/or customized for a particular user using the entertainment system, the location at which the entertainment system is being accessed, and/or a predefined event. For example, in certain exemplary embodiments, an entertainment system in a location is configured to provide jukebox-related and entertainment system mediated services that are accessible from within and from the outside of the location, and provide (1) attract or flight media operations, (2) browsing services, and/or (3) search screens appropriate to and/or customized for a particular user using the entertainment system, the location at which the entertainment system is being accessed, and/or a predefined event. Such screens may be provided with a three-dimensional look-and-feel in certain exemplary embodiments.
US11570861B2
The invention provides an LED drive power supply and a controller thereof. The controller comprises a ground terminal, a sampling terminal, and a power supply terminal. The ground terminal and an output ground of a power supply module have different potentials. A drain of a power switching transistor is coupled to a positive output terminal of the power supply module, a source of the power switching transistor and the sampling terminal are coupled to a first terminal of a sampling resistor, and a second terminal of the sampling resistor is coupled to the ground terminal. The controller further includes a logic control circuit determining whether a sampling voltage input by the sampling terminal is zero; a driver generating a first driving signal to the power switching transistor; and a bias circuit configured to receive a power supply voltage.
US11570847B2
Systems described herein provide techniques for establishing and modifying user plane communications sessions between Long-Term Evolution (“LTE”) User Equipment (“UE”) devices, connected to LTE base stations, and a Fifth Generation (“5G”) core network. An LTE-5G Interworking function (“LTE-5G IWF”) may logically generate a virtual 5G UE and/or 5G base station, map a LTE UE to the virtual 5G UE, and cause the establishment of a Protocol Data Unit (“PDU”) Session, at the 5G core network, with the virtual 5G UE. The LTE-5G IWF may provide PDU Session information to the LTE UE and base station to facilitate the establishment of user plane communications (e.g., via a tunnel) between the LTE UE and the 5G core network. The LTE-5G IWF may also receive modification parameters, such as Quality of Service (“QoS”) parameters, and provide instructions to the 5G core and/or to the LTE UE to handle traffic according to such parameters.
US11570846B2
A wireless communication method is described for managing packet data convergence protocol (PDCP) service data unit (SDU). The method can include receiving, at a first protocol layer of a first communication device, a first service data unit (SDU) and a second service data unit (SDU) for a source from a second protocol layer for transmission to a second communication device. The method can also include starting a first timer with a first initial value for the first SDU, and starting a second timer with a second initial value for the second SDU. The second initial value can be different from the first initial value in response to determining that the second SDU is to be routed differently from the first SDU to the second communication device.
US11570845B2
An emergency response system which can work alongside traditional public emergency response systems. The emergency response system of the present invention comprises a central computer system and client devices. In case of an emergency, when a registered user dials an emergency number, in addition to the call being received by a conventional emergency response systems, a separate parallel communication to the central computer system of the present invention gets triggered automatically. On receiving the emergency communication the computer system selects most suitable registered volunteer responders and an alert is sent to the selected registered volunteer responders. For the responders who accept the request for help, the computer system establishes a communication channel with the caller client device. This way, the emergency response system of the present invention enables participation of volunteers from the civil society in providing faster emergency response to fellow citizens.
US11570828B2
A method of enabling functionality at a User Plane Function, UPF, by a Session Management Function, SMF, in a telecommunication network. The method includes receiving, by the UPF, a session creation/modification message for creating/modifying a session between the UPF and the SMF, wherein the session creation/modification message includes a session functionality indication for indicating functionality to be enabled for said session, and enabling, by the UPF, the functionality during the session between said UPF and the SMF.
US11570821B2
In a terminal (200), a radio transmitter (209) transmits a signal, and a controller (204) determines an allocation resource to which a signal is assigned in a predetermined frequency band. The predetermined frequency band herein is divided into a plurality of bands, and each of the plurality of bands includes a plurality of frequency resources which are base units of resource allocation for the signal. Furthermore, the allocation resource to which the signal is assigned is composed of at least one of the base units of each of the plurality of bands. Furthermore, a configuration method of the at least one of the base units forming the allocation resource is different for each of the plurality of bands.
US11570816B2
A communication apparatus in the present disclosure comprises an AID generator, a Trigger frame generator, and a wireless transmitter/receiver. When a Trigger Type in a trigger frame is an RA trigger, the AID generator (103) generates, as information for an AID12 subfield, information that is different from an AID. The Trigger frame generator (104) generates a RA variant Trigger frame when the Trigger Type in the trigger frame is an RA trigger, and sets, in the AID12 subfield included in the RA variant Trigger frame, the information output from the AID generator (103). The wireless transmitter/receiver (106) transmits the Trigger frame, generated by the Trigger frame generator (104), to a terminal (200).
US11570812B2
Various schemes pertaining to conditions on LBT impact on MAC counters in mobile communications involve a user equipment (UE) determining a status of a listen-before-talk (LBT) failure detection and recovery feature. Based on the status of the LBT failure detection and recovery feature (e.g., whether the LBT failure detection and recovery feature is configured or not configured), a preamble transmission counter in a random access (RA) procedure or a scheduling request (SR) counter in a SR procedure is conditionally incremented in the event of an LBT failure.
US11570808B2
A random access channel (RACH) procedure allows a user equipment (UE) to achieve synchronization with a network and obtain network resources and services from a scheduling entity. This disclosure provides various options for implementing a two-step RACH procedure that can support various UE behaviors in relation to using or not using a time symbol gap between a physical random access channel (PRACH) resource and a physical uplink control channel (PUCCH) resource.
US11570799B2
The present disclosure relates to a communication technique for fusing, with an IoT technology, a 5G communication system for supporting a higher data transfer rate than a 4G system, and a system therefor. The present disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety-related services, on the basis of 5G communication technologies and IoT-related technologies. Disclosed is a setting method for an efficient uplink signal transmission of a terminal in a case where a plurality of waveforms are supported to efficiently operate an uplink in a next generation mobile communication.
US11570796B2
Aspects provide a mechanism for activating a secondary serving cell (SCell) in a wireless communication network supporting a multi-cell transmission environment. In some examples, a scheduled entity (e.g., a UE) in a connected mode with a primary serving cell (PCell) may synchronize with the SCell to activate the SCell for multi-cell communication with the PCell and the SCell. To enable synchronization with the SCell, the PCell may trigger communication and processing of one or more reference signals between the scheduled entity and the SCell.
US11570795B2
Methods and apparatuses for PDCCH reception and transmission. A method for PDCCH reception includes transmitting a capability for receptions of PDCCHs on a downlink (DL) cell. PDCCH receptions on the DL cell are according to (X1, Y1) or (X2, Y2) when any two PDCCH receptions are within Y1 or Y2 symbols or have first symbols separated by at least X1 or X2 symbols, respectively. The method further includes receiving a configuration of search space sets for PDCCH receptions on the DL cell; determining, based on the configuration of the search space sets, whether PDCCH receptions are according to (X2, Y2); and receiving on the DL cell: a maximum number of MPDCCHmax,X1,μ PDCCHs within Y1 symbols when PDCCH receptions are not according to (X2, Y2), and a maximum number of MPDCCHmax,X2,μ PDCCHs within Y2 symbols when PDCCH receptions are according to (X2, Y2).
US11570794B2
Method, terminal device and network device for transmitting channels are provided. The method includes: receiving at least one time domain symbol position information, where time domain symbol position information for first type is used for indicating a relative position between the starting time domain symbol occupied by the channel to be scheduled and time slot where the channel to be scheduled is located, and time domain symbol position information for second type is used for indicating a relative position between the starting time domain symbol occupied by the channel to be scheduled and time domain resources where target control information is located; determining a type of target time domain symbol position information in the at least one time domain symbol position information and then determining a position of the starting time domain symbol occupied by the channel to be scheduled and indicated by the target time domain symbol position information.
US11570793B2
A method performed by one or more network nodes of a wireless telecommunications network to schedule intermittent connectivity of multiple narrowband Internet-of-Things (NB-IoT) devices with the network. The network node(s) can maintain a connectivity schedule that includes profiles for NB-IoT devices and cause the multiple NB-IoT devices to connect to the network in accordance with the schedule at different times based on priority levels associated with the NB-IoT devices. The network node(s) can adjust the connectivity schedule in response to detection of a condition of the network or the NB-IoT device.
US11570789B2
A method of coordinating positioning signaling includes: identifying a first user equipment (UE) served by a base station and a second UE served by the base station, the base station being configured to send a base station positioning signal wirelessly at a plurality of base-station-transmission times; allocating first times to the first UE, for sending first UE positioning signals, and second times to the second UE, for sending second UE positioning signals, at least one of the first times being different from at least one of the second times; sending a first communication to cause the first UE to send at least a respective one of the first UE positioning signals at each of the first times; and sending a second communication to cause the second UE to send at least a respective one of the second UE positioning signals at each of the second times.
US11570774B2
Methods, systems, and devices for wireless communications are described. A first user equipment (UE) may transmit, to a second UE, a first request message indicating a request to transmit a first sidelink message in a first slot of a sidelink network, and may transmit the first sidelink message in a first data section of the first slot based on transmitting the first request message. The first UE may monitor a first portion of a control section of a second slot of the sidelink network for request messages or response messages. The first UE may transmit a second request message in a portion of the second control section of the second slot designated for scheduling ongoing transmissions, and may transmit a second sidelink message in at least one portion of the second slot based on transmitting the second request message.
US11570771B2
Methods, systems, and devices for wireless communications are described that support evolved semi-persistent scheduling (SPS) for wireless communications. A base station may configure SPS in which multiple time intervals are scheduled, each time interval including multiple slots that may be scheduled by different uplink or downlink resource allocations. The SPS configuration may include an ON-OFF duty cycle where an ON portion of the duty cycle spans a portion of a time interval and includes uplink and downlink resources, and an OFF portion of the duty cycle spans a remaining portion of the time interval and does not include any allocated SPS resources. Such SPS configurations may be used, for example, for transmitting sensor data and command information between controllers and sensors/actuators in a factory automation network.
US11570770B2
A method of requesting a relay resource, a scheduling method and a device are provided. The method of requesting a relay resource includes: sending a resource request message to a network device to which a relay device accesses; the resource request message carries at least one of following resource requirements information: backhaul resource requirement information of the relay device, and access link resource requirement information of the relay device.
US11570767B2
Provided in the embodiments of the present invention are a wireless-network-based communication method, terminal device, and network device. The method comprises: a terminal device detecting first downlink control information (DCI) sent by a network device; a terminal device detecting second DCI sent by a network device; the terminal device joining control information of the first DCI and second DCI so as to send or receive target data. In the embodiments of the present invention, the first DCI and second DCI may carry different types of control information; separately transmitting the first DCI and second DCI satisfies the requirements for transmission of different types of control information; insofar as the requirements for transmission of different types of control information are satisfied, different types of control information are transmitted to the terminal device, such that the terminal device can send or receive target data.
US11570760B2
Methods, systems, and devices for wireless communication are described that provide for uplink channel multiplexing and waveform selection. Uplink channels to be transmitted from one or more user equipment (UEs) to a base station are multiplexed together or separately into an uplink subframe. Each UE is capable of using different waveforms to transmit different channels. Reference signals are communicated according to an RS pattern, which is symmetric across uplink and downlink channels.
US11570759B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit an indication of one or more reception parameters, of the UE, for sidelink communication and downlink communication. The UE may receive, based at least in part on the one or more reception parameters, at least one of one or more sidelink streams or one or more downlink streams. Numerous other aspects are provided.
US11570744B2
A first computing system can receive a proximity message from a source device, the proximity message comprising a device identifier and a network address. The first computing system can further determine that the first computing system is within a particular distance of the source device based, at least in part, on the proximity message. In response, the first computing system can send a proximity notification to a second computing system. The proximity notification can comprise the device identifier and a user identifier. The second computing system can receive the proximity notification. The second computing system can further determine user metadata associated with the user identifier. The second computing system can further determine a third computing system based, at least in part, on a mapping between the device identifier and a computing system identifier. The second computing system can further send the user metadata to the third computing system.
US11570736B2
In order to perform small data transmission during an RRC_INACTIVE mode, a UE may need to determine whether the stored timing advance (TA) is valid. A TA may be valid if its usage would result in an uplink transmission arriving at a TRP of a base station during a time period during which the base station expects to receive uplink transmission. A UE may determine that a TA is valid based on a received fraction of the length of a cyclic prefix and observed SSB time shift.
US11570734B2
Disclosed are a method for transmitting and receiving a synchronization signal in a wireless communication system supporting NarrowBand-Internet of Things (NB-IoT) and an apparatus therefor. Specifically, the method for transmitting and receiving a synchronization signal may include: receiving, from a base station, a narrowband synchronization signal; and performing a cell search procedure for the base station based on the narrowband synchronization signal, in which the narrowband synchronization signal may include a narrowband primary synchronization signal and a narrowband secondary synchronization signal, the narrowband primary synchronization signal and the narrowband secondary synchronization signal may be transmitted in different subframe, and the subframe in which the narrowband secondary synchronization signal is transmitted may be configured differently according to a type of a radio frame structure.
US11570719B2
A system that incorporates aspects of the subject disclosure may perform operations including, for example, monitoring performance parameters in a communications network, identifying a degradation in performance of one or more nodes of the communications network according the monitored performance parameters, and initiating corrective action to mitigate the degradation in performance of the one or more nodes of the communications network. Other embodiments are disclosed.
US11570718B2
Disclosed is a method for transmitting data by a user equipment (UE) in a wireless communication system including receiving scheduling information for scheduling a plurality of uplink (UL) subframes, identifying a UL subframe u among the plurality of UL subframes, determining a first transmit power for a physical uplink shared channel (PUSCH) in the UL subframe u, selecting a transmit power among the first transmit power and a predetermined second transmit power, and transmitting data through the PUSCH in the UL subframe u using the selected transmit power, wherein the first transmit power is determined based on a first power adjustment factor for a UL subframe (u−1), in case that the UL subframe u is different from a first scheduled UL subframe among the plurality of UL subframes, and wherein the first transmit power is determined based on a second power adjustment factor for the UL subframe u, in case that the UL subframe u is the first UL subframe.
US11570712B2
In a general aspect, a rate at which MIMO transmissions are elicited from wireless communication devices is varied. A first wireless communication device may be configured to wirelessly transmit a first set of messages at a first transmission rate to a second wireless communication device. The first wireless communication device may further be configured to receive MIMO transmissions from the second wireless communication device. The first wireless communication device may additionally be configured to generate first channel information based on respective training fields in each of the first MIMO transmissions; determine a rate at which the first channel information is generated; vary the first transmission rate to a second, different transmission rate based on the rate at which the first channel information is generated; and wirelessly transmit a second set of messages at the second transmission rate to the second wireless communication device.
US11570706B2
Aspects relate to Layer 1/Layer 2-centric inter-cell mobility communication systems where measurement information from at least one user equipment (UE) is sent to a base station. Based on this information, the base station may select at least one of a remote radio head (RRH), a serving cell, or a cell assigned with a physical cell ID that serves a particular UE using one of Layer 1 or Layer 2 control signaling based on the received measurement information and a system serving cell configuration or mode of operation. Additionally, an indication may be provided of whether cell configurations are the same for target and source cells in an inter-cell handover and a UE may utilize the same source cell configuration during a handover when connecting with the target cell when the configurations match or at least partially match.
US11570703B2
Embodiments of the present disclosure provide a roaming network access method and apparatus, where the method includes: obtaining a mobile country code MCC of a roaming area; obtaining a preferential roaming list, where the preferential roaming list is used to indicate information about at least one network that a user preferentially attempts to register with when the user is roaming; selecting a network that matches the MCC from the preferential roaming list and searching for the selected network; and each time a network is found by the searching, attempting to register with the found network. By means of the roaming network access method and apparatus provided in the embodiments of the present disclosure, duration of network searching performed by user equipment is shortened, time spent by the user equipment on initial network access in the roaming area is reduced.
US11570673B2
A mobile station in a wireless communication network. The mobile station includes a radio communication that transmits an access request message to a base station via a first communication resource, and receives a timing adjustment in response to the access request message from the base station. The mobile station also includes an adjustment value storage unit that stores the timing adjustment, and a control unit that adjusts access timing corresponding to a second communication resource based on the timing adjustment value stored in the adjustment value storage unit. The radio communication unit then communicates with the base station via the first communication resource and the second communication resource.
US11570660B2
One example method of operation may include transmitting a data stream from a first device to a second device via one or more channels, determining the data stream experienced a potential network communication error, and retransmitting at least a portion of the data stream over a mirrored channel transmission comprising at least two streams which both retransmit in parallel at least a same portion of the retransmitted portion of the data stream.
US11570655B2
Allocating a physical radio resource for a non-guaranteed bit rate (non-GBR) bearer in a distributed communications system (DCS) is disclosed. More specifically, the method enables a radio circuit in a network node to divide the physical radio resource among a number of non-GBR quality-of-service (QoS) class identifiers (QCIs) based on a number of predetermined scheduling ratios, respectively. The radio circuit can be configured to dynamically rebalance physical radio resource allocation among the non-GBR QCIs such that the network node can maintain the predetermined scheduling ratios or respond to a reconfiguration of the predetermined scheduling ratios among the non-GBR QCIs. As a result, a network operator(s) can dynamically adjust physical radio resource allocation among the non-GBR QCIs based on, for example, subscribers' network usage and plan limits, thus making it possible for the network operator(s) to customize QoS configuration to enable differentiated non-GBR services.
US11570654B2
This disclosure provides systems, methods, and apparatus for link adaptation in a wireless local area network (WLAN). A link adaptation test packet from a first WLAN device to a second WLAN device may be formatted as a multiple-input-multiple-output (MIMO) transmission and may include one or more test portions for link quality estimation of the MIMO transmission. A link quality estimation portion of the test packet may permit measurement of link quality for various spatial streams of the MIMO transmission. The link adaptation test packet may enable a fast rate adaptation of a communication link based on the impact of interference to the various spatial streams. The second WLAN device may provide feedback information regarding the one or more test portions. The feedback information may be used to determine a transmission rate for a subsequent transmission from the first WLAN device to the second WLAN device based on wireless channel conditions.
US11570649B2
Embodiments of the present disclosure provide techniques for determining synchronization signal (SS)/physical broadcast channel (PBCH) block (SSB)-based measurement timing configuration (SMTC) for measurement objects for which a user equipment is to measure feedback information in one or more measurement gaps. Other embodiments may be described and claimed.
US11570647B2
Embodiments of this application provide a communication method and a communications apparatus. The method includes: generating a log record, where the log record is recorded by performing MDT log measurement when a terminal is in an inactive state; and when the terminal is in a connected state, sending the generated log record to a network device.
US11570643B2
The present disclosure provides a method by which a terminal, in which a primary cell and a secondary cell are set, activate a bandwidth part (BWP) in a wireless communication system, comprising: receiving downlink control information (DCI) from a network, the DCI notifying the terminal of the separation of the secondary cell from the dormant BWP; and activating a specific BWP of the secondary cell on the basis of the DCI, the specific BWP being a BWP set by upper layer signaling received through the terminal.
US11570632B1
A computer-implemented method includes receiving, from an application framework, a set of tasks, a throughput requirement for each task of the set of tasks, and a set of active connections for a radio network comprising a Wi-Fi radio and a Zigbee radio. The computer-implemented method also includes determining, using the set of tasks, the throughput requirement for each task of the set of tasks, and the set of active connections, a target Wi-Fi radio duty cycle and setting the Wi-Fi radio to operate at the target Wi-Fi radio duty cycle. The computer-implemented method further includes monitoring, using a monitoring unit, air time statistics associated with the Wi-Fi radio, determining, using the air time statistics, a measured Wi-Fi duty cycle, and adjusting Wi-Fi radio settings to decrease a difference between the target Wi-Fi duty cycle and the measured Wi-Fi duty cycle.
US11570629B2
Aspects of the present disclosure take advantage of a prism-like effect that occurs in a Reconfigurable Intelligent Surface (RIS), where the RIS reflects incident signals of different frequencies in different directions. for determining characteristics of a channel between a transmitter and a receiver wherein the channel includes the RIS. In particular, this may include estimating an angle of arrival (AoA) to the RIS in uplink transmission or the angle of departure (AoD) from the RIS in downlink transmission. Aspects of the present disclosure also provide solutions to compensate the prism effect for wideband transmission, especially at high frequencies (e.g. mmWave and THz).
US11570627B1
Systems, methods, and apparatuses for providing optimization of network resources. The system is operable to monitor the electromagnetic environment, analyze the electromagnetic environment, and extract environmental awareness of the electromagnetic environment. The system extracts the environmental awareness of the electromagnetic environment by including customer goals. The system is operable to use the environmental awareness with the customer goals and/or user defined policies and rules to extract actionable information to help the customer optimize the network resources.
US11570626B2
Systems, methods, apparatuses, and computer program products for dynamically updating routing identifiers (IDs) are provided. One method may include deciding, at a network node, to update a routing identifier for at least one user equipment. The method may then include obtaining or generating a new routing identifier to be assigned to the at least one user equipment along with authentication vectors, and transmitting the new routing identifier to an authentication entity.
US11570624B2
An integrity protection method, a terminal and a base station are provided. The integrity protection method, which is applied to a terminal, includes: performing an integrity protection check on data packets transmitted on a DRB, a split bearer corresponding to the DRB or a logical channel corresponding to the DRB, and determining whether an integrity protection of the DRB fails based on a result of the integrity protection check; and when it is determined that the integrity protection of the DRB fails, suspending the DRB or continuing receiving data packets carried by the DRB.
US11570621B2
Disclosed is a method for secured communication by a V2X communication device. A method for secured communication by a V2X communication device comprises the steps of: receiving a message on the basis of V2X communication; extracting adaptive certificate pre-distribution (ACPD) target information when the message includes the ACPD target information; pre-authenticating a short-term certificate; and transferring the pre-authenticated short-term certificate so that the pre-authenticated short-term certificate can be broadcasted at a predicted position.
US11570617B2
A communication method and a communications apparatus are provided. The method includes: when receiving a first PDU session establishment request sent by a UE, encrypting, by an access and management network element (AMF), user information in the request, to obtain encrypted user information; and sending, by the AMF, a second PDU session establishment request to an SMF in response to the first PDU session establishment request, where the second PDU session establishment request carries the encrypted user information. In this manner, after the UE accesses a core network, an AMF entity may encrypt user information of the UE. The interaction information between NF entities, for example, the AMF entity and an SMF entity, carries the encrypted user information, which helps prevent user privacy leakage.
US11570615B2
Provided is a communication method of a user equipment (UE) in a wireless communication system, the communication method including receiving a UE capability information request triggered by a core network from a base station and transmitting a non-access stratum (NAS) message including a UE capability identifier to the base station, in which the UE capability identifier is assigned by the core network through NAS signaling.
US11570610B2
There is a method and system of removing duplicate Visitor Location Register (VLR) records, and updating the VLR's Global Title Address (GTA) in their Home Location Register (HLR) to avoid duplicate VLR impact to customer service, which may result in missed inbound calls and delayed inbound SMS. Duplicate VLR GTA means that one subscriber has more than one VLR record in different Mobile Switching Stations (MSS) or Mobile Switching Centers (MSC). The valid VLR is identified by comparing the “last active timestamp” of the same subscriber identity (IMSI, or MSISDN, or MDN) of VLR records obtained from each MSS/MSC. The VLR that has the most recent “last active timestamp” is used to identify the active/valid VLR which serves the subscriber. Afterwards the non-active VLR records will be deleted, and the VLR's GTA in HLR will be updated as needed.
US11570607B2
Described herein are systems, devices, methods, and media for activating emergency response assets in response to emergency alerts.
US11570601B2
A communication device and method can include one or more processors operatively coupled to memory, a sensor and an output device, where the one or more processors to perform operations of discovering neighboring short range communication enabled devices such as Bluetooth LE devices, creating presence lists from the discovered devices, and transferring biometric and personal data at least to or from the communication device or at least to or from one of the discovered devices. Other embodiments are disclosed.
US11570590B1
Techniques for enhancing group communication on a device are described. A method may include presenting a message in a message portion of a user interface (UI) for a group communication application executing on a first device, where the group communication application communicates messages among multiple devices. The method may further include monitoring an input component for the first device and detecting a first control directive from the input component. The first control directive may select a message displayed in the message portion of the user interface. The method may further include performing a pin operation on the selected message; and presenting the pinned message in a banner portion of the UL Other embodiments are described and claimed.
US11570588B2
A user equipment (UE) indicates to a network the types of SMS messages that the UE does not support. The network receives an indication from the UE corresponding to one or more types of short message service (SMS) messages that are supported by the UE, receives a SMS that is intended to be delivered to the UE, determines whether to forward the SMS message to the UE based on the indication received from the UE, when the SMS message is a type of SMS message supported by the UE, forwards the SMS message to the UE and, when the SMS message is not a type of SMS message supported by the UE, discards the SMS message.
US11570582B2
A mobile device (10) subscribes to receive messages targeted to a first geographical area (18-A), e.g., a first tile or area of a grid for geocasting. The mobile device (10) also subscribes to receive messages targeted to a second geographical area (18-B), e.g., a second tile or area of the grid for geocasting. The mobile device (10) notably does this such that the mobile device (10) is simultaneously subscribed to receive messages targeted to the first geographical area (18-A) and to receive messages targeted to the second geographical area (18-B).
US11570581B2
A method, apparatus and computer readable storage medium permit an updated radio map to be determined. In an iteration, the method obtains or holds available current radio map data representing a current radio map for a site and track data of a mobile device. The track data includes sensor data and radio signal observation data representing sets of radio signal observation results captured at different observation positions. The method estimates the observation positions on the track based on the current radio map data and the track data including the sensor data and the radio signal observation data and associates each estimated observation position with a respective set of radio signal observation results represented by the radio signal observation data to determine a sequence of radio fingerprints for the track. The method provides or uses the sequence of radio fingerprints for determining an updated radio map for the site.
US11570580B2
A system and methods for estimating the location of a mobile device are disclosed. In accordance with one embodiment, a mobile device located within a first corridor of a building receives (1) a first wireless electromagnetic signal and a first ultrasound signal from a first beacon located in the first corridor, (2) a second wireless electromagnetic signal and a second ultrasound signal from a second beacon located in the first corridor, and (3) a third wireless electromagnetic signal from a third beacon located in a second corridor of the building. The first wireless electromagnetic signal, the first ultrasound signal, the second wireless electromagnetic signal, and the second ultrasound signal are used to estimate a location of the mobile device.
US11570577B2
A location server configured to determine a location of communications devices with respect to a location of infrastructure equipment of a wireless access network from observed time differences between receiving positioning reference signals transmitted by a plurality of the infrastructure equipment and received by the communications devices.
US11570575B2
A parking system may include a number of parking locations, where the availability of each parking location may be tracked based on detection of whether a vehicle is in the parking location. Accordingly, a parking system may organize parking locations based on availability and unavailability. In some cases, mobile device sensors may be used to determine whether a mobile device has left the vehicle in the parking location (e.g., and thus the parking location is still unavailable) or whether the mobile device has left the parking location in the vehicle (e.g., and thus the parking location is now available). In some cases, the parking system may organize available and unavailable parking locations, facilitate user listing of parking locations, track of available and unavailable parking locations, and track different characteristics of different parking locations (e.g., such as location, size, cost, availability, etc.), among other examples.
US11570573B1
A method of remotely configuring a banking application based on a detected location of a computing device running the banking application, the method comprising: receiving a beacon identifier relating to a location of the computing device; determining the location of the computing device based on the beacon identifier; transmitting information about the determined location associated with a second authentication level that does not require authentication information; receiving authentication information relating to the user; authenticating the user to access a graphical user interface associated with the determined location based on the received authentication information; transmitting an authentication decision to the computing device; and displaying the graphical user interface instead of the information about the determined location.
US11570560B2
Methods and apparatus are described herein related to improving the sound quality of a bone conduction speaker. The sound quality of the bone conduction speaker is adjusted in the sound generation, sound transferring, and sound receiving of the bone conduction speaker by designing vibration generation manners and vibration transfer structures.
US11570559B2
A hearing instrument comprises a wireless communication unit interconnected with an antenna for emission and reception of an electromagnetic field having an RF wavelength, a speaker interconnected with the wireless communication unit and being configured to provide an output audio signal. A battery is configured to supply power to the hearing instrument and a filter circuit interconnects the battery and a power management circuit of the hearing instrument. The antenna extends from a feed and at least a part of the antenna being is arranged adjacent the battery. A distance between the at least part of the antenna and the battery is below 1/40 of the wavelength. The filter circuit is configured to de-couple the battery and the power management circuit at frequencies above 3 MHz and configured to connect the battery to the power management circuit at frequencies below 300 kHz.
US11570558B2
An illustrative stereo rendering system obtains a contradirectional audio input signal generated by a microphone assembly having a plurality of microphone elements. The contradirectional audio input signal implements a contradirectional polar pattern oriented with respect to a listener. The system also obtains an array of multidirectional audio input signals generated by the microphone assembly. The array of multidirectional audio input signals implements different unidirectional polar patterns that are collectively omnidirectional in a horizontal plane. The system generates a weighted audio input signal by mixing the array of multidirectional audio input signals in accordance with respective weight values assigned to each multidirectional audio input signal. The system then generates, based on the contradirectional audio input signal and the weighted audio input signal, a stereo audio output signal for presentation to the listener. Corresponding systems and methods are also disclosed.
US11570537B2
The present disclosure relates to dome-type inserts, or simply domes, for a hearing aid. The dome is intended to be attached to a housing, such as an in-the-ear housing, and abut the ear canal. The dome-type insert comprises one or more vent channels for alleviating air pressure built-up and/or occlusion.
US11570535B2
A moving robot may include a main body which forms a space therein, an inner housing which surrounds the main body, an outer housing, two voice recognition members/devices (or voice sensors) which are disposed in the housings and are disposed to be separated from each other, and a microphone mount which is supported by the inner housing and causes the voice recognition device to be in close contact with the outer housing. The microphone mount may include a bending prevention rib which is disposed below the microphone mount to prevent bending of the microphone mount, and a twist prevention rib which is disposed below the microphone mount to prevent twisting of the microphone mount.
US11570531B2
An example apparatus includes a speaker housing with a recessed portion having a spring-loaded lip and a set of leads to provide power to the speaker when connected to a lead, and a lead interface plate external to the speaker housing with a set of leads to match the leads in the speaker housing, and when press-fitted into the recessed portion, provides a locked position with one side of the lead interface plate secured in front of the spring-loaded lip.
US11570528B2
A media guidance application may determine a length of a portion of a media asset that the user has missed and compare the length with a threshold length. If the length is greater than the threshold length, the media guidance application may generate a first summary of the missed portion of the media asset based on segments of the missed portion of the media asset that are of a first importance. If the length is not greater than the threshold length, the media guidance application may generate a second summary of the missed portion of the media asset based on segments of the missed portion of the media asset that are of the first importance and the second importance. The media guidance application may generate for display the summary.
US11570520B2
The present disclosure provides a method for data processing, a server, and a live broadcast system. The method includes: in response to a gift giving instruction sent by a first electronic device through a first user account on a first live broadcast platform, the gift giving instruction including a gift identifier of a virtual gift, and a platform identifier and a host identifier of a second live broadcast platform, determining a second virtual currency value of the virtual gift on the second live broadcast platform according to the gift identifier, and converting the second virtual currency value to a first virtual currency value on the first live broadcast platform; and sending information corresponding to the virtual gift to a second electronic device in response to deducting the first virtual currency value from the first user account.
US11570518B2
A first client device is associated with a first user hosting a shared playback session. While a first media content item from the shared playback session is being presented on a set of presentation devices, the first client device communicates with a set of observer devices for the shared playback session. The first client device receives a request to modify playback of the shared playback session from a second client device, the second client device being one observer device of the set of observer devices. In response to the request to modify playback of the shared playback session, the first client device determines an action to take with respect to the shared playback session. In response to determining the action to take with respect to the shared playback session, the first client device sends a command for the action to each of the set of presentation devices.
US11570515B2
Media content items is provided to content consumers for playback by the disclosed system that includes plurality of nodes interacting with each other based on a defined protocol in communication network. A first node associated with a first participant receives a request for playback of a media content from a content consumer. A second node associated with a second participant provides media content rights to the first participant and/or the content consumer. The first node further provides media content metadata to the consumer device for consumption. A plurality of instances of a distributed media rights transaction ledger, associated with respective node, includes a plurality of media content rights transactions which corresponds to an acquisition of the media content rights by the first participant and/or content consumer prior to the consumption of the media content, and are managed by the plurality of nodes in accordance with the defined protocol.
US11570511B2
A method may include serially joining different video clips from videos of different historical competitions to form a composite video competition, the different video clips comprising an indeterminate subset of clips drawn from a larger pool of clips, wherein each clip from a historical competition has an associated partial result contribution to a final result of the historical competition further include presenting a result during the composite video competition, the result comprising a linked combination of the partial result contributions from the different video clips.
US11570509B2
Aspects of the disclosure provide methods, apparatuses, and non-transitory computer-readable mediums for receiving media data of media content. One apparatus includes processing circuitry that receives a media presentation description (MPD) file and a session-based description (SBD) file. The processing circuitry determines whether the SBD file includes a starting time attribute indicating a starting time of an SBD timeline of a session. The processing circuitry determines the starting time of the SBD timeline based on the SBD file in response to the SBD file including the starting time attribute. The processing circuitry determines the starting time of the SBD timeline based on the MPD file in response to the SBD file not including the starting time attribute.
US11570503B2
Methods and system for providing content are disclosed. One method can comprise receiving a request for data at a first time, wherein the data comprises a first time duration, determining a buffer size based upon the first time duration, and determining a playback window based upon the determined buffer size and the first time. The method can also comprise synchronizing presentation of content on a plurality of devices.
US11570499B2
In overview, the disclosed methods, devices, and systems enable the location of the first device to be verified. In particular, second location verification data is generated using a current location of the second device is provided to a first device by a second device which can be matched with first location verification data received by the first device from a server, the first location verification data is generated using a stored location of the first device. If the first and second location verification data match, the location of the first device is considered to have been verified.
US11570485B2
A system has a plurality of machine-readable tags and includes a server system for synchronizing the display of interactive mobile content on a user device with a destination of a vehicle. Each machine-readable tag encodes an address and is mounted within the vehicle for access by users in the vehicle. The system receives a request from the user device, generated by scanning one of the machine-readable tags, and determines the destination of the vehicle. A coupon corresponding with the destination of the vehicle is selected and provided. The users that have selected the coupon for download are determined, each of the users who have downloaded the coupon are notified of the identities of the other users who downloaded the coupon, and transportation of all of the users is facilitated to the location of the restaurant so they may utilize the coupon which each of them downloaded.
US11570484B2
A method and an apparatus for video decoding are disclosed. The apparatus decodes prediction information of a current block from a coded video bitstream. The prediction information indicates an intra block copy mode. The current block is one of a plurality of coding blocks in a current region of a current coding tree block (CTB) in a current picture. The apparatus determines whether the current block is to be reconstructed first in the current region. When the current block is to be reconstructed first in the current region, the apparatus determines a block vector for the current block where a reference block indicated by the block vector is in a search range in the current picture that excludes a collocated region in a previously reconstructed CTB. A position of the collocated region in the previously reconstructed CTB has a same relative position as the current region in the current CTB.
US11570470B2
Overlapped block motion compensation (OBMC) may be performed for a current video block based on motion information associated with the current video block and motion information associated with one or more neighboring blocks of the current video block. Under certain conditions, some or ail of these neighboring blocks may be omitted from the OBMC operation of the current block. For instance, a neighboring block may be skipped during the OBMC operation if the current video block and the neighboring block are both uni-directionally or bi-directionally predicted, if the motion vectors associated with the current block and the neighboring block refer to a same reference picture, and if a sum of absolute differences between those motion vectors is smaller than a threshold value. Further, OBMC may be conducted in conjunction with regular motion compensation and may use simplified filters than traditionally allowed.
US11570469B2
Obtaining one or more motion vector predictor candidates includes: (a1) generating a motion vector predictor candidate, based on motion vectors of first adjacent blocks adjacent to a block to be processed in a first direction; and (a2) generating a motion vector predictor candidate, based on motion vectors of second adjacent blocks adjacent to the block to be processed in a second direction, and step (a2) includes: determining whether the first adjacent blocks include an inter-predicted block; and searching for a motion vector on which scaling processing can be performed from among the motion vectors of the second adjacent blocks when it is determined that the first adjacent blocks do not include an inter-predicted block, and executing, when the motion vector on which scaling processing can be performed is obtained in the search, scaling processing on the motion vector obtained in the search.
US11570466B2
In one embodiment, an apparatus comprises processing circuitry to: receive, via a communication interface, a compressed video stream captured by a camera, wherein the compressed video stream comprises: a first compressed frame; and a second compressed frame, wherein the second compressed frame is compressed based at least in part on the first compressed frame, and wherein the second compressed frame comprises a plurality of motion vectors; decompress the first compressed frame into a first decompressed frame; perform pixel-domain object detection to detect an object at a first position in the first decompressed frame; and perform compressed-domain object detection to detect the object at a second position in the second compressed frame, wherein the object is detected at the second position in the second compressed frame based on: the first position of the object in the first decompressed frame; and the plurality of motion vectors from the second compressed frame.
US11570456B2
A method to be performed by a receiving apparatus for decoding an encoded bitstream representing a sequence of pictures of a video stream is provided. In the method, capabilities relating to level of decoding parallelism for the decoder are identified, a parameter indicative of the decoder's capabilities relating to level of decoding parallelism is kept, and for a set of levels of decoding parallelism, information relating to HEVC profile and HEVC level that the decoder is capable of decoding is kept.
A method for encoding a bitstream representing a sequence of pictures of a video stream is also provided. In the method, a parameter is received from a transmitting apparatus that should decode the encoded bitstream.
US11570454B2
A medical telepresence system comprising: an interface to receive a plurality of data feeds from a live medical procedure, at least one data feed comprising a video signal capturing the live medical procedure; a hierarchical encoder to encode the plurality of data feeds using a first tier-based hierarchical data coding scheme, wherein encoded data from the hierarchical encoder is decodable by a first set of computing devices for viewing, the first set of computing devices being communicatively coupled to the hierarchical encoder using a first network connection; a transcoder to convert from the first tier-based hierarchical data coding scheme to a second tier-based hierarchical data coding scheme, wherein encoded data from the transcoder is receivable by a second set of computing devices for viewing, the second set of computing devices being communicatively coupled to the transcoder using a second network connection, the second network connection being of a lower quality than the first network connection; and a recorder to store the output of the hierarchical encoder as a set of tier-based files for later retrieval, wherein each of the set of tier-based files represent different levels of quality.
US11570451B2
With adaptive multiple quantization, a video or other digital media codec can adaptively select among multiple quantizers to apply to transform coefficients. The switch in quantizers can be signaled at the sequence level or frame level of the bitstream syntax, or can be implicitly specified in the syntax.
US11570441B2
Devices, systems and methods for digital video coding, which includes matrix-based intra prediction methods for video coding, are described. In a representative aspect, a method for video processing includes performing a conversion between a current video block of a video and a bitstream representation of the current video block using a matrix based intra prediction (MIP) mode in which a prediction block of the current video block is determined by performing, on previously coded samples of the video, a boundary downsampling operation, followed by a matrix vector multiplication operation, and followed by an upsampling operation, where the upsampling operation is performed, in both a vertical direction and a horizontal direction in a fixed order, on samples obtained from the matrix vector multiplication operation.
US11570439B2
An inverse quantization method is implemented by an inverse quantization device, the method configured for acquiring quantized coefficients, estimating a quantization parameter in quantization groups or quantization parameter prediction group units, generating an inverse quantization matrix for adaptive quantization, and generating transform coefficients from the quantized coefficients using the quantization parameter and the inverse quantization matrix.
US11570433B2
In prediction, one of a first mode for deriving, using pixels in an image including a target block, predicted pixels in the target block, a second mode for deriving the predicted pixels in the target block using pixels in an image different from the image including the target block, a third mode for generating the predicted pixels in the target block using both the pixels in the image including the target block and pixels in the different image can be used. If the third mode is used in at least one of the first and second blocks, the intensity of deblocking filter to be performed for the boundary between the first and second blocks is set to the same intensity as in a case in which the first mode is used in at least one of the first and second blocks.
US11570431B2
A method by which a decoding device performs image decoding, according to the present invention, comprises the steps of: deriving an intra prediction mode of a current block; deriving neighboring samples including left neighboring samples and upper neighboring samples of the current block; deriving reference samples for prediction of a target sample among the neighboring samples on the basis of the position of the target sample of the current block and the prediction angle of the intra prediction mode; determining an interpolation filter for the target sample; and deriving the prediction sample of the target sample on the basis of the interpolation filter and the reference samples.
US11570427B2
Disclosed is an apparatus for testing a camera module, and the apparatus for testing the camera module according to the disclosure includes a socket section configured to settle the camera module thereon; a movable unit-pattern chart lens section comprising a housing, a light source unit provided inside the housing and emitting light toward the camera module, and a chart disposed below the light source unit inside the housing and formed with a unit pattern; a first actuator configured to actuate the movable unit-pattern chart lens section; a second actuator configured to actuate the socket section; and a test image capturer configured to obtain a test image from images captured while actuating the movable unit-pattern chart lens section or the socket section based on actuation of the first actuator or the second actuator.
US11570423B2
Systems and methods for calibrating an array camera are disclosed. Systems and methods for calibrating an array camera in accordance with embodiments of this invention include the capturing of an image of a test pattern with the array camera such that each imaging component in the array camera captures an image of the test pattern. The image of the test pattern captured by a reference imaging component is then used to derive calibration information for the reference component. A corrected image of the test pattern for the reference component is then generated from the calibration information and the image of the test pattern captured by the reference imaging component. The corrected image is then used with the images captured by each of the associate imaging components associated with the reference component to generate calibration information for the associate imaging components.
US11570416B2
In one embodiment, a method includes accessing first image data generated by a first image sensor having a first filter array that has a first filter pattern. The first filter pattern includes a number of first filter types. The method also includes accessing second image data generated by a second image sensor having a second filter array that has a second filter pattern different from the first filter pattern. The second filter pattern includes a number of second filter types, the number of second filter types and the number of first filter types have at least one filter type in common. The method also includes determining a correspondence between one or more first pixels of the first image data and one or more second pixels of the second image data based on a portion of the first image data associated with the filter type in common.
US11570414B2
An imaging device includes an imaging sensor that outputs an imaging signal representing a sequence of frame images of a photographic subject. A buffer memory temporarily stores data of the sequence of frame images from the imaging signal. A release switch is actuated by a user to output an image-taking signal. A controller, upon receipt of the image-taking signal from the release switch: (i) generates moving image data from at least some of the plurality of frame images stored in the buffer memory, (ii) generates at least one piece of still image data based on at least one frame image of the plurality of frame images stored in the buffer memory, and (iii) associates the moving image data with the still image data and records the moving image data and the still image data in a recording medium.
US11570412B2
This invention provides an improved display system and method that is created by adjusting the properties of one or more displays to obtain coarse control over display behavior, by using sensors to optimize display parameters. The display is further improved by constructing a display map by selectively driving the display and sensing the optical image created. Furthermore, the sensors are used to ensure that the resulting optimized display meets target quality measurements over time, potentially taking into account ambient conditions. The system reports on its status, and is able to predict when the system will no longer meet a quality target. The system and method is able to optimize a display system and keep it optimized over time. Individual displays with the display system can have operating points that are matched to each other. Corrections to the input image signal to deliver improved display system performance can be minimized, and therefore, the unwanted artifacts of those changes can be minimized. If the displays drift over time, those operating points can be updated. If ambient conditions change, and new operating points are desired, the new operating points can be automatically selected. Operators of the display who require a minimum level of quality for the display system (e.g. a minimum intensity level) can be ensured that the display meets those requirements. And, they can be warned in advance as to when system maintenance can be necessary, when quality falls below targeted goals system and method provides for sending out methods of the quality of the system such an in an e-mail, perhaps in the form of graphs. Or, the system in method allows for prediction of when quality targets will not be met. Prediction is useful for a display system operator who needs to know when to perform maintenance, such as changing a light bulb (light source) in a projector.
US11570407B2
Various embodiments relate to an electronic device that supports millimeter wave communication. The electronic device may include: a housing; an antenna structure including at least one antenna comprising a portion of the housing or positioned in the housing, and including an annular conductive structure comprising a conductive material, the annular conductive structure having a first surface facing an outside of the housing, a second surface facing a direction opposite the first surface, an internal space defined by the first surface and the second surface, and a plurality of slots having a repeating pattern and formed through the first surface to the internal space; a conductive member comprising a conductive material disposed in the internal space; a wireless communication circuit electrically connected with the conductive member and configured to form a directional beam using the antenna structure; and a ground electrically connected to the annular conductive structure.
US11570399B2
A tap includes an input configured to be connected to a line. The tap also includes a first signal conditioning circuit having a first signal conditioning effect on downstream signals, upstream signals, or both. The tap also includes a second signal conditioning circuit having a second signal conditioning effect on the downstream signals, the upstream signals, or both. The second signal condition effect is different than the first signal conditioning effect. The tap also includes one or more subscriber ports configured to be connected to a subscriber premises. The tap also includes a path-selection device connected to the input, the first signal conditioning circuit, and the second signal conditioning circuit. The path-selection device is configured to selectably route the downstream signals from the input, through the first and second signal conditioning circuits, to the one or more subscriber ports.
US11570391B2
A pixel circuit includes a photoelectric conversion device; an amplifier including a first amplifier transistor and a second amplifier transistor connected in series between a first voltage and a second voltage, wherein a gate terminal of the first amplifier transistor is connected to the photoelectric conversion device; a feedback capacitor connected between a first current terminal of the first amplifier transistor and the photoelectric conversion device; a first reset switch connected between the gate terminal of the first amplifier transistor and an anode voltage; and a second reset switch connected between a first current terminal of the second amplifier transistor and a gate terminal of the second amplifier transistor.
US11570381B2
A processor or control circuit of an apparatus receives data of an image based on sensing by one or more image sensors. The processor or control circuit also detects a region of interest (ROI) in the image. The processor or control circuit then adaptively controls a light projector with respect to projecting light toward the ROI.
US11570379B2
There are provided systems and methods for digital image filtering and post-capture processing using user specific data. A computing device may include a camera that records media of a scene, including images or videos. A user may utilize the computing device to add filters, graphical overlays, or other effects to the recorded media, which may alter pixel data for pixels of the media or blend graphics into the media. When adding image effects to images, the device or a service provider that offers and image hosting and/or sharing platform may determine recommendations for particular image effects to use when recording and processing the image. The recommended effects may be based on effects used in past media, as well as user information, and may change an appearance of the output media in a particular way specific to the user, media, and/or scene.
US11570373B2
There is provided with an information processing apparatus. An obtaining unit obtains an image. A first detecting unit detects a subject from the image. An exposure control unit controls an exposure based on a luminance of the detected subject. A second detecting unit detects a portion of the subject from the exposure-controlled image. A storing unit stores a difference between a first luminance of the detected subject and a second luminance of the portion of the detected subject.
US11570371B2
The present technology relates to an imaging apparatus, an imaging method, and a program that perform appropriate exposure control, to thereby enable a desired object to be appropriately imaged.
The present technology includes: an imaging unit including a plurality of pixels having different spectral characteristics; and an exposure control unit setting information associated with exposure control on the plurality of pixels depending on specification information for specifying a kind of a measurement target. Alternatively, the present technology includes: an imaging unit including a plurality of pixels having different spectral characteristics; and an exposure control unit setting information associated with exposure control on the plurality of pixels on the basis of a predicted output value of each of the plurality of pixels based on a spectral characteristic related to a measurement target. The present technology is applicable to an imaging apparatus which senses vegetation, for example.
US11570364B2
An optical member driving device is provided that includes a fixed portion with an accommodation space for a lens device, and a movable portion, which has a holding portion for holding an image sensor, and is rockably supported at a position on a rear side of the lens device. The movable portion includes an FPC having a main body portion connected to the image sensor and a connecting portion for connecting the main body portion and an external device and a coil substrate which is fixed on a front surface of the main body portion of the FPC and on which a coil is formed. The connecting portion has a base end portion which rises from a predetermined position on an edge of the main body portion to a front side. The base end portion is opposed to a side surface of the coil substrate with an adhesive interposed.
US11570363B2
An imaging apparatus is disclosed. The imaging apparatus includes an image sensor including includes a photosensitive region and an anti-shake module including a base, a carrier, a flexible connection member, and an actuator set. The base includes a cavity, a depth of the cavity is greater than or equal to a thickness of the image sensor, the carrier and the image sensor are disposed in the cavity, and the base provides support for the carrier by using the flexible connection member. The carrier includes a through hole, a size of the through hole is greater than or equal to that of the photosensitive region, the carrier is separately electrically connected to the image sensor and the base, and a bottom surface of the carrier is fastened to a top surface of the image sensor. Each actuator in the actuator set includes a fastened end and a movable end.
US11570359B2
The present disclosure relates to a method and apparatus for providing a camera service by an electronic device. The electronic device may include a camera, a memory, and at least one processor, the processor configured to control the electronic device to: receive a camera shooting request; display a preview image of an external object obtained through the camera using first area information based on a first shooting mode in response to the shooting request; receive an input corresponding to a second shooting mode in the first shooting mode; and display the preview using second area information corresponding to the second shooting mode in response to the input.
US11570353B2
There is provided a focus adjustment apparatus. A selection unit repeatedly executes selection processing for selecting a main subject from one or more subjects included in a shooting range based on an autofocus (AF) setting. A focus adjustment unit performs focus adjustment on a target position determined based on the selected main subject. A change unit changes the AF setting. In a case where the AF setting is changed after a previous execution of selection processing, the selection unit determines whether to execute selection processing based on a main subject selected in the previous execution of selection processing or whether to execute the selection processing independently of the main subject selected in the previous execution of selection processing according to a change content of the AF setting.
US11570343B2
The present disclosure provides a floating touch camera module, a display device and a touch method. The floating touch camera module includes: a lens with a light collection surface and a light emitting surface; an image sensor at one side of the light emitting surface of the lens, the image sensor configured to receive light rays from the lens and form sensing information; and an infrared cut filter film at one side of a light incident surface of the image sensor and configured to filter out infrared light rays. The infrared cut filter film is movable relative to the lens between a first position at which the infrared cut filter film directly faces the lens and a second position at which the infrared cut filter film is offset from the lens, thereby enabling the floating touch camera module to switch between a photographing mode and a touch mode.
US11570341B2
The present disclosure provides a lighting apparatus and method of using the same. The lighting apparatus has a base having a bottom and at least one sidewall, the base having a hollow center, the hollow center being dimensioned for a camera lens, a ribbon of light emitting didoes (LEDs) affixed to the base, wherein the ribbon of LEDs are parallel the sidewall and configured for color temperature between approximately two thousand seven hundred degrees and six thousand degrees, a lens cover coupled to the sidewall of the base, wherein opaque lens is coupled to the sidewall modularly such that a no tooling is required.
US11570340B2
Described herein are embodiments of a mobile device case that allows a mobile device camera to view and/or capture images from multiple fields of view. The case may allow the mobile device camera to simultaneously capture image information from multiple different directions relative to the camera or mobile device. The fields of view may not be contiguous fields of view, such that there is a gap or other discontinuity between the fields of view. One field of view may be a field visible from or facing a surface of the mobile device on which the camera is disposed (e.g., the back of the mobile device) and another field of view may be one visible from or facing a different surface of the mobile device. Also described are embodiments of techniques for configuring a mobile device to capture and/or process images from multiple fields of view.
US11570339B2
According to the disclosure, a photodiode package structure is provided. The photodiode package structure includes a substrate, a photodiode chip on the substrate, a plurality of shutters above the photodiode chip, and a seal member covering the substrate and the photodiode chip, in which the shutters are embedded in the seal member.
US11570336B2
A camera module includes an optical lens, a light-sensitive chip and an electrical support. The electrical support includes a circuit module embedded in a support body to form an integral structure, a connecting member provided on the support body to electrically connect with the circuit module, and a camera component coupled at the support body and electrically connected to the connecting member. Therefore, the electrical support not only forms a circuit board to electrically connect with the camera component but only serves as a base to support the camera component.
US11570335B2
A camera system includes a body and a camera. The body includes a controller and an image processing circuit. The camera is configured to be detachably connected to the body and includes a sensor. The sensor is configured to convert an optical image into an electrical signal and including a plurality of pixels. The controller is configured to determine a type of the camera or the first sensor according to whether one pixel or multiple pixels are used as a unit pixel of the first sensor. The image processing circuit is configured to perform predetermined image processing corresponding to the type of the camera or the first sensor on output electrical signals of the plurality of pixels.
US11570331B2
A binary image is generated from a multivalued image based on a threshold, an edge is extracted from the multivalued image, an edge image is generated by correcting a position of the extracted edge, and a synthetic binary image is generated by synthesizing the edge image and the binary image.
US11570315B2
Systems and methods for the virtualization, aggregation, enhancement, and distributed processing of facsimile communications. The Remote FAX Interconnect known as etherFAX® is a system and method that allows for the reception and delivery of information to or from one or more facsimile systems using Internet/web based communication protocols such as HTTP(S) as the transport between a cooperating facsimile capable application or hardware and the remotely accessible etherFAX® services.
US11570310B2
An inspection device includes a processor configured to display at least one of plural pieces of read image data on a display unit in a state where a defective portion is recognizable, and set reception of a correction instruction of the defective portion to be enabled, the plural pieces of read image data being obtained by reading image-formed matters obtained by forming original image data on plural recording media, and correct read image data that does not satisfy a predetermined criterion, and then register the corrected read image data as reference image data used for inspecting the image-formed matter.
US11570305B2
Systems and methods forecast inbound telecommunications, and more particularly, analyze real-time and historical call center data, and apply a forecasting model to the data in order to predict inbound call volume. These systems and methods employ tools that manipulate call center data and generate visual representations of metrics pertaining to forecasting call center data via a dashboard.
US11570302B1
A system for providing a caption feedback service to a call center agent includes a plurality of TRS providers, a caption feedback system, and a plurality of call centers. The TRS providers provide a transcription service to TRS users during phone calls between the TRS users and peers, and the call centers connect phone calls between customers and call agents. The caption feedback system is connected to the caption feedback agents of the TRS providers and caption feedback clients of the call centers via data networks. If the caption feedback system finds that the TRS user's phone number matches the customer's phone number and the peer's phone number matches the call center's phone number, the caption feedback server connects the TRS provider to the call center via data network to enable transfer of the caption data of the call agent's voice from the TRS provider to the call center.
US11570301B1
One example method of operation may include identifying a plurality of mobile device telephone numbers associated with a plurality of mobile devices, forwarding the plurality of mobile device telephone numbers to a content delivery device, hashing the plurality of mobile device telephone numbers, storing the hashed plurality of mobile device telephone numbers in the content delivery device, identifying a scheduled call campaign to the plurality of mobile devices, forwarding call content associated with schedule call campaign to the plurality of mobile devices prior to calling the plurality of mobile devices, and responsive to receiving confirmation that the content was successfully forwarded to the plurality of mobile devices, initiating a calling device to begin calling the plurality of mobile devices.
US11570294B1
Methods and systems are provided for providing enhanced incoming call notifications for users who utilized a relay application designed for those with speech, visual, or hearing impairments or disabilities. An indication that a calling party is attempting to initiate an incoming call intended for a receiving party that utilizes a relay application that assists users having hearing, visual, or speech disabilities is received by an intermediate party. A chat session is established utilizing the relay application between the intermediate party and the calling party. Additionally, a Voice over Internet Protocol (VoIP) session is established that does not include a voice session. Upon the chat session being terminated from within the relay application, the VoIP session is terminated.
US11570292B1
Techniques for providing audio services to multiple devices are described. For instance, connections between a hands-free unit and multiple wireless devices are established. The connections are themselves used to establish active communication channels, such as active audio communication channels, between the hands-free unit and the wireless devices, such as during a phone call. Upon establishment of an active communication channel with one of the wireless devices, the connections to the other wireless devices are disconnected—and/or additional connections refused—for the duration of the active communication channel. Furthermore, a routing module in various embodiments permits multiple hands-free units to route active communication channels to each other depending on user location.
US11570287B2
The present invention provides a locking mechanism in a mobile terminal and a method of manufacturing the same. The locking mechanism comprises a slider, latch, button, and spring. The slider and latch include openings and may translate between a locked position and an unlocked position. The latch may include a protrusion that limits the translation of the slider and the latch when in the locked position. The button is located within the opening of the slider and the opening of the latch, and the spring member is fixed adjacent the latch. In an instance in which an external force is applied to the button, the external force deforms the spring member such that contact between a vertical edge of the protrusion and the spring is precluded allowing translation of the slider and the latch between the locked position and the unlocked position.
US11570271B2
Differentiated sidecars in a service mesh may be provided. A first routing rule includes a first plurality of weights to be associated with a first plurality of data paths of a first microservice instance may be received. Next, first mapping between a first set of features associated with the first microservice instance and the first plurality of weights may be determined. Then a second microservice instance may be detected and a second set of features associated with the second microservice instance may be detected. A second routing rule comprising a second plurality of weights to be associated with a second plurality of data paths of the second microservice instance may be determined. The second plurality of weights may be determined such that a second mapping between the second set of features and the second plurality of weights imitates the first mapping.
US11570268B2
A proxy apparatus acts as an intermediary between one or more bot apparatuses and one or more communication channels. The proxy apparatus connects a communication channel to a bot apparatus for the exchange of messages. A user can interact with the bot apparatus through the communication channel. The proxy apparatus is configured to perform one or more operations or services. Example operations include, but are not limited to, registration, authentication and authorization, the recordation of telemetry data, schema transformation, and identity transformation.
US11570266B2
A device may provide, to a network device, a subscribe request that includes a request for sensor data, and may receive sensor data packets that include the sensor data and header extensions identifying a group identifier for a group of sensor data and final packet information indicating whether the sensor data packet is a final one for the group. The device may store the sensor data packets until the final packet information of one of the sensor data packets indicates that the one of the sensor data packets is a final sensor data packet for the group, and may identify a complete set of the sensor data packets when the final packet information of the one of the sensor data packets indicates that the one of the sensor data packets is the final sensor data packet. The device may perform actions based on the complete set.
US11570265B2
The present invention relates to a data transmission method including injecting signals into a communications channel between a predefined hardware device for a computing system and an application executing on the computing system, for receipt by the application. A data transmission system is also disclosed.
US11570254B2
A server apparatus includes a communication interface and a controller configured to transmit/receive information to/from another apparatus using the communication interface. Upon receiving a request for vehicle dispatch from a terminal apparatus, the controller is configured to transmit an instruction to pick up a user of the terminal apparatus to a vehicle that includes a game apparatus corresponding to a game preference of the user.
US11570252B2
A vehicular arbitration system includes: a main manager configured to receive one or more requests from a plurality of first application execution units and to determine a request for operating a predetermined on-vehicle device based on the received one or more requests and a predetermined rule; and a plurality of sub-managers respectively configured to arbitrate the request determined by the main manager and a request input from at least one second application execution unit that is different from the plurality of first application execution units and to control the on-vehicle device based on an arbitration result.
US11570248B2
A storage area network architecture and a method for storing data in the storage area network architecture are disclosed. For example, the storage area network architecture comprises a first layer of servers, the first layer of servers comprising a plurality of file receiving servers, a second layer of servers, the second layer of servers comprising a plurality of file sharing servers in communication with the first layer of servers and a third layer of servers, the third layer of servers comprising a plurality of storage servers in communication with the second layer of servers.
US11570244B2
Techniques are described that enable users to configure the mirroring of network traffic sent to or received by computing resources associated with a virtual network of computing resources at a service provider network. The mirrored network traffic can be used for many different purposes including, for example, network traffic content inspection, forensic and threat analysis, network troubleshooting, data loss prevention, and the like. Users can configure such network traffic mirroring without the need to manually install and manage network capture agents or other such processes on each computing resource for which network traffic mirroring is desired. Users can cause mirrored network traffic to be stored at a storage service in the form of packet capture (or “pcap”) files, which can be used by any number of available out-of-band security and monitoring appliances including other user-specific monitoring tools and/or other services of the service provider network.
US11570242B2
A verifier peer system transmits a request to an application of another peer system to obtain integrity data of the application. In response to the request, the verifier peer system obtains a response that includes kernel secure boot metrics of the other peer system and integrity data of the application and of any application dependencies. If the verifier peer system determines that the response is valid, the verifier peer system evaluates the integrity data and the kernel secure boot metrics against a set of Known Good Values to determine whether the integrity data and the kernel secure boot metrics are valid. If the integrity data and the kernel secure boot metrics are valid, the verifier peer system determines that the other peer system is trustworthy.
US11570241B2
Some embodiments provide a method for associating data message flows from applications executing on a host computer with network interfaces of the computer. The method of some embodiments identifies a set of applications operating on a machine executing on the host computer, identifies candidate teaming policies for associating each identified application with a subset of one or more interfaces, and generates a report to display the identified candidate teaming policies per application to a user. In response to user input selecting a first teaming policy for a first application, the method generates a rule, and distributes the rule, to the host computer to associate the first application with a first subset of the network interfaces specified by the first teaming policy. Similarly, in response to user input selecting a second teaming policy for a second application executing on the machine, the method generates a second rule, and distributes the second rule, to the host computer to associate the second application with a second subset of the network interfaces specified by the second teaming policy.
US11570239B2
Techniques are described for providing a distributed application load-balancing architecture that supports multipath transport protocol for client devices connecting to an application service. Rather than having client devices generate new network five-tuples for new subflows to the application servers, the techniques described herein include shifting the burden to the application servers to ensure that the new network five-tuples land in the same bucket in the consistent hashing table. The application servers may receive a hashing function utilized by the load balancers to generate the hash of the network five-tuple. By having the application servers generate the hashes, the load balancers are able to continue stateless, low-level processing of the packets to route them to the correct application servers. In this way, additional subflows can be opened for client devices according to a multipath transport protocol while ensuring that the subflows are routed to the correct application server.
US11570238B2
In one aspect, a method performed by a network node for predicting a probability of state change of a node (e.g., a fog node) in a network is provided. The network node determines a set of weights based on attributes of the node. The network node estimates the probability of state change of the node using the determined set of weights and a set of one or more attribute values related to the node where determining the set of weights includes maximizing an evaluation value associated to the node.
US11570231B2
A network-accessible service provides an enterprise with a view of all identity and data activity in the enterprise's cloud accounts. The service enables distinct cloud provider management models to be normalized with centralized analytics and views across large numbers of cloud accounts. The service enables an enterprise to model all activity and relationships across cloud vendors, accounts and third party stores. Display views of this information preferably can pivot on cloud provider, country, cloud accounts, application or data store. Using a domain-specific query language, the system enables rapid interrogation of a complete and centralized data model of all data and identity relationships. User reports may be generated showing all privileges and data to which a particular identity has access. Similarly, data reports shown all entities having access to an asset can be generated. Using the display views, a user can pivot all functions across teams, applications and data, geography, provider and compliance mandates, and the like.
US11570226B2
Aspects of the technology described herein are directed towards systems, methods, and computer storage media for, among other things, converting a video stream being transmitted in a first streaming protocol to a second streaming protocol without transcoding the content communicated in the video stream. For example, the technology described herein may convert an RTP video stream to a non-RTP video stream without transcoding. The technology described herein extracts a plurality of media content from an RTP package and repackages the extracted content into a non-RTP streaming protocol, such as WebRTC or HLS. Moreover, the technology described herein can provide for the synchronization of video and audio data during conversion.
US11570221B2
A method, apparatus, system and non-transitory computer-readable record medium for a group call using whisper are provided. The group call method includes participating in a group call session with a plurality of participants; designating at least one participant among the plurality of participants as a whisper target based on a touch gesture during the group call session; generating a whisper packet configured to control a server to transfer, only to the whisper target, at least one of video and audio that are input through an input device while the whisper group is designated; and transmitting the whisper packet to the server through the group call session.
US11570213B2
A non-transitory computer readable medium comprising instructions stored thereon, the instructions effective to cause at least one processor to: establish trustworthiness of an application installed on a endpoint, the established trustworthiness is sufficient for an enterprise security infrastructure to treat the application installed on the endpoint and the endpoint as a trusted application and a trusted endpoint; negotiate with the trusted endpoint to determine a traffic inspection method for traffic flows originating at the trusted application that is destined for a service, the traffic inspection method is determined based on at least the trusted application, and the service; and instruct the trusted application of the determined traffic inspection method.
US11570207B2
An example network device receives an encapsulated network packet via a network tunnel; extracts IPv6 header information from the encapsulated network packet; extracts IPv4 header information from the encapsulated network packet; determines that the encapsulated network packet is a spoofed network packet based on the IPv6 header information and the IPv4 header information; and in response to detecting the spoofed network packet, transmits a message to a Tunnel Entry Point (TEP) device, the message including data representing the IPv6 header information and IPv4 header information. A tunnel entry point (TEP) device may receive the message and use the message to detect spoofed IPv6 traffic, e.g., when an IPv6 header and an IPv4 header of an encapsulated packet matches the IPv6 header and the IPv4 header specified in the message. In this manner, the TEP device may block, rate limit, or redirect spoofed network traffic.
US11570203B2
An account protection service to prevent user login or other protected endpoint request abuse. In one embodiment, the service collects user recognition data, preferably for each login attempt (e.g. data about the connection, session, and other relevant context), and it constructs a true user profile for each such user over time, preferably using the recognition data from successful logins. The profile evolves as additional recognition data is collected from successful logins. The profile is a model of what the user “looks like” to the system. For a subsequent login attempt, the system then calculates a true user score. This score represents how well the current user recognition data matches the model represented by the true user profile. The user recognition service is used to drive policy decisions and enforcement capabilities. Preferably, user recognition works in association with bot detection in a combined solution.
US11570200B2
A method for implementing a migration action for a vulnerability includes receiving an indication that a target resource includes a vulnerability where the target resource is being hosted in a cloud environment and associated with a user of the cloud environment. The method also includes receiving a plurality of rules configured to mitigate vulnerabilities for cloud environment resources. The method further includes determining whether the plurality of rules include one or more rules corresponding to the vulnerability of the target resource. When the plurality of rules comprises the one or more rules corresponding to the vulnerability of the target resource, the method includes applying a reversible mitigation action associated with a respective rule of the one or more rules corresponding to the vulnerability of the target resource.
US11570198B2
Aspects of the disclosure relate to quantification of attack surfaces in an enterprise computing system. A computing platform may receive indications of usage of a plurality of controls associated with an enterprise computing system. The computing platform may determine, based on a mapping between the plurality of controls and a plurality of attack vectors, one or more controls of the plurality of controls that are mapped to an attack vector. The computing platform may determine respective compliance scores of the one or more controls, and determine, based on the respective compliance scores, a vulnerability score associated with the attack vector. The computing platform may transmit an indication of the determined vulnerability score associated with the attack vector.
US11570195B2
Tools, strategies, and techniques are provided for evaluating the identities of different entities to protect individual consumers, business enterprises, and other organizations from identity theft and fraud. Risks associated with various entities can be analyzed and assessed based on analysis of social network data, professional network data, or other networking connections, among other data sources. In various embodiments, the risk assessment may include calculating an authenticity score based on the collected network data.
US11570192B2
Techniques for detection over-the-top piracy are described. In some embodiments, a piracy detection method is performed at a server by a piracy detector. The piracy detector obtains records associated with requests for access from a plurality of client devices. The piracy detector further distributes the records to a plurality of nodes according to distribution keys extracted from the records, where each of the plurality of nodes receives a respective set of records associated with a respective distribution key and generates a set of respective watch session records based on the respective set of records. The piracy detector also generates watch session records associated with the distribution keys by aggregating the respective watch session records from the plurality of nodes. The piracy detector additionally identifies one or more pirated client devices among the plurality of client devices based on clusters established from the watch session records.
US11570191B2
The present invention relates to methods and apparatus for dynamically detecting and/or mitigating threats in communications systems. Exemplary methods and apparatus of the present invention allow for a combination of automated and operator controlled responses to threats. While an operator is provided an opportunity to provide input on how to respond to a threat, after one or more threats of a given type are identified, the system will automatically take corrective action without waiting for operator input and/or in the absence of operator input following notification of a threat.
US11570189B2
A system for simultaneously testing whether a plurality of electronic devices connected via a communication network correctly handle exceptions. The system includes a communication network, and a plurality of electronic devices and a testing device connected via the communication network. The testing device includes an electronic processor. The electronic processor is configured to send a first status query message to the plurality of electronic devices, send fuzzed data to one or more of the plurality of electronic devices, and send a second status query message to the plurality of the electronic devices. The electronic processor is also configured to, for each electronic device that responds to the first status query message with a valid response and responds to the second status query message with an invalid response or fails to respond to the second status query message, record the electronic device in a failure log.
US11570184B2
In a fraud-detection method for use in an in-vehicle network system including a plurality of electronic control units (ECUs) that exchange messages on a plurality of networks, a plurality of fraud-detection ECUs each connected to a different one of the networks, and a gateway device, a fraud-detection ECU determines whether a message transmitted on a network connected to the fraud-detection ECU is malicious by using rule information stored in a memory. The gateway device receives updated rule information transmitted to a first network among the networks, selects a second network different from the first network, and transfers the updated rule information only to the second network. A fraud-detection ECU connected to the second network acquires the updated rule information and updates the rule information stored therein by using the updated rule information.
US11570181B2
Methods of secure resource authorization for external identities using remote principal objects are performed by systems and devices. An external entity creates a user group and defines entitlements to an owning entity's secure resource as a set of permissions for the group. An immutable access template with the permissions and an access policy for the secure resource are provided to the owning entity for approval. On approval, a remote principal object is created in the owner directory according to the permissions and access policy. A remote principal that is a group member requests access via an interface to the owner domain using external domain credentials. The identity of the remote principal is verified against the remote principal object by a token service. Verification causes generation and issuance of a token, with the enumerated entitlements, to the remote principal interface affecting a redirect for access to the secure resource.
US11570178B2
A method and a system for checking permissions compatibility between a configuration management system and an orchestration system of a computing cluster are disclosed. The method comprises: identifying a request to approve a change in at least one file of the computing cluster. Retrieving from a repository of the configuration management system an identity of a user for performing the change. Acquiring a denial response or an approval response received in response to a query provisioned to the orchestration system, the query is for rights to change the at least one file using the identity of the user. In response to the approval response, entering the approval response, into the configuration management system for confirming the checking permissions compatibility is approved. In response to the denial received, sending a message to the configuration management system, the message is indicative that the checking permissions compatibility is not approved.
US11570176B2
A system for prioritizing a plurality of requests received from a plurality of clients is disclosed. The system receives the plurality of requests. For each request from the plurality of requests, the system extracts features of the request, where the extracted features provide information regarding a priority in performing the request. The extracted features correspond to a numerical representation of the request, such that if a priority level associated with the request is high the numerical representation comprises higher numerical values compared to another request that is associated with a low priority level. The system determines a prioritization in performing the plurality of requests by ranking a plurality of extracted features representing the plurality of requests based on ranking numerical values associated with the plurality of extracted features.
US11570174B2
Controlling wireless access to target devices by initiating, by a user device, wireless pairing with a target device. The user device collects, concurrent with the initiating, a wireless signal of at least the target device. One or more computing devices builds a profile for the user device based on the collected wireless signal. The one or more computing devices controls access of the user device to functionality of the target device based on the profile.
US11570172B2
A native application on a client computing device enables secure user authentication via an identity provider (IdP) for accessing services of a web service provider. The native application forwards a redirect request generated by a main gateway of the service provider and including an IdP uniform resource locator (URL) to a system browser of the client computing device. The redirect request directs the system browser to a broker gateway of the service provider that registers an authentication response handler and redirects the system browser to the IdP URL to enable a user of the native client computing device to authenticate. After the broker gateway receives an IdP authentication response from the IdP following authentication by the user, the broker gateway provides the IdP authentication response to the native application for providing back to the main gateway. The main gateway finally processes the authentication response to complete the authentication request.
US11570161B2
In order to improve security upon distributing a group key, there is provided a gateway (20) to a core network for a group of MTC devices (10_1-10_n) communicating with the core network. The gateway (20) protects confidentiality and integrity of a group key, and distributes the protected group key to each of the MTC devices (10_1-10_n). The protection is performed by using: a key (Kgr) that is preliminarily shared between the gateway (20) and each of the MTC devices (10_1-10_n), and that is used for the gateway (20) to authenticate each of the MTC devices (10_1-10_n) as a member of the group; or a key (K_iwf) that is shared between an MTC-IWF (50) and each of the MTC devices (10_1-10_n), and that is used to derive temporary keys for securely conducting individual communication between the MTC-IWF (50) and each of the MTC devices (10_1-10_n).
US11570160B2
Methods and an apparatus are provided for securely authorizing access to remote resources. For example, a method is provided that includes receiving a request to determine whether a user device communicatively coupled to a resource server is authorized to access at least one resource hosted by the resource server and determining whether the user device communicatively coupled to the resource server is authorized to access the at least one resource hosted by the resource server based at least in part on whether the user device communicatively coupled to the resource server has been issued a management identifier. The method further includes providing a response indicating that the user device communicatively coupled to the resource server is authorized to access the at least one resource hosted by the resource server in response to a determination that the user device communicatively coupled to the resource server is authorized to access the at least one resource hosted by the resource server. The method yet further includes providing a response indicating that the user device communicatively coupled to the resource server is not authorized to access the at least one resource hosted by the resource server in response to a determination that the user device communicatively coupled to the resource server is not authorized to access the at least one resource hosted by the resource server.
US11570141B2
A method for coordinating transactions for domain names to register a plurality of domain names with a domain name portfolio stored in a storage, such that each of the domain names in a plurality of domain names belongs to only the domain name portfolio as a unique member of the domain name portfolio; associate a portfolio account with the domain name portfolio, the portfolio account configured for managing a pool of funds available for use in payment of the transactions for said each of the domain names of the plurality of domain names; receive credit payment instructions attributed to the portfolio account, the credit payment instructions containing a credit payment amount; record the credit payment amount against the pool of funds in order to increase a level of the pool of funds; receive debit payment instructions associated with a domain name of the domain name portfolio and domain name transaction information associated with the transaction for the domain name; record the debit payment amount against the pool of funds in order to decrease the level of the pool of funds; and generate and send a periodic report over the network detailing the level of the pool of funds and the transaction applied against two or more of the domain names as members of the domain name portfolio.
US11570140B1
An apparatus for correcting MAC addresses includes a device port for connecting to a computing device with a colliding MAC address with potential to collide with MAC addresses of other computing devices within a computer network. The apparatus includes a network port for connecting to a network device connected to other computing devices. A reassignment module is configured to assign a non-colliding MAC address in place of the colliding MAC address of the computing device and a replacement module is configured to replace the colliding MAC address of a datagram received on the device port with the non-colliding MAC address and transmit the datagram with the non-colliding MAC address from the network port to the network device, and to replace the non-colliding MAC address of a datagram received on the network port with the colliding MAC address and transmit the datagram with the colliding MAC address to the computing device.
US11570131B1
Impact-based strength and weakness determination includes receiving a plurality of industry-wide feedback items, the industry-wide feedback items pertaining to a plurality of entities associated with an industry. It further includes, based at least in part on an evaluation of the plurality of industry-wide feedback items, generating an industry-wide reputation scoring model usable to determine an expected reputation score for a typical entity in the industry based at least in part on a combination of one or more reputation score components. Generating the industry-wide reputation scoring model comprises determining (1) a baseline reputation score, and (2) an expected impact of a reputation score component on reputation scoring for the typical entity in the industry.
US11570125B2
A fast optical switch and networks comprising fast optical switches are disclosed herein. In an example embodiment, a fast optical switch includes two or more fabric switches; a first selector switch; and a second selector switch. The first selector switch may selectively pass a signal to one of the two or more fabric switches. The one of the two or more fabric switches may act on the received signal to provide a switched signal and the second selector switch may selectively receive the switched signal provided by the one of the two or more fabric switches. A slot of the fast optical switch comprises a transmission window of one of the two or more fabric switches that occurs in parallel with at least a portion of a reconfiguration window of the other of the two or more fabric switches.
US11570124B2
In one example, the present disclosure describes a device, computer-readable medium, and method for scaling network capacity predictively, based on customer interest. For instance, in one example, a method includes predicting an interest of a first customer in data content that will be available for consumption over a data network at a time in the future, wherein the predicting is based on customer data including at least a search pattern associated with the first customer, flagging the data content when the predicting indicates at least a threshold degree of likelihood that the first customer will be interested in the data content, and scaling an allocation of resources of the data network to the first customer, based on the flagging.
US11570123B2
In an embodiment, an apparatus is provided that may include circuitry to generate, at least in part, and/or receive, at least in part, at least one request that at least one network node generate, at least in part, information. The information may be to permit selection, at least in part, of (1) at least one power consumption state of the at least one network node, and (2) at least one time period. The at least one time period may be to elapse, after receipt by at least one other network node of at least one packet, prior to requesting at least one change in the at least one power consumption state. The at least one packet may be to be transmitted to the at least one network node. Of course, many alternatives, modifications, and variations are possible without departing from this embodiment.
US11570119B2
A traffic scheduling method includes determining, by a first network device, first traffic scheduling information and a transmission path of a first data stream based on a first talker attribute message received from a talker device and a listener attribute message received from a listener device, and then sending, by the first network device, a first traffic scheduling message to a network device on the transmission path. The first traffic scheduling message includes the first traffic scheduling information. The first traffic scheduling information indicates the network device on the transmission path to generate a gate control list. The gate control list indicates the network device on the transmission path to control, based on the gate control list, a state of a port used to transmit the first data stream.
US11570118B2
Apparatus including a network switch which includes switching circuitry to switch packets, packet drop decision circuitry to identify a packet that is to be dropped, packet duplication circuitry to duplicate the packet that is to be dropped, producing a first packet and a second packet, and packet exporting circuitry to export the first packet to a memory external to the switch via direct memory access (DMA). Related apparatus and methods are also provided.
US11570115B2
A method of estimating available bandwidth for a network comprising a transmitting device and a receiving device, the method comprising: transmitting a media packet stream over the network to the receiving device, the media packets comprising media data for streaming media at the receiving device; transmitting one or more probe packets over the network so as to test the available bandwidth of the network, wherein the probe packets comprise duplicate data of the media packet stream; and determining, during transmission of the probe packets, a measure of network bandwidth availability in dependence on one or more metrics associated with receiving the media packet stream at the receiving device.
US11570112B2
A system is disclosed, comprising: a centralized routing node configured to: identify a set of congested links based on the link utilization statistics, each congested link having at least one traffic flow that may be active, each traffic flow having at least one traffic source and a path set comprising a set of nodes and links that may be used by the traffic flow as packets travel from the at least one traffic source to one or more destinations; identify a set of non-congested links based on the link utilization statistics, each non-congested link sharing at least one traffic source with a traffic flow of a congested link in the set of congested links; identify a path fork in a path set between a source and a destination of a particular traffic flow associated with a particular congested link in the set of congested links; and compute a new utilization level for the particular congested link that would result from moving the particular traffic flow from the particular congested link to a particular non-congested link in the set of non-congested links.
US11570093B2
A data transmission method, a node, and a system, the method including receiving, by a forwarding node, a data packet, where a label stack of the data packet comprises a path identifier (path-ID), where the path-ID is an identifier of a constrained path, and where the constrained path is a path that consists of at least two nodes arranged in a specific order, determining, by the forwarding node, that the forwarding node is a node on the constrained path, selecting, by the forwarding node, a target label/target address from a local available label block/address block according to the path-ID and according to a preset rule, where the label block/address block comprises at least one label/address, searching for, by the forwarding node, a corresponding target interface according to the target label/target address, and forwarding, by the forwarding node, the data packet through the target interface.
US11570088B2
A link group configuration method includes obtaining first status information of M links between a source end device and a receive end device, where the first status information indicates a status of a differential delay between any two of the M links, obtaining first capability information of the receive end device, where the first capability information indicates a first capability of performing differential delay compensation on the M links by the receive end device, grouping N of the M links into a first link group based on the first status information and the first capability information, and sending first configuration information to a second device, where the first configuration information includes information used to indicate the first link group.
US11570083B2
Techniques for operating a network device for sharing resources in a hardware forwarding table. In some embodiments, the network device may generate groups of routes having a common set of next hops; for each group of routes of the generated groups: collect resilient adjacencies associated with routes in the group; assemble pairs of the collected resilient adjacencies; and determine a number of differences between resilient adjacencies in each of the assembled pairs. The network device may further order the assembled pairs based on the number of differences, identify a pair of resilient adjacencies associated with a lowest number of differences; select a resilient adjacency of the identified pair of resilient adjacencies; program one or more routes associated with the selected resilient adjacency, to refer to the other resilient adjacency of the identified pair of resilient adjacencies; and remove an entry associated with the selected resilient adjacency from a forwarding table.
US11570076B2
Embodiments of the present invention provide a system for generating duplicate layered electronic data logs for monitored events on a network. The system is configured for identifying one or more entity resources associated with an entity, continuously monitoring the one or more entity resources, identifying at least a first event and a second event associated with at least one entity resource of the one or more entity resources, storing the first event and the second event in at least a first log and a second log, and generating at least one other log to record activities associated with at least one of the first log and second log.
US11570070B2
A network device classification process, including: monitoring network traffic of networked devices in a communications network to generate device behaviour data representing network traffic behaviours of the networked devices at different time granularities; processing the device behaviour data to classify a plurality of the networked devices as IoT devices, and others of the networked devices as non-IoT devices; accessing IoT device type data representing predetermined network traffic characteristics of respective known IoT device types; processing the device behaviour data of the IoT devices and the IoT device type data to classify each of the IoT devices as being a corresponding one of the plurality of known IoT device types; and for each of the IoT devices classified as a corresponding known IoT device type, classifying the IoT device as being in a corresponding operating state based on network traffic behaviours of the IoT device at different time granularities.
US11570062B2
In one embodiment, a network quality assessment service that monitors a network obtains multimodal data indicative of a plurality of measurements from the network and subjective perceptions of the network by users of the network. The network quality assessment service uses the obtained multimodal data as input to one or more neural network-based models. The network quality assessment service maps, using a conceptual space, outputs of the one or more neural network-based models to symbols. The network quality assessment service applies a symbolic reasoning engine to the symbols, to generate a conclusion regarding the monitored network. The network quality assessment service provides an indication of the conclusion to a user interface.
US11570051B2
Provided is a method for configuring a gateway. The method may include a gateway monitoring current version data stored on at least one first server. The current version data may be associated with a current version of a configuration file. The first server may be remote from the gateway. The current version data may be modified at the first server. In response to the gateway determining that the current version data stored on the first server has been modified, a configuration service may be invoked to retrieve the current version of the configuration file from at least one repository based on the current version data. The repository may include at least one second server remote from the gateway and the first server. The gateway may store a copy of the current version of the configuration file retrieved by the configuration service. A system and computer program product are also disclosed.
US11570050B2
A method for configuring a network service system for performing a network service using AR comprises: at a user device executing an AR cabling application: communicating, to an AR cabling subsystem of the network service system, network service task identification information usable for identifying at least one testing or monitoring case (TMC) definition provisioned within the network service system; receiving, from the AR cabling subsystem of the network service system, cabling instructions based on the network service task identification information, wherein the cabling instructions is for instructing the user to perform a cabling task associated with the at least one TMC definition, wherein the cabling task involves connecting at least one cable to one or more physical ports of a physical resource of the network service system; and providing, via a display and using at least one AR element, the cabling instructions for instructing the user to perform the cabling task.
US11570033B1
Multiphase signal generation circuitry receives input signals that are out-of-phase with one another by a quadrature delay (e.g., 90°), and generates output signals that are out-of-phase with one another by half of the quadrature delay. A first input signal may be provided to a first delay circuitry, which is then input to a first phase interpolator. The first delay circuitry is also input to second delay circuitry, which also generates an output that is input to the first phase interpolator. The first phase interpolator outputs a first output signal. The second delay circuitry is input to third delay circuitry, which in turn is input to a second phase interpolator with a second input signal that is out-of-phase with the first input signal by the quadrature delay. The second phase interpolator outputs a second output signal that is out-of-phase with the first output signal by the half of the quadrature delay.
US11570024B2
Equalization methods and equalizers employing discrete-time filters are provided with dynamic perturbation effect based adaptation. Tap coefficient values may be individually perturbed during the equalization process and the effects on residual ISI monitored to estimate gradient components or rows of a difference matrix. The gradient or difference matrix components may be assembled and filtered to obtain components suitable for calculating tap coefficient updates with reduced adaptation noise. The dynamic perturbation effect based updates may be interpolated with precalculated perturbation effect based updates to enable faster convergence with better accommodation of analog component performance changes attributable to variations in process, supply voltage, and temperature.
US11570017B2
An information processing apparatus includes a control unit (140) that executes a detection process of detecting, on the basis of user-specified position information in a space and target position information in the space, a plurality of processing targets that is continuously selected by a user from a plurality of selection targets within the space, and a batch operation process of executing a batch operation on the detected plurality of processing targets on the basis of processing policy information indicating a processing policy specified by the user for the detected plurality of processing targets.
US11570009B1
A device management service to facilitate onboarding of a remote IoT device may receive, from a client service, a request for a session certificate for a remote device. The device management service may send the session certificate to the client service, where the session certificate is valid for the remote device to obtain a primary certificate during a session duration. The device management service may receive, from the remote device, a request for the primary certificate for the remote device. The device management service may send, to the remote device, the primary certificate, wherein the primary certificate enables communication between the remote device and the device management service, and wherein the primary certificate has a primary duration that is longer than the session duration. The device management service may establish a communication channel with the remote device according to the primary certificate.
US11570006B2
A transaction data processing method includes: receiving a first transaction document from a device of a transaction initiator, the first transaction document being associated with identity labels of a plurality of transaction participants; separately performing identity authentication on the plurality of transaction participants according to the identity labels of the plurality of transaction participants, to obtain an identity authentication result. The method also includes adding the identity authentication result into the first transaction document when the identity authentication results indicates identity authentication of each of the plurality of transaction participants is successful, to generate a second transaction document carrying the identity authentication result; separately transmitting a signature request for the second transaction document to devices of the plurality of transaction participants; and generating a third transaction document according to responses returned by the devices of the plurality of transaction participants in response to the signature request.
US11570003B2
Bitcoins and the underlying blockchain technology are one of the main innovations in building decentralized applications. The effects of quantum computing on this technology are analyzed in general. Provided herein are effective solutions to address security vulnerabilities in a blockchain-based system that can be exploited by a quantum attacker.
US11570000B2
Methods and devices are provided for uploading driving data to a blockchain network. The method is executed at a vehicle node in the blockchain network and includes: packing driving data of the vehicle node within a predetermined time interval every predetermined time interval to obtain a vehicle data packet of the vehicle, and storing the vehicle data packet locally in the vehicle node; broadcasting the vehicle data packet to other vehicle nodes located nearby and in the blockchain network for the other vehicle nodes to receive and store; receiving and storing other vehicle data packets broadcast by the other vehicle nodes located nearby and in the blockchain network; and when connecting to a fixed node that belongs to the blockchain network, synchronizing the vehicle data packet and the other vehicle data packets as stored to the fixed node, wherein the fixed node participates in the consensus of the blockchain network.
US11569999B1
A first network device nonce is computed. The first network device nonce is based on a first network device secret. A Change Token Table message (CTTM) is sent to a second network device. The CTTM comprises the first network device nonce. A Change Token Table Ack Message (CTTAM) with a second network device nonce is received from the second network device. A new token for a tokenization table is computed based on the first network device secret, the second network device nonce, a prime number, and a key derivation function. The new token for the tokenization table is also computed by the second network device based on a second network device secret, the first network device nonce, the prime number, and the key derivation function.
US11569995B2
Apparatus and method for managing devices within a trust boundary of a computer network. In some embodiments, a trust manager circuit uses a first registration authority to authenticate a plurality of processing devices to form a trust group. A new processing device is subsequently added to the group. The trust manager circuit uses a different, second registration authority to provisionally authenticate the new processing device in response to an unavailability of the first registration authority, and grants provisional rights to the new processing device. Once the first registration authority is once again available, the trust manager performs a full authentication of the new processing device and grants full rights to the device.
US11569992B2
A cryptographic key management service receives a request, associated with a principal, to use a cryptographic key to perform a cryptographic operation. In response to the request, the service determines whether a rate limit specific to the principal is associated with the cryptographic key. If the rate limit is associated with the cryptographic key, the service generates a response to the request that conforms to the rate limit. The service provides the response in response to the request.
US11569989B2
A blockchain-based message transmission is provided. The system may include a plurality of silicon-based devices encapsulated in quantum cases. Each quantum case may include a quantum random number generator and a public key. The quantum random number generator may generate quantum-resilient random numbers to be used as private keys. The system may include a private network. The private network may include a subset of system's devices. A first device, included in the private network, may transmit a message to a second device included in the private network. A first quantum case that encapsulates the first device may intercept the message, generate a private key, encrypt the message using the private key, generate a data transaction block that includes message metadata, upload the data transaction block to a system blockchain and transmit the message to the recipient upon receipt of an approval from a majority of devices.
US11569988B2
A network node of a mobile communications network may need to generate at least one new Input Offset Value, IOV value, for use in protecting communications between the network node and a mobile station. The network node then associates a fresh counter value with the or each new IOV value; calculates a Message Authentication Code based on at least the at least one new IOV value, the fresh counter value associated with the or each new IOV value, and a constant indicating that the Message Authentication Code is calculated to protect the new IOV value; and transmits the at least one new IOV value, the fresh counter value associated with the or each new IOV value, and the calculated Message Authentication Code to the mobile station.
US11569976B2
One example includes an isochronous receiver system. The system includes a pulse receiver configured to receive an input data signal from a transmission line and to convert the input data signal to a pulse signal. The system also includes a converter system comprising a phase converter system. The phase converter system includes a plurality of pulse converters associated with a respective plurality of sampling windows across a period of an AC clock signal. At least two of the sampling windows overlap at any given phase of the AC clock signal, such that the converter system is configured to generate an output pulse signal that is phase-aligned with at least one of a plurality of sampling phases of the AC clock signal based on associating the pulse signal with at least two of the sampling windows.
US11569975B2
A baud-rate phase detector uses two error samplers. One error sampler is used to determine whether the sampling time is too early error detection. The other is used to determine whether sampling time is too late. The early error sampler is configured to use a first threshold voltage. The late error sampler is configured to use a second threshold voltage. By adjusting the voltage difference between the first threshold voltage and the second threshold voltage, the phase difference between the local timing reference clock and the transitions of the data signal may be adjusted. The phase difference between the local timing reference clock and the transitions of the data signal may be adjusted to improve or optimize a desired receiver characteristic such as bit error rate or signal eye opening.
US11569974B2
A method, network node and wireless device configured for allocating resources for reverse link transmissions from a second network node to a first network node and forward link transmissions from the first network node to the second network node in a wireless communication system are disclosed. According to one aspect, the method includes selecting a per-band duplexing cadence for each of at least two frequency bands, a duplexing cadence defining a forward link/reverse link pattern of adjacent successive time slots. The method also includes allocating each of the at least two frequency bands to one of forward link and reverse link transmission in each of adjacent successive time slots according to the per-band duplexing cadence for the frequency band.
US11569969B2
A method for downlink bandwidth part (BWP) activating and deactivating and a terminal device are provided. The method comprises: the terminal device performs, based on control of a network side, activation and deactivation to at least one downlink BWP configured on a carrier.
US11569951B2
A wireless device receives one or more radio resource control messages comprising configuration parameters for a cell. The configuration parameters indicate a plurality of coreset groups corresponding to a plurality of transmission and reception points (TRPs). Each coreset in the plurality of coreset groups is associated with a transmission configuration indicator (TCI) state. A coreset group of the plurality of coreset groups is selected for a radio link monitoring of the cell. The selection is in response to the coreset group comprising a coreset with a pre-defined index value. One or more reference signals are monitored based on one or more TCI states of one or more coresets of the coreset group.
US11569950B2
The present disclosure relates to a first radio node configured for orthogonal frequency division multiplexing (OFDM), comprising a receiver, a transmitter, a processor and a memory storing instructions executable by the processor for causing the transmitter in a first mode of operation with a first subcarrier spacing f1: to transmit a sequence of prefixed OFDM symbols, and in a second mode of operation with a second subcarrier spacing f2: to transmit a sequence of prefixed OFDM symbols, wherein the sequence of transmitted OFDM symbols is aligned with a predefined repeating radio frame, which is common to both the first and second modes of operation, or with an integer multiple of the predefined repeating radio frame; and the first and second subcarrier spacings are related by an integer factor, f1/f2=p or f1/f2=1/p, with p≠1 integer.
US11569932B2
In a wireless network, a user equipment (UE) may skip an uplink transmission associated with a dynamic uplink grant. In such cases, when the UE skips an uplink transmission that would have been concurrent with a downlink transmission, the UE may perform one or more mode-dependent control operations. For example, because the uplink transmission would result in a full-duplex operation if the UE were to perform the uplink transmission, the UE may reset a timer associated with switching from a full-duplex mode to a half-duplex mode and/or perform one or more mode-dependent control operations in the full-duplex mode. Alternatively, because the UE refrains from performing the uplink transmission that would have resulted in a full-duplex operation, the UE may maintain the timer associated with switching from the full-duplex mode to the half-duplex mode and/or perform the one or more mode-dependent control operations in the half-duplex mode.
US11569922B2
A system and method for synchronizing an audio or MIDI file with a video file are provided. The method includes receiving a first audio or MIDI file, receiving a video file, and operating an audio synchronization module to perform steps of synchronizing the first audio or MIDI file with the video file, marking an event in the video file at a point on a timeline, detecting a first musical key for the event, retrieving a musical stinger or swell from a library, in which the musical stinger or swell is a second audio or MIDI file and is tagged with a second musical key, and the second musical key is relevant to the first musical key, and placing the musical stinger or swell at the point of the timeline marked for the event.
US11569921B2
Disclosed embodiments provide methods and systems to capture, persist, and access a real-time audio stream and metadata associated with a radio broadcast. The real-time audio stream is captured on an audio capture device comprising a real-time clock. The audio is associated with the points in time it is captured with time markers. In embodiments, the audio is encoded for transmission with the time markers to a remote server. After being captured, encoded, and associated with time markers, the audio is transmitted to a remote server for archiving. Client devices are used to provide access to archived content. Clients request portions of the real-time audio stream from the remote server, and identify the portions they are requesting by including in their request either real-time bounds, or other information which is associated on the remote server with real-time bounds, such as content descriptor types.
US11569912B2
An optical phased array, includes, in part, K beam processors each adapted to receive a different one of K optical signals and generate N optical signals in response. The difference between the phases of optical signals aLM and aL(M+1) is the same for all Ms, where M is an integer ranging from 1 to N−1 defining the signals generated by a beam processor, and L is an integer ranging from 1 to K defining the beam processor generating the K optical signals. The transmitter further includes, in part, a combiner adapted to receive the N×K optical signals from the K beam processors and combine the K optical signals from different ones of the K beam processors to generate N optical signals. The transmitter further includes, in part, N radiating elements each adapted to transmit one of the N optical signals.
US11569910B1
Aspects of the technology include establishing a primary communication link between a communication system of a first balloon and a communication system of a second balloon, detecting a movement of the second balloon relative to the first balloon that is expected to cause the primary communication link to become unavailable at a given time during the movement, establishing an RF communication link between an RF communication system of the first balloon and an RF communication system of the second balloon, detecting that the movement of the second balloon relative to the first balloon is such that the primary communication link between the communication system of the first balloon and the optical communication system of the second balloon can be re-established, and re-establishing the primary communication link between the communication system of the first balloon and the communication system of the second balloon.
US11569908B1
Techniques for identifying sources of degradations within a PON include detecting a degradation pertaining to a segment of the PON and comparing the drift over time of an optical profile of the segment with respective drifts over time of optical profiles of one or more other PON segments, where pairs of segments share respective common endpoints and an optical profile of a segment corresponds to the characteristics of optical signals delivered over the segment (e.g., attenuation, changes in frequencies, changes in power outputs, etc.). The differences between the compared drift(s) over time are utilized to narrow down the candidate components (e.g., segment endpoints, optical fibers, etc.) for the source of the degradation, and may be utilized to particularly identify a particular endpoint or optical fiber as being the source. The source of the degradation may or may not be a component of the segment to which the degradation pertained.
US11569904B1
Techniques for differentiating orthogonally modulated symbols from different transmitters using one or more antenna arrays are described. According to some techniques, symbols received at one or more antenna arrays are grouped together by matching respective sets of receive beams for each symbol. In this manner, symbols received from a first transmitter at a first location can be differentiated from symbols received from a second transmitter at a second location, and both sets of symbols can be successfully decoded. When the symbols are received using frequency hopping, the receive beams for each symbol can be sorted according to path length, which improves performance, and also enables precise location of the transmitter(s).
US11569902B2
An electronic equipment, a user equipment, a wireless communication method, and a storage medium, the electronic equipment comprising a processing circuit and being configured to: receive from a user equipment a random access request message that is expected to access a satellite equipment; and in response to the random access request message, send to the user equipment the advance in timing between the user equipment and the satellite equipment to be accessed. By using said electronic equipment, user equipment, wireless communication method, and storage medium, a user equipment in a satellite communication system may more quickly and efficiently acquire control information relating to uplink transmission.
US11569890B2
A transmission beam change method is disclosed for a wireless communication transmitter adapted to transmit an orthogonal frequency division multiplex (OFDM) signal using a transmission beam of a plurality of transmission beams available at the wireless communication transmitter. The method includes temporarily adapting an output power during a transmission beam change from one transmission beam to another transmission beam. In some embodiments, the transmission beam change is performed during a cyclic prefix (CP) of an OFDM symbol and the temporary adaptation is applied to only a part of the CP. Temporarily adapting the output power includes decreasing the output power to initiate the temporary adaptation and increasing the output power to terminate the temporary adaptation. In some embodiments, the temporary adaptation is performed during all transmission beam changes or only when an occurrence frequency of transmission beam changes is higher than a threshold value.
US11569888B1
Systems, methods, apparatuses, and computer program products for improving measurement accuracy for multipanel UEs with a single baseband unit are provided. One method may include receiving, by a user equipment, at least one of at least one layer 3 filter time constant Tcst_x, or at least one scaling factor, and updating, by the user equipment, at least one current filter time constant according to at least one of the received Tcst_x, or the at least one scaling factor.
US11569885B2
Methods, apparatuses and systems are provided for transmission of a CSI report. A WTRU may receive an aperiodic CSI reporting request on a PDCCH. The WTRU may determine a time gap between a last symbol of the PDCCH of which the aperiodic CSI reporting request is received and a first uplink symbol of a designated uplink channel for transmission of a corresponding aperiodic CSI report. The determination of the time gap may include consideration of a timing advance value. A determination may be made as to whether a time threshold is shorter than the determined time gap. If the determined time gap is not shorter than the time threshold, the WTRU may transmit the CSI report. If the determined time gap is shorter than the threshold, the WTRU may not transmit the CSI report.
US11569882B2
An electronic device for a multi-antenna communication apparatus in a processing circuit. The processing circuit is configured to: map a first information bit to a first reconstructed channel in a plurality of reconstructed channels associated with a plurality of antennas of a multi-antenna communication apparatus; and provide a reconstruction parameter corresponding to the first reconstructed channel, so as to reconstruct an actual channel from the multi-antenna communication apparatus to a peer communication apparatus to bear the first information bit, wherein the plurality of reconstructed channels are determined by configuring, based on a plurality of groups of reconstruction parameters, the plurality of antennas of the multi-antenna communication apparatus, so that the plurality of reconstructed channels have a low correlation with each other.
US11569877B2
Methods, systems, and devices for wireless communications are described. A user equipment (UE) having partially coherent antennas may be configured for simultaneous transmissions on groups of antennas. To achieve the benefits of simultaneous transmissions using groups of antenna that are partially coherent, without having the transmissions affect each other, the UE may apply a hybrid closed-loop multiple-input multiple-output (MIMO) scheme among each antenna in the antenna groups where phase coherence can be maintained Following the hybrid closed-loop MIMO scheme, the UE may apply a transparent diversity scheme across each antenna of the groups. Alternatively, the UE may first apply the transparent diversity scheme and next apply the hybrid closed-loop MIMO scheme. By applying a hybrid closed-loop MIMO scheme, and a transparent diversity scheme, the UE may fully realize its resources and contribute to an improved spatial diversity for a MIMO system.
US11569876B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may select a precoding matrix of orthogonal beams. The base station may precode a channel state information reference signal (CSI-RS) transmitted to a user equipment (UE) using the precoding matrix of orthogonal beams. The base station may receive, from the UE, one or more reports that indicate one or more beam indices selected from beam indices associated with the precoding matrix of orthogonal beams. Numerous other aspects are provided.
US11569863B2
In an example, a system includes a plurality of acoustically coupled nodes. Each of the nodes includes a transducer, a communication circuit and a controller. The transducer is adapted to be mechanically coupled to a medium. The communication circuit is coupled to the transducer to send and receive acoustic signals via the medium according to at least one communication parameter. The controller is to adaptively configure the at least one communication parameter of the communication circuit based on an acoustic signal received from at least one other of the nodes.
US11569862B1
Disclosed is a card accommodation cell phone case including a card accommodation portion recessed by a certain depth from an inner surface of a lower body portion with the same shape as a card to be accommodated and in which a card inlet is formed at a position coming into contact with an upper body portion.
US11569853B2
Systems, methods, and computer program product embodiments are disclosed for removing any fixed frequency interfering signal from an input signal without introducing artifacts that are not part of the original signal of interest. An embodiment operates by using a virtual buffer with a length that matches a length of one cycle of an interfering signal. The embodiment extracts the interfering signal into the virtual buffer. For a sample in the next cycle of the interfering signal that corresponds to a virtual memory location for the virtual buffer, the embodiment can update one or more physical memory locations of the virtual buffer that are in the vicinity of the virtual memory location. This use of virtual buffer can remove any interfering signal without creating the artifacts associated with conventional notch filters.
US11569843B2
A device configured to compress a tensor including a plurality of cells includes: a quadtree generator configured to generate a quadtree searching for a non-zero cell included in the tensor and extract at least one parameter value from the quadtree; a mode selector configured to determine a compression mode based on the at least one parameter; and a bitstream generator configured to generate a bitstream by compressing the tensor based on the compression mode.
US11569835B2
An analog-to-digital converter has a first digital signal generator that generates a first digital signal based on whether or not a sampling signal of an input signal is equal to or lower than a signal corresponding to a second reference signal higher than a first reference signal, a first slope generator to generate a first slope signal that changes with time from the sampled and held signal equal to or lower than the first reference signal, a second slope generator to generate a second slope signal that changes with time from the sampled and held signal to a signal level equal to or lower than the second reference signal, and a second digital signal generator that generates a second digital signal based on a time at which the first slope signal matches the first reference signal or a time at which the second slope signal matches the second reference signal.
US11569828B2
An analog to digital converter (ADC) senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. The digital output signal provided to the N-bit DAC is an inverse function of the load current. The ADC is operative to sense very low currents (e.g., currents as low as is of pico-amps) and consume very little power (e.g., less than 2 μW).
US11569826B2
An exemplary incremental two-step capacitance-to-digital converter (CDC) with a time-domain sigma-delta modulator (TDΔΣM) includes a voltage-controlled oscillator (VCO)-based integrator that can be used in a low-order loop configuration. Example prototypes are disclosed, which when fabricated in 40-nm CMOS technology, provides CDC resolution of 0.29 fF while dissipating only 0.083 nJ per conversion.
US11569822B2
A clock and data recovery circuit includes a sampling circuit, a phase detector, a first processing circuit, a second processing circuit and an oscillator circuit. The sampling circuit is configured to sample input data according to an output clock, and generate a sampling result. The phase detector is configured to generate a detection result according to the sampling result. The first processing circuit is configured to process the sampling result to generate a first digital code. The second processing circuit is configured to accumulate a portion of the first digital code to generate a second digital code. A rate of change of a code value of the second digital code is slower than a rate of change of a code value of the first digital code. The oscillator circuit is configured to generate the output clock according to the detection result, the first digital code and the second digital code.
US11569797B2
Transconductor circuits with programmable tradeoff between bandwidth and flicker noise are disclosed. An example circuit includes an input port, an output port, a plurality of transistors, and a switch arrangement that includes a plurality of switches, configured to change coupling between the input port, the output port, and the transistors to place the transconductor circuit in a first or a second mode of operation. An input capacitance of the transconductor circuit operating in the first mode is larger than when the transconductor circuit is operating in the second mode. In the first mode, having a larger input capacitance results in a decreased flicker noise because the amount of flicker noise is inversely proportional to the input capacitance. In the second mode, having a smaller input capacitance leads to an increased flicker noise but that is acceptable for wide-bandwidth applications because wide-bandwidth signals may be less sensitive to flicker noise.
US11569794B2
In a surface acoustic wave resonator according to an embodiment, a quartz-crystal substrate includes an AT-cut 0° X-propagation first quartz-crystal substrate and a Z-cut second quartz-crystal substrate bonded over the first quartz-crystal substrate. A propagation direction of a surface acoustic wave in the second quartz-crystal substrate is inclined from an X-axis of a crystal by 27 to 33°, 87 to 93°, or 147 to 153°, and a thickness of the second quartz-crystal substrate is 0.2 to 1.0 times a wavelength of the surface acoustic wave.
US11569778B2
A portable solar photovoltaic (PV) electricity generator module comprises a plurality of smart power slat (SPS) units, each SPS unit comprising a plurality of solar cells electrically connected together based on a specified cell interconnection design, and, N at least one power maximizing integrated circuit collecting electricity generated by the plurality of solar cells. The plurality of SPS units are mechanically connected such that the SPS units can be retracted for volume compaction of the module, and can be expanded for increasing PV electricity generation by the module. The module can be used as part of an electric power supply with a maximum power point tracking (MPPT) power optimizer, storage battery and leads to connect to a load. The load can be AC or DC.
US11569764B2
A method for configuring a battery for operation of at least two N-phase electric machines, in which a battery includes a plurality of energy modules, and the energy modules each have at least one energy cell and at least two power switches. A respective N-phase electric machine is assigned a respective group of the plurality of energy modules, and the assignment is carried out in accordance with an estimation of a respective energy consumption of the respective N-phase electric machines on the basis of a respective load of the respective N-phase electric machines which load is to be assumed.
US11569763B2
A system and method for identifying and responding to a condition in which an electric motor fails to start. A rotor core includes slots in which magnets are received to produce an electrical reluctance. A motor controller determines a position of the rotor, uses the determined position to convert a torque demand to a demanded D-axis current value, and compares the demanded value to a supplied D-axis current value. If the demanded value differs from the supplied value by at least a pre-established threshold amount, then the motor is restarted. Otherwise, the difference between the torque demand and an actual current is used to drive a voltage applied to the motor. The controller may also implement a sensorless technology, and may restart the motor if the demanded value differs from the supplied value by at least the threshold amount even if the sensorless technology determines that the motor started.
US11569762B2
The present disclosure relates to the technical field of mechanical precision manufacturing, in particular to a motor tracking error reduction method and an implementation device based on a micro-drive unit. A motor tracking error reduction method based on micro-drive unit includes: providing a motor mover as the working output end, and feeding back the position information of the motor mover to the micro-drive controller in real time by the sensor; controlling the micro-drive unit to compensate the displacement of the motor mover by the micro-drive controller; correcting the tracking error of the motor mover after the displacement compensation, and feeding back the tracking error information after correction to the motor controller. The error reduction method and implementation device in the present disclosure reduce the motor tracking error and solve the problem of coupling interference. In addition, the single position feedback is used to reduce the production cost.
US11569755B2
A rectifier circuit has one or more bridge circuits each with: a first leg with two diodes in series and an AC terminal at a midpoint between the two, a second leg with two semiconductor switches in parallel to the first, a third diode connected to a upper node of each leg, a fourth diode connected to a lower node of each leg, and a capacitor leg with two capacitors in series between the third and fourth diode. A midpoint between the capacitors is connected to a midpoint between the semiconductor switches. The first arrangement is two controllable semiconductor switches in series. A gate node of the second is connected to a first load terminal of the first switch and the first load terminal is connected to the lower node. The second semiconductor switch is a third controllable semiconductor switch with a gate node connected to the lower node.
US11569751B1
A device for providing power to a server rack includes a first AC input port, a second AC input port, a first relay, a second relay, and an output port. The output port is electrically connected to both the first AC input port and second AC input port. The first relay is electrically between the first AC input port and the output port, and the second relay is electrically between the second AC input port and the output port. The first relay and second relay are configured to compare a first phase of a first voltage from the first AC input port to a second phase of a second voltage from the second AC input.
US11569746B2
Various embodiments include a DC coupled electrical converter for converting an input voltage applied to first connections to an output voltage comprising: a boost converter connected on the input side to the first connections; an inverting buck-boost converter connected on the input side to the first connections; and a series circuit including two capacitors, the series circuit connected to an output-side positive pole of the boost converter and to an output-side negative pole of the inverting buck-boost converter. An output-side negative pole of the boost converter and an output-side positive pole of the inverting buck-boost converter are connected to a center connection between the capacitors.
US11569739B2
A three-port converter with a wide input range and a control method thereof are provided, which relates to a technical field of power electronic converters. The converter is provided with three ports of a photovoltaic cell PV, a storage battery Bat and a resistance load R, and includes a boost circuit (Boost) and a reversible boost-buck circuit (Sepic-Zeta). The boost circuit is configured to connect the photovoltaic cell PV and the load R; and the reversible boost-buck circuit is configured to connect the photovoltaic cell PV, the storage battery Bat, the storage battery Bat and the load R. The three-port converter of the present disclosure has advantages of a small size, a wide input range, a high integration level, high stability, high conversion efficiency, etc.
US11569738B1
Disclosed is a multi-stage charge pump. A first stage is controlled by a first clock signal. A second stage is controlled by a second clock signal, which has high and low states that are shifted relative to the high and low states of the first clock signal. The high and low states of the second clock signal can be higher than the high and low states, respectively, of the first clock signal for a positive charge pump and vice versa for a negative charge pump. Any additional stage is similarly controlled by an additional clock signal that is shifted with respect to the clock signal controlling the immediately preceding stage. By shifting the high and low states of clock signals controlling downstream stages, the need for series-connected or high voltage capacitors in the downstream stages is eliminated and circuit complexity and area consumption are reduced.
US11569716B2
A coil forming apparatus includes: a coil winding jig being configured to wind the belt-shaped coil by inserting the plurality of straight portions of the belt-shaped coil into a respective one of the plurality of comb-shaped grooves; a coil conveying mechanism that pivotally conveys the belt-shaped coil; and guide members that guide the belt-shaped coil in an arc shape while being in contact with the side ends of the belt-shaped coil, and further allow the plurality of straight portions to be inserted into a respective one of the plurality of comb-shaped grooves in a second half portion of the belt-shaped coil upon pivot conveying. The coil conveying organizer includes a conveying rail that provides a conveying path pivotally conveying the belt-shaped coil along the coil winding jig, and a conveyor that moves along the conveying rail in a state gripping the plurality of straight portions of the belt-shaped coil.
US11569713B2
An electric motor includes a housing, a shaft, a rotor, a stator, and at least one coolant supply channel. The shaft is rotatably mounted within the housing and has a longitudinal axis. The rotor is fixed to the shaft for rotation therewith. The stator is spaced apart from the rotor along the longitudinal axis of the shaft to yield at least one air gap between the stator and the rotor. The at least one coolant supply channel extends through at least one of the shaft and the stator and is configured to supply coolant flow to the at least one air gap.
US11569710B2
A rotor shaft for an electric machine includes a rotor shaft main body and a rotor shaft core which is arranged therein and which is connected to the rotor shaft main body. The rotor shaft comprises a substantially axially running cooling cavity configured to conduct a cooling fluid, and the rotor shaft core is composed of a different material than the rotor shaft main body.
US11569703B2
A rotor assembly of a generator includes a rotor core including a plurality of core poles defining a plurality of core slots therebetween. The core poles extend from a first axial end of the rotor core to a second axial end of the rotor core. A rotor winding is installed to the rotor core and has a plurality of core segments located in the plurality of core slots, and a plurality of end turns connecting the plurality of core segments. An end plate is located at at least one of the first axial end or the second axial end and includes a plate portion and a plurality of wedge ends extending from the plate portion. Each wedge end is located at a corresponding core slot. The end plate is supportive of the plurality of end turns of the rotor winding.
US11569702B2
To provide an on-vehicle brushless motor device capable of being downsized with respect to an axial direction of a rotor and a method of manufacturing the same. The on-vehicle brushless motor device 1 includes a brushless motor 10 and an electronic substrate 30. The brushless motor 10 includes a rotor 12 and a stator 16 including a plurality of coils 18 arranged around the rotor 12. The electronic substrate 30 includes a through hole 34 penetrating in the axial direction X of the rotor 12 and includes a substrate body 32 arranged along a plane P intersecting the axial direction X on the side opposite to the output shaft of the brushless motor 10, and a terminal 40 fixed on the surface of the substrate body 32 on the side opposite to the rotor 12. A coil wire 20 of the coil 18 is inserted into the through hole 34 and is welded to the terminal 40 on the opposite side of the rotor 12 with respect to the substrate body 32.
US11569691B2
According to one embodiment, an electronic apparatus includes a power transmitter and control circuitry. The power transmitter is configured to transmit power by using electromagnetic waves. The control circuitry is configured to transmit a first request including information on the electronic apparatus to a first server before power transmission, and start power transmission by the power transmitter if a first response from the first server relating to the first request is received.
US11569681B2
This disclosure includes novel ways of implementing a power supply that powers a load. More specifically, a power supply includes a bidirectional power converter and a controller. The controller monitors a magnitude of an input voltage supplied from an input voltage source to a load. Based on a magnitude of the input voltage, the controller switches between a first mode of operating the bidirectional power converter to charge an energy storage resource using (a portion of power provided by) the input voltage and a second mode of producing a backup voltage from the energy storage resource to power the load as a substitute to the input voltage such as when the input voltage is below a threshold value.
US11569680B2
An electronic device includes a backup power supply unit, a first power management unit, a switch, a voltage detection unit, a processor and an electronic module. The first power management unit is coupled to the backup power supply unit and an external power supply unit. The switch is coupled to the first power management unit. The voltage detection unit is coupled to the external power supply unit and the switch. The processor is coupled to the voltage detection unit. The electronic module is coupled to the switch and the processor. When a voltage level of the external power supply unit is lower than a first predetermined level, the voltage detection unit outputs a detection signal. The switch is controlled by the detection signal to open to stop supplying power to the electronic module. The processor is controlled by the detection signal to execute a shutdown process.
US11569678B2
A vehicle includes a vehicle battery; a vehicle sensor configured to detect a current, a voltage and a temperature of the vehicle battery; and an alternator configured to output a target voltage to the vehicle battery. A controller is configured to calculate state of charge (SOC) estimation based on the current, voltage and temperature of the vehicle battery, calculate an initial SOC based on a direct current internal resistance (DCIR) map and apply the initial SOC to the SOC estimation, when an open circuit voltage (OCV) is maintained in a predetermined range after engine-off, and adjust an available SOC range based on a difference between an actual battery charge current amount, to which the initial SOC is applied, and the calculated SOC estimation.
US11569676B2
A battery pack charging system includes a battery pack interface configured to receive a battery pack, a charging circuit coupled to the battery pack interface to provide charging current to the battery pack interface, and a controller coupled to the charging circuit and configured to control supply of charge current to the battery interface. The battery pack charging system further includes a power supply circuit coupled to the charging circuit, a filter circuit coupled to the power supply circuit and including a nanocrystalline ferrite common mode choke, and an alternating current plug configured to connect the filter circuit to an alternating current power source.
US11569673B2
An embodiment of the invention provides a method for reducing data corruption in a wireless power transmission system. Power is transmitted from a primary coil to a secondary coil by induction. The voltage induced on the secondary coil by induction is rectified. The change in current supplied to a load configured to be coupled to the wireless power transmission system is limited.
US11569661B2
A method of providing power via a plurality of power control systems forming a power network is provided. Each power control system includes a power controller and a power switch operable by the power controller. The method includes defining, by each power controller of the power network, a power allocation schedule for a power cycle using a dynamic load scheduling model based on a members list of the power network. The power cycle is divided into a plurality of power units, and the power allocation schedule identifies one or more designated power control systems from among the plurality of power control systems to provide power to a load during each of the power units. For the power cycle, the method includes providing power to the load by the one or more designated power control systems during a respective power unit based on the power allocation schedule.
US11569660B2
A system and method for combining power from DC power sources. Each power source is coupled to a converter. Each converter converts input power to output power by monitoring and maintaining the input power at a maximum power point. Substantially all input power is converted to the output power, and the controlling is performed by allowing output voltage of the converter to vary. The converters are coupled in series. An inverter is connected in parallel with the series connection of the converters and inverts a DC input to the inverter from the converters into an AC output. The inverter maintains the voltage at the inverter input at a desirable voltage by varying the amount of the series current drawn from the converters. The series current and the output power of the converters, determine the output voltage at each converter.
US11569659B2
A system and method for combining power from DC power sources. Each power source is coupled to a converter. Each converter converts input power to output power by monitoring and maintaining the input power at a maximum power point. Substantially all input power is converted to the output power, and the controlling is performed by allowing output voltage of the converter to vary. The converters are coupled in series. An inverter is connected in parallel with the series connection of the converters and inverts a DC input to the inverter from the converters into an AC output. The inverter maintains the voltage at the inverter input at a desirable voltage by varying the amount of the series current drawn from the converters. The series current and the output power of the converters, determine the output voltage at each converter.
US11569658B2
High voltage clamps with transient activation and activation release control are provided herein. In certain configurations, an integrated circuit (IC) includes a clamp electrically connected between a first node and a second node and having a control input. The IC further includes a first resistor-capacitor (RC) circuit that activates a detection signal in response to detecting a transient overstress event between the first node and the second node, an active feedback circuit that provides feedback from the first node to the control input of the clamp in response to activation of the detection signal, a second RC circuit that activates a shutdown signal after detecting passage of the transient overstress event based on low pass filtering a voltage difference between the first node and the second node, and a clamp shutdown circuit that turns off the clamp via the control input in response to activation of the shutdown signal.
US11569655B2
A power delivery system includes a power sourcing equipment, a powered device and a transmission cable. When the power sourcing equipment is electrically connected to the powered device via the transmission cable, an over-current detecting circuit in the power sourcing equipment is configured to detect over-current occurrence of the powered device. Meanwhile, the power sourcing equipment is configured to determine the functionality of the over-current detecting circuit based on its specific pin and provide single fault protection when the over-current detecting circuit fails.
US11569654B2
A power control device includes: an output voltage controller configured to control an output voltage based on a feedback voltage corresponding to the output voltage; and an overvoltage protector configured to continue or stop the operation of the output voltage controller based on a first detection result of whether the output voltage has exceeded an output voltage threshold value and a second detection result of whether the feedback voltage has fallen to or below a feedback voltage threshold value.
US11569652B2
A switch assembly that is part of a transformer in an underground residential power distribution circuit and that provides fault isolation and restoration. The switch assembly includes first and second switching devices each having an outer housing, a transformer interface electrically coupled to the transformer, a connector interface electrically coupled to a first connector and a first vacuum interrupter having a fixed contact and a movable contact, where the fixed contact is electrically coupled to the connector interface and the movable contact is electrically coupled to the transformer interface. A control board controls the first and second switching devices, where the control board is responsive to voltage signals from capacitors in the first and second switching devices.
US11569649B2
A signal sampling circuit for arc detection includes plural current sensors, plural high pass filter circuits, and an adder circuit. Each of the current sensors is configured to sense a measured current and then generate a sensed voltage signal. One of the high pass filter circuits receives the sensed voltage signal from one of the current sensors and performs high-pass filtering on the sensed voltage signal. The adder circuit performs scaling up, adding, and DC offset on the high-pass filtered sensed voltage signals. Each of the high pass filter circuits is composed of a filter capacitor and a first resistor connected in series with the filter capacitor. The adder circuit is composed of the first resistors, a first operational amplifier, and a second resistor.
US11569647B2
A system that may include a rigid bus bar body portion having one or more first conductive pathways, and a flexible bus bar body portion extending from the rigid bus bar body portion and having a lower modulus of elasticity than the rigid bus bar body portion, the flexible bus bar body portion including one or more second conductive pathways. The one or more first conductive pathways and the one or more second conductive pathways may be configured to be conductively coupled with a first electronic device to form a conductive connection between the first electronic device and at least a second electronic device.
US11569645B2
Disclosed is a while-in-use cover assembly for an electric wire box, having: a base having a front surface and a bottom surface; a lid that selectively covers the base front surface, wherein a first geometric shape is formed by a top profile of the lid, and the while-in-use cover assembly is confined to the first geometric shape when closed; and a ball-joint connecting the lid and the base, wherein the lid can pivot relative to the base, about the ball-joint, for positioning the lid against the base and away from the base, wherein: when the lid is positioned against the base the while-in-use cover assembly is closed; and when the lid is positioned away from the base, the while-in-use cover assembly is opened.
US11569642B2
An explosion-proof housing 10 having at least one pressure relief body 15 arranged in a pressure compensation vent opening 14 of one of the housing parts 12, 13. In order to secure the pressure relief body 15 to the housing part 12, a thickened region 20 of the housing part 12 engages over an edge zone 24 of the pressure relief body 15 along its entire peripheral surface 23 on both of its flat sides 16, 17. A resulting engaging depth Si, which is measured parallel to the flat sides 16, 17, is preferably greater than a thickness D1, D2 of the part of the thickened region 20 engaging over the edge zone 24. The pressure relief element 15 consists of sintered wire mesh. This connection is pressure-resistant and stable over a wide temperature range.
US11569641B2
An alpha ion emitter apparatus, including a circuit, a fluid duct including one or more apertures, and a rail electrically connected to the circuit and operatively arranged to hold an alpha ionization material that emits alpha particles, the alpha particles creating alpha ions, wherein the circuit is operatively arranged to apply an output signal to at least one of the fluid duct and the rail.
US11569630B2
A laser apparatus that can generate a high-quality laser beam is provided. The laser apparatus is provided with a laser medium and an insulation layer. The laser medium has a first surface and a second surface. Incident laser light is incident on the first surface. The second surface totally reflects the incident laser light that is incident to the second surface at an incident angle equal to or larger than a critical angle. The insulation layer covers a second area of the second surface that surrounds a first area of the second surface, the first area totally reflecting the incident laser light. The laser medium is exposed in the first area.
US11569627B2
A method of making an electrical connector which includes an insulative housing having a tongue with two opposite surfaces and plural contacts with contacting portions exposed to the two opposite surfaces of the tongue is characterized by the steps of: forming the plurality of contacts from a single contact carrier to have one group of contacts thereof each with a respective contacting portion connected to a first carrier strip and the other group of contacts thereof each with a respective contacting portion connected to a second carrier strip situated beside the first carrier strip; insert-molding the plurality of contacts with an insulator to form the insulative housing while exposing front ends of the plurality of contacts; and severing the first carrier strip and the second carrier strip from the front ends of the plurality of contacts.
US11569620B2
An electrical connector is attached to a wiring substrate and mated with a counterpart connector connected to a signal transmission medium. A shell of the electrical connector has a pair of wall parts that contact a ground member on the counterpart connector. One wall part distant from the signal transmission medium includes a first side plate that has one end attached to a ground conductive path of the wiring substrate and extends in a direction away from the wiring substrate, a joining part that has one end joined to another end of the first side plate, and a second side plate that has one end joined to another end of the joining part and extends in a direction closer to the wiring substrate. The second side plate has a contact piece that extends in a direction away from the wiring substrate and elastically contacts the ground member.
US11569615B1
A cable connector includes a case, a fastener and an unlocking member. At least one side of the case has a texture area with a guide surface which is a smooth surface. The fastener is attached on the case and extended with a flexible arm. Part of the flexible arm is attached to the guide surface. The unlocking member includes a handle and a pushing block connected to the handle. The pushing block is sandwiched between the case and the flexible arm. When the unlocking member is pulled, the pushing block moves along the guide surface to separate the flexible arm from the case. When the unlocking member is released, the pushing block is pressed by the flexible arm to slide and return along the guide surface. The pushing block may return to original position without elasticity of a spring to simplify the structure and save the costs.
US11569612B2
An electrical connector assembly includes a plug connector, a cable electrically connecting to the plug connector, an outer cover enclosing the plug connector and the cable, a pair of latches mounted to the plug connector, and a pair of buttons mounted to the outer cover for operating the pair of latches, wherein each of the pair of latches includes a spring arm, a securing portion at an inner side of the spring arm, and a pressing portion at an outer side of the spring arm, and each of the pair of buttons includes a pivot at one end thereof, a stopper at an opposite end thereof, and an abutting portion coupled to the pressing portion.
US11569609B2
A cable clamp has first and second metal plate members, each with two fixed portions, front and rear plate portions, and a clamp portion. The fixed portions are separated from each other in a first direction perpendicular to a front-rear direction. The front plate portion couples the fixed portions to each other. The rear plate portion is rearward of and apart from the front plate portion and couples the fixed portions to each other. The clamp portion is on the front or rear plate portions or both. When clamped, in a second direction perpendicular to the front-rear and first directions, the first member fixed portions are fixed to the second member fixed portions, respectively, the cable, in the second direction, is between the first and second member front plate portions and between the first and second member rear plate portions, and the clamp portion is pressed against the cable.
US11569607B2
A power coupler includes an input end assembly and an output end assembly separably coupled to the input end assembly. The input end assembly includes an input end base including a slot, a sealing cover arranged at the input end base, an input conductive member arranged at the input end base and connected to an external power supply, and a self-locking structure. The sealing cover is movable between a closing position to cover a slot port of the slot and an opening position to at least partially open the slot port. The self-locking structure is switchable between a locked state to limit the sealing cover from moving towards the opening position and an unlocked state to not limit the sealing cover. The output end assembly includes an output conductive member configured to extend into the slot and be connected to the input conductive member.
US11569606B2
An electrical plug includes a support body, a pair of electrical contacts of elongated shape having respective longitudinal axes arranged coplanar on a common lying plane, and connecting members adapted to allow a mutual movement between said electrical contacts and the support body. The connecting members include a first rocker hinged to the support body according to a first hinging axis perpendicular to the lying plane, and a second rocker hinged to the support body according to a second hinging axis parallel and spaced with respect to the first hinging axis, each electrical contact being fixed overhanging a respective of the first and second rockers.
US11569603B2
An electrical contact for mating with a mating contact includes an aluminum body extending along a longitudinal axis and formed of an aluminum or an aluminum alloy, a contact zone disposed on a surface of the aluminum body and adapted to be electrically connected to a mating contact, and a contact spring connected to the aluminum body and having a contact region contacting the mating contact. The aluminum body has a connecting portion adapted to be connected to an aluminum conductor. The contact zone is formed from a material that is more creep-resistant than the aluminum body. The contact spring at least partially rests on the contact zone and is formed from a material that is harder than the aluminum body.
US11569600B1
The present disclosure relates to a cable connector structure, which includes a housing, a tongue plate, a plurality of cables, and a plurality of heat sinks. The housing includes a docking end and a butting end. One side of the housing includes a top surface, and the top surface protrudingly provided with a hollow stage. The tongue plate is arranged in the housing, one end of the tongue plate is provided with a docking area, and the other end of the tongue plate is provided with a welding area. The plurality of heat sinks is arranged on the top surface of the housing, the hollow stage is arranged toward the docking end and the plurality of heat sinks are arranged toward the butting end.
US11569595B2
A housing has a first positioning hole that penetrates the housing in the vertical direction. A suction cap includes a suction plate part to be sucked by a suction nozzle, and a plurality of positioning protrusion parts, each of which is to be inserted into a first positioning hole of the housing of an input/output board-side connector and a CPU board-side connector in the state where the suction cap holds the input/output board-side connector and the CPU board-side connector. Each positioning protrusion part is inserted into each corresponding first positioning hole in the state where the suction cap holds the input/output board-side connector and the CPU board-side connector, which achieves the positioning of the input/output board-side connector and the CPU board-side connector with respect to the suction cap.
US11569590B2
An electrical connector is configured to couple an electrical conductor to a support surface. The electrical connector includes a terminal block having a connecting aperture, a threaded aperture, and a channel. At least a portion of the threaded aperture is positioned between the channel and the connecting aperture. The connecting aperture is configured to receive the electrical conductor. The electrical connector includes a fastener having threads receivable within the threaded aperture. The fastener is configured to secure the electrical conductor against movement relative to the terminal block. The electrical connector includes a lock receivable within the channel to inhibit unintentional movement of the fastener relative to the terminal block.
US11569584B2
Antennas such as flat panel, leaky wave antennas with directional coupler feeds and waveguides are disclosed. In one example, an antenna includes a surface having antenna elements, a guided wave transmission line, and a coupling surface. The guided wave transmission line provides a guided feed wave. The coupling surface is between and separates the guided wave transmission line and the surface having antenna elements. The coupling surface controls coupling of the guided feed wave to the antenna elements. The coupling surface can also spatially filter the guided feed wave to provide a more uniform power density for the antenna elements. The guided feed wave can be a high power density electromagnetic wave or a density radially decaying electromagnetic wave.
US11569580B2
An antenna suitable for use in the 5 GHz WLAN/Wi-Fi and DSRC frequency band is integrated with a vehicle window that is includes outer and inner transparent plies bonded together by an interlayer. The inner transparent ply and the interlayer serve as an antenna substrate. A first conductive layer is formed on the inner surface of the outer transparent ply and a second conductive layer that defines a coupling slot is formed on the outer surface of the inner transparent ply. The antenna may be excited by a coaxial cable or a microstrip line that crosses the coupling slot.
US11569579B2
A wireless data transmission apparatus is disclosed, comprising one or more antennas for transmitting data as polarised electromagnetic radiation, and polarisation control means for controlling an axial ratio and a tilt angle of the polarised electromagnetic radiation such that the axial ratio and tilt angle conveys information about the data being transmitted. A corresponding wireless data receiving apparatus is also disclosed. In some embodiments, the one or more antennas comprises a patch antenna, and the polarisation means may comprise a mechanism for varying an electrical length of the angled slot. By utilising the tilt angle and axial ratio of polarised electromagnetic radiation to convey information to the receiver, the spectral efficiency of the system can be increased. A further increase in spectral efficiency may be obtained by using the polarisation control means to modulate first and second carrier waves, and transmitting different data on the first and second carrier waves.
US11569577B2
An antenna module according to one embodiment of the present invention, comprises: a coil layer including a wound first coil; a shield layer disposed on the coil layer and including a plurality of sequentially stacked magnetic sheets; and a protection layer disposed on the shield layer, wherein the thickness of an edge of the shield layer is greater than the thickness of the center of the shield layer, and the total separation distance between the plurality of magnetic sheets at the edge of the shield layer is greater than the total separation distance between the plurality of magnetic sheets at the center of the shield layer.
US11569565B2
Disclosed is an electronic device comprising a first component, a second component, and a signal path interface coupled between the first component and the second component, the signal path interface including a printed circuit board (PCB) having a rigid PCB portion and a flexible PCB portion, wherein a first signal line and a second signal line extend through the rigid PCB portion and the flexible PCB portion for transmitting signals from the first component to the second components, and a plurality of ground lines extend through the rigid PCB portion and the flexible PCB portion, and wherein each of the plurality of ground lines extending through the rigid PCB portion is connected to one or more conductive layers through conductive vias.
US11569556B2
A phase shifter includes a first substrate; a microstrip formed on the first substrate so as to extend in a first direction; a ground layer disposed with a space on the upper surface of the microstrip and having a defected ground structure (DGS) with a defected pattern formed therein; a second substrate disposed on the ground layer; and a liquid crystal layer disposed in a space between the first substrate and the second substrate, wherein DC voltage is applied between the ground layer and the microstrip.
US11569548B2
A separator including a porous base and a coating layer on at least one surface of the porous base, the coating layer including (a) a carbon nanotube including an oxygen functional group and (b) a lithium ion conducting polymer, and a lithium-sulfur battery including the same. Such a separator may be capable of resolving problems caused by lithium polysulfide occurring in a lithium-sulfur battery.
US11569545B2
Disclosed is a battery comprising a cover; a housing having a base, two side walls, and two end walls; a cell wall spanning between the first and second side walls defining two cells; a battery element provided within a cell, the battery element having a bottom; an element bottom gap, the element bottom gap defined in a first and second dimension by the cell width and length, and a third dimension by the distance between the base and bottom of the battery element.
US11569544B2
A battery pack includes a first battery case accommodating a plurality of cells, and a second battery case laminated above the first battery case and accommodating a plurality of cells. The first battery case has a first through-hole on an upper surface. The second battery case has a second through-hole on a bottom surface which communicates with the first through-hole. The battery pack includes a communication port composed of the first through-hole and the second through-hole, a gas discharge valve which is provided only in either the first battery case or the second battery case and opens when internal pressure of the battery pack is higher than a predetermined value, and a temperature sensor provided on a gas flow path connected to the gas discharge valve.
US11569542B2
A battery assembly for a lighting fixture is provided. The battery assembly includes a battery unit comprising a battery unit housing and a first set of conductive pins. The battery unit housing is configured to accommodate one or more batteries configured to power one or more light sources of the lighting fixture. The first set of conductive pins are in electrical communication with the batteries. The battery assembly includes a battery interface comprising a battery interface housing and a second set of conductive pins. The battery interface housing is configured to accommodate the battery unit housing. The second set of conductive pins are coupled to the light source(s) so that the batteries power the light source(s) when the first set of conductive pins contact the second set of conductive pins. In some implementations, the battery unit can be inserted into the battery interface while the lighting fixture is energized.
US11569539B1
A vehicle system may include an impact screen for reducing damage in a collision involving the vehicle. The impact screen may be disposed in a cavity of the vehicle system between a motor unit and a battery to reduce a likelihood of impact and/or a force of an impact between the motor unit and the battery. The impact screen may be fixed at opposite sides of the vehicle, such that motor unit moves relative to the impact screen during the collision.
US11569536B2
An electrical energy store has a plurality of storage modules, each of which has at least one temperature sensor string having a temperature sensor in the form of a temperature-dependent resistor for measuring the storage module temperature, and a battery control unit, which, based on the resistance values of the temperature sensor strings, determines the temperatures at the respective temperature sensors. The battery control unit is designed to determine a respective storage module type based on the measured resistance values of the temperature sensor strings. A method for identifying a storage module type, includes the steps: detecting a resistance value of at least one temperature sensor string having a temperature sensor, determining the temperatures present at the respective temperature sensors via a battery control unit on the basis of the resistance values of the temperature sensor strings, and determining a storage module type on the basis of the resistance value of the at least one temperature sensor string per storage module.
US11569529B2
An electrolyte for use in an energy storage device, an energy storage device and a method of forming such electrolyte. The electrolyte includes a polymer matrix of at least two crosslinked structures, including a first polymeric material and a second polymeric material; and an electrolytic solution retained by the polymer matrix; wherein the electrolyte is arranged to physically deform when subjected to an external mechanical load applied to the polymer matrix.
US11569528B2
In a solid electrolyte integrated device including a substrate with electrically insulated surfaces, a first lower electrode layer and a second upper electrode layer are electrically connected to each other on a first main surface side, and a first upper electrode layer, the first lower electrode layer, the second upper electrode layer, and a second lower electrode layer transmit ions and/or have ion redox ability, contain a metal or a metal oxide or both of a metal and a metal oxide, and have a permeable portion.
US11569521B2
The present disclosure provides a method for manufacturing a membrane electrode assembly for a fuel cell in which a transfer failure is suppressed. The present disclosure relates to a method for manufacturing a membrane electrode assembly for a fuel cell, which comprises intermittently applying a catalyst ink on a substrate sheet and drying the catalyst ink to form a catalyst layer on the substrate sheet, and transferring the catalyst layer from the substrate sheet onto an electrolyte membrane. The catalyst ink contains catalyst particles, an ionomer, an alcohol, and water, and a water content in the catalyst ink is 57% to 61% by weight of a total weight of the catalyst ink.
US11569515B2
A battery bank for a redox flow battery having a cavity in which electrolyte is stored, wherein the electrolyte is provided for supply to one or more redox flow cells, wherein the cavity is a cavern.
US11569514B2
A bipolar plate with an enhanced fluid flow field design is provided for a fuel cell. The bipolar plate includes an inlet, an outlet, and a flow field having a pattern defining a plurality of microchannels configured to provide fluid communication between the inlet and the outlet. The pattern is designed using an inverse permeability field, and is based on a reaction-diffusion algorithm to model channel spacing, thereby providing a variable pitch microchannel pattern to direct fluid from the inlet to the outlet. In various aspects, the reaction-diffusion algorithm utilize Gray-Scott reaction-diffusion equations, which may be used to obtain an anisotropic microchannel layout. The variable pitch microchannel pattern may include a channel spacing based on effective medium theory.
US11569512B2
The present invention relates to a membrane electrode unit comprising a polymer membrane doped with a mineral acid as well as two electrodes, characterized in that the polymer membrane comprises at least one polymer with at least one nitrogen atom and at least one electrode comprises a catalyst which is formed from at least one precious metal and at least one metal less precious according to the electrochemical series.
US11569496B2
A lithium-ion rechargeable battery negative electrode active material and a preparation method thereof, a lithium-ion rechargeable battery negative electrode plate, and a lithium-ion rechargeable battery are provided. The negative electrode active material includes a carbon core and a coating layer formed on a surface of the carbon core, a material of the coating layer includes amorphous carbon and a doping element, and the doping element includes element nitrogen. The lithium-ion rechargeable battery negative electrode active material has the carbon core, and the coating layer that includes the doping element and the amorphous carbon is provided on the surface of the carbon core.
US11569494B2
A method of making a positive electrode includes forming a slurry of particles using an electrode formulation, a diluent, and oxalic acid, coating the slurry on a collector and drying the coating on the collector to form the positive electrode. The electrode formulation includes an electrode active material, a conductive carbon source, an organic polymeric binder, and a water soluble polymer. The diluent consists essentially of water.
US11569490B2
The present disclosure is directed to a method and apparatus for continuous production of composites of carbon nanotubes and electrode active material from decoupled sources. Composites thusly produced may be used as self-standing electrodes without binder or collector. Moreover, the method of the present disclosure may allow more cost-efficient production while simultaneously affording control over nanotube loading and composite thickness.
US11569488B2
A display device comprises a substrate including a display region including a plurality of sub-pixels and a pad region outside the display region; a display element disposed in each of the plurality of sub-pixels; a low potential electrode formed in the pad region to apply a low potential voltage to the display element; a light absorption layer disposed on the low potential electrode in the pad region; and an encapsulation layer formed in the display region and the pad region.
US11569487B2
Provided are a display device, a mask assembly, and an apparatus and a method for manufacturing the display device. The mask assembly includes: a mask frame; at least two mask sheets installed on the mask frame, each of the mask sheets including a plurality of openings; and at least two thin shielding plates installed on the mask frame such that the thin shielding plates are spaced apart from each other and shield a portion of the plurality of openings of each mask sheet, wherein one of the mask sheets and the thin shielding plates includes a shielding portion between the thin shielding plates spaced apart from each other, the shielding portion selectively blocking at least portions of the openings so as to form a deposition region having a shape other than a rectangle or a square.
US11569485B2
A display device includes a flexible substrate including a first surface and a second surface facing the first surface; a TFT array layer provided on the first surface; a display element layer provided on the TFT array layer; a first heat releasing layer provided on the second surface; a first protective layer provided on the same side as the second surface; a second heat releasing layer provided on the display element layer; and a second protective layer provided on the display element layer. The second heat releasing layer has a light transmittance of 90% or higher.
US11569479B2
A multilayer encapsulation, a method for encapsulating and an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a first electrode layer, an organic light-emitting layer stack abutting the first electrode layer, a second electrode layer abutting the light-emitting layer stack and a multilayer encapsulation abutting the second electrode layer, wherein the multilayer encapsulation comprises a barrier layer and a planarization layer, wherein the planarization layer abuts the second electrode layer, and wherein the planarization layer is arranged between the second electrode layer and the barrier layer.
US11569465B2
In a display device including a flexible display panel, the risk of disconnection of a wiring due to bending is reduced. A display panel includes a display function layer including display elements and a wiring on one major surface of a base material having flexibility. The display panel includes, on the one major surface of the base material, an organic-film-covered wiring area where the surface of the wiring is covered with an organic planarization film that is an organic insulating film in direct contact with the wiring. The display panel includes, in the plane thereof, a display area where the display elements are arranged and a component mounting area that is a peripheral area located outside the display area. As the organic-film-covered wiring area, a curved area is provided in the peripheral area.
US11569461B2
An organic electroluminescence device includes a first electrode, an organic layer disposed on the first electrode, and a second electrode disposed on the organic layer. The organic layer includes an organometallic compound represented by Formula 1 below. where R1 to R4, X1 to X4, Ar1 to Ar3, M, Q, m1 to m4, and n are as defined in the specification.
US11569454B2
Provided are an organic-light-emitting device and a display apparatus including the same. The organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode and including at least one light-emitting unit, wherein the at least one light-emitting unit includes: an emission layer; and a hole transport region between the first electrode and the emission layer and including a first hole transport (HT) layer, the emission layer includes a host, the first HT layer includes a first compound, a minimum bond dissociation energy (BDE1HT) of the first compound is larger than a triplet energy (T1,host) of the host, and a minimum bond dissociation energy (BDEhost) of the host is larger than the triplet energy (T1,host) of the host.
US11569452B2
An organic light-emitting device including a predetermined host and a thermally activated delayed fluorescence emitter.
US11569445B2
Metal oxide based memory devices and methods for manufacturing are described herein. A method for manufacturing a memory cell includes forming a bottom adhesion layer in a via formed in an insulating layer. Forming a bottom conductive plug in the bottom adhesion layer. Forming a top adhesion layer over the bottom adhesion layer and bottom conductive plug. Forming a top conductive plug in the top adhesion layer. Wherein the thickness of the bottom and top adhesion layers may be different from one another.
US11569435B2
A piezoelectric actuator is provided, including a vibration plate, a piezoelectric layer, a plurality of individual electrodes arranged in two arrays, first and second common electrodes which have first and second facing portions facing parts of the individual electrodes and first and second connecting portions connecting the first and second facing portions respectively, and first and second wiring portions which are arranged on the vibration plate and which are connected to the first and second common electrodes respectively via first and second connecting wirings, wherein one of the first connecting wirings connects the first connecting portion and one of the first wiring portion while striding over the second connecting portion.
US11569431B1
A CMOS-compatible actuator platform for implementing phase, amplitude, and frequency modulation in silicon nitride photonic integrated circuits via piezo-optomechanical coupling using tightly mechanically coupled aluminum nitride actuators is disclosed. The platform, which may be fabricated in a CMOS foundry, enables scalable active photonic integrated circuits for visible wavelengths, and the piezoelectric actuation functions without performance degradation down to cryogenic operating temperatures. A number of devices are possible, including ring modulator devices, phase shifter devices, Mach-Zehnder interferometer devices, directional coupler devices (including tunable directional coupler devices), and acousto-optic modulator and frequency shifter devices, each of which can employ the same AlN actuator platform. As all of these devices can be built on the same AlN actuator platform, numerous optical functions can be implemented on a single die.
US11569430B2
Method for operating an ultrasonic motor with an ultrasonic actuator formed as a plate and an electrical excitation device. The ultrasonic actuator has at least four identical volume regions arranged symmetrically in relation to a transverse plane and in relation to a longitudinal plane, each volume region forming acoustic standing waves and static bending deformations. The electrical excitation device provides at least one electric alternating voltage and two static electric voltages the at least one alternating voltage U1 being applied in a dynamic operating mode simultaneously to two of the generators for forming an acoustic standing wave in the ultrasonic actuator, and the two static electric voltages being applied in a static operating mode simultaneously to all generators for forming a static bending deformation of the ultrasonic actuator.
US11569398B2
According to the present disclosure, techniques related to manufacturing and applications of power photodiode structures and devices based on group-III metal nitride and gallium-based substrates are provided. More specifically, embodiments of the disclosure include techniques for fabricating photodiode devices comprising one or more of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, structures and devices. Such structures or devices can be used for a variety of applications including optoelectronic devices, photodiodes, power-over-fiber receivers, and others.
US11569394B2
A solar cell panel includes a plurality of solar cells including first and second solar cells, and a plurality of wiring members electrically connecting the first and second solar cells. A first electrode of each of the first and second solar cells includes a first bus bar including a plurality of first pad portions. The plurality of first pad portions include a first end pad positioned on one end side of the first bus bar and on which an end of the wiring member is positioned, and a first extension pad positioned on the other end side of the first bus bar and on an extension of the wiring member. An area of the first end pad is different from an area of the first extension pad.
US11569386B2
A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and a second fin structure extended above a substrate, and a first source/drain structure formed over the first fin structure. The first source/drain structure is made of an N-type conductivity material. The semiconductor device structure also includes a second source/drain structure formed over the second fin structure, and the second source/drain structure is made of an P-type conductivity material. The semiconductor device structure also includes a cap layer formed over the first source/drain structure, wherein the cap layer is made of P-type conductivity material.
US11569383B2
The present disclosure describes a method to form silicon germanium (SiGe) source/drain epitaxial stacks with a boron doping profile and a germanium concentration that can induce external stress to a fully strained SiGe channel. The method includes forming one or more gate structures over a fin, where the fin includes a fin height, a first sidewall, and a second sidewall opposite to the first sidewall. The method also includes forming a first spacer on the first sidewall of the fin and a second spacer on the second sidewall of the fin; etching the fin to reduce the fin height between the one or more gate structures; and etching the first spacer and the second spacer between the one or more gate structures so that the etched first spacer is shorter than the etched second spacer and the first and second etched spacers are shorter than the etched fin. The method further includes forming an epitaxial stack on the etched fin between the one or more gate structures.
US11569380B2
A semiconductor structure is provided, and the semiconductor structure includes a substrate, and an active area is defined thereon, a gate structure spanning the active area, wherein the overlapping range of the gate structure and the active area is defined as an overlapping region, and the overlapping region includes four corners, and at least one salicide block covering the four corners of the overlapping region.
US11569379B2
In the semiconductor device, a high-concentration diffusion layer and a low-concentration diffusion layer are disposed around a drain diffusion layer of an ESD protection element. The high-concentration diffusion layer is separated from a gate electrode, and a medium concentration LDD diffusion layer is disposed in a separation gap. Variations in characteristics are suppressed by reducing thermal treatment on the high-concentration diffusion layer and a medium concentration diffusion layer.
US11569378B2
A semiconductor device includes a first semiconductor structure. The first semiconductor structure includes a first semiconductor material having a band-gap. The first semiconductor structure has a first surface. An insulating layer has first and second opposing surfaces. The first surface of the insulating layer is on the first surface of the first semiconductor structure. A second semiconductor structure is on the second surface of the insulating layer and includes a second semiconductor material having a band-gap that is smaller than the band-gap of the first semiconductor material. A floating electrode couples the first semiconductor structure to the second semiconductor structure.
US11569376B2
First p+-type regions are provided directly beneath trenches, separate from a p-type base region and facing bottoms of the trenches in a depth direction. The first p+-type regions are exposed at the bottoms of the trenches and are in contact with a gate insulating film at the bottoms of the trenches. Second p+-type regions are each provided between (mesa region) adjacent trenches, separate from the first p+-type regions and the trenches. Drain-side edges of the second p+-type regions are positioned closer to a source side than are drain-side edges of the first p+-type regions. In each mesa region, an n+-type region is provided separate from the first p+-type regions and the trenches. The n+-type regions are adjacent to and face the second p+-type regions in the depth direction.
US11569371B2
We disclose herein a gate controlled bipolar semiconductor device comprising: a collector region of a first conductivity type; a drift region of a second conductivity type located over the collector region; a body region of a first conductivity type located over the drift region; a plurality of first contact regions of a second conductivity type located above the body region and having a higher doping concentration than the body region; a second contact region of a first conductivity type located laterally adjacent to the plurality of first contact regions, the second contact region having a higher doping concentration than the body region; at least two active trenches each extending from a surface into the drift region; an emitter trench extending from the surface into the drift region; wherein each first contact region adjoins an active trench so that, in use, a channel is formed along said each active trench and within the body region; wherein the second contact region adjoins the emitter trench; and wherein the emitter trench is located between two active trenches.
US11569367B1
A field effect transistor includes a substrate, a passivation layer on the substrate forming a passivated substrate, wherein the passivation layer is inert to XeF2, and a graphene lateral heterostructure field effect transistor (LHFET) on the passivated substrate.
US11569362B2
A semiconductor device includes a source/drain region, a source/drain silicide layer formed on the source/drain region, and a first contact disposed over the source/drain silicide layer. The first contact includes a first metal layer, an upper surface of the first metal layer is at least covered by a silicide layer, and the silicide layer includes a same metal element as the first metal layer.
US11569361B2
An embodiment includes a method of forming a semiconductor device and the resulting device. The method may include forming a source/drain on an exposed portion of a semiconductor layer of a layered nanosheet. The method may include forming a sacrificial material on the source/drain. The method may include forming a dielectric layer covering the sacrificial material. The method may include replacing the sacrificial material with a contact liner. The semiconductor device may include a first gate nanosheet stack and second gate nanosheet stack. The semiconductor device may include a first source/drain in contact with the first nanosheet stack and a second source/drain in contact with the second nanosheet stack. The semiconductor device may include a source/drain dielectric located between the first source/drain and the second source/drain. The semiconductor device may include a contact liner in contact with the first source/drain, the second source/drain and the source/drain dielectric.
US11569350B2
Disclosed is a semiconductor device including a first active pattern that extends in a first direction on an active region of a substrate, a first source/drain pattern in a recess on an upper portion of the first active pattern, a gate electrode that runs across a first channel pattern on the upper portion of the first active pattern and extends in a second direction intersecting the first direction, and an active contact electrically connected to the first source/drain pattern.
US11569346B2
A semiconductor device includes a source/drain diffusion area, a first doped region and a gate. The source/drain diffusion area, defined between a first isolation structure and a second isolation structure, includes a source region, a drain region and a device channel. The first doped region, disposed along a first junction between the device channel and the first isolation structure, is separated from at least one of the source region and the drain region. The first doped region has a dopant concentration higher than that of the device channel. The gate is disposed over the source/drain diffusion area. The first doped region is located within a projected area of the gate onto the source/drain diffusion area, the first isolation structure and the second isolation structure. A length of the first doped region is shorter than a length of the gate in a direction from the source region to the drain region.
US11569343B2
A metal-insulator-metal (MIM) capacitor includes a first group of metal contacts disposed on a first region of an isolation layer spaced apart from each other in a first direction, a second group of metal contacts disposed on a second region of the isolation layer spaced apart from each other in the first direction, a dielectric layer disposed between the first group of metal contacts and the second group of metal contacts, a first metal electrode disposed to contact the top surfaces of the first group of metal contacts, and a second metal electrode disposed to contact the top surfaces of the second group of metal contacts.
US11569340B2
Isolators for signals and/or powers transmitted between two circuits configured to operate at different voltage domains are provided. The isolators may have working voltages, for example, higher than 500 Vrms, higher than 1000 Vrms, or between 333 Vrms and 1800 Vrms. The isolators may have a fully symmetrical configuration. The isolators may include a primary winding coupled to a driver and a secondary winding coupled to a receiver. The primary and secondary windings may be laterally coupled to and galvanically isolated from each other. The primary and secondary windings may include concentric traces. The primary and secondary windings may be fabricated using a single metallization layer on a substrate.
US11569339B2
A display device may including: a substrate including a pixel area and a peripheral area; pixels provided in the pixel area of the substrate, each of the pixels including a light-emitting element provided with a pixel electrode; scan lines and data lines coupled to the pixels; a power line configured to supply driving power to the light-emitting elements, and extending in one direction; and an initialization power line configured to supply initialization power to the light-emitting elements. The power line and the initialization power line may be provided on different layers. The initialization power line may include: first conductive lines extending in a direction oblique to the scan lines and the data lines; and conductive lines intersecting the first conductive lines. The first and second conductive lines may be disposed in areas between the pixel electrodes of adjacent light-emitting elements.
US11569326B2
Disclosed are a display panel and display device. The display panel includes: a sensor setting area and a display area around the sensor setting area, where the sensor setting area includes at least one photosensitive element setting area and each of the at least one photosensitive element setting area is the same.
US11569316B2
A display device includes a substrate comprising a plurality of pixel areas and a non-pixel area surrounding each of the plurality of pixel areas. The non-pixel area includes a plurality of first areas and a second area surrounding the plurality of first areas. A functional layer is disposed on the substrate and includes a plurality of first holes defined through the functional layer and overlapping the plurality of first areas. An element layer is disposed on the functional layer. A pixel definition layer is disposed on the element layer overlaps the non-pixel area. The pixel definition layer includes pixel openings defined therethrough. The pixel openings overlap the plurality of pixel areas. A plurality of light emitting elements is disposed on the element layer and is disposed in the pixel openings.
US11569315B2
The embodiment of the present disclosure provides a display panel and a manufacturing method thereof. The display panel includes: an active area; and an aperture area at least partially surrounded by the active area, wherein at least one barrier wall is provided between the active area and the aperture area, a thin film encapsulation is provided on a first side of the display panel, and the thin film encapsulation covers the barrier wall and the active area, and wherein a convex-concave structure is provided on at least one surface of the barrier wall in contact with the thin film encapsulation.
US11569312B2
An organic light-emitting display comprises a substrate having a plurality of subpixels arranged in a row direction and a column direction crossing the row direction; a plurality of first electrodes respectively allocated to the plurality of subpixels and comprising a first sub-electrode arranged in a (3n−2) column, a second sub-electrode arranged in a (3n−1) column, and a third sub-electrode arranged in a 3n column (where n is a natural number of 1 or more); and a bank having an opening exposing the plurality of first electrodes, wherein the first sub-electrode has a convex part protruded toward the third sub-electrode that has a concave part corresponding to the convex part.
US11569309B2
A display device includes a flexible substrate, a display layer disposed on the flexible substrate and including a plurality of light emitting units, a first conductive layer disposed on the display layer, including a plurality of first conductive lines, and a second conductive layer disposed on the first conductive layer, including a plurality of second conductive lines. A portion of the second conductive lines intersects the plurality of first conductive lines to form a plurality of capacitors, and another portion of the second conductive lines forms a plurality of touch units. At least one of the plurality of capacitors does not overlap the plurality of light emitting units in a top view of the display device.
US11569296B2
The present disclosure provides a semiconductor structure. The semiconductor structure includes a transistor layer, a memory region over the transistor layer, and a logic region adjacent to the memory region. The memory region includes a first Nth metal line, a magnetic tunneling junction (MTJ) over the first Nth metal line, a cap over the MTJ, a first stop layer on the cap, and a first (N+1)th metal via over the MTJ. The first (N+1)th metal via is laterally surrounded by the cap and the first stop layer. The logic region includes a second Nth metal line, a second stop layer over an (N+1)th metal line, and a second (N+1)th metal via over the (N+1)th metal line. N is an integer greater than or equal to 1.
US11569295B2
A magnetoresistive random access memory (MRAM) includes a first transistor and a second transistor on a substrate, a source line coupled to a first source/drain region of the first transistor, and a first metal interconnection coupled to a second source/drain region of the first transistor. Preferably, the first metal interconnection is extended to overlap the first transistor and the second transistor and the first metal interconnection further includes a first end coupled to the second source/drain region of the first transistor and a second end coupled to a magnetic tunneling junction (MTJ).
US11569294B2
A semiconductor device includes a semiconductor substrate and an interconnection region disposed on the semiconductor substrate. The interconnection region includes stacked metallization levels, a magnetic tunnel junction, and a transistor. The magnetic tunnel junction is formed on a first conductive pattern of a first metallization level of the stacked metallization levels. The transistor is formed on a second conductive pattern of a second metallization level of the stacked metallization levels. The transistor is a vertical gate-all-around transistor. A drain contact of the transistor is electrically connected to the magnetic tunnel junction by the first conductive pattern of the first metallization level. The second metallization level is closer to the semiconductor substrate than the first metallization level.
US11569291B2
A method forming an image sensor includes: providing a substrate including a plurality of sensing portions; forming a color filter layer on the substrate; forming a micro-lens material layer on the color filter layer; and forming a hard mask pattern on the micro-lens material layer, wherein the hard mask pattern has a first gap and a second gap larger than the first gap. The method includes reflowing the hard mask pattern into a plurality of dome shapes; transferring the plurality of dome shapes into the micro-lens material layer to form a plurality of micro-lenses; and forming a top film conformally on the plurality of micro-lenses.
US11569282B2
An image sensor package includes a substrate connected to an image sensor by a bonding wire; a sub-housing disposed adjacent to an upper surface of the substrate so as to surround the bonding wire; and a support member disposed at least partially in a space between the sub-housing and the substrate to limit elastic deformation of the sub-housing, and a portion of the bonding wire is disposed inside the support member.
US11569276B2
Provided are an image sensor with one or more image receivers for image switching, and an imaging system and method therefor. The image sensor includes an image sensor array to generate first image data for a first image; a receiver to receive, into the image sensor, second image data for a second image; an image selection circuit coupled to the image sensor array and the receiver to receive the first image data and the second image data and select one of the first image data and the second image data according to one or more image selection criteria and at least one of the first image data and the second image data; and a transmitter coupled to the image selection circuit to transmit the selected one of the first image data and the second image data from the image sensor.
US11569266B2
Some embodiments include an integrated structure having vertically-stacked conductive levels. Upper conductive levels are memory cell levels, and a lower conductive level is a select device level. Conductively-doped semiconductor material is under the select device level. Channel material extends along the memory cell levels and the select device level, and extends into the conductively-doped semiconductor material. A region of the channel material that extends into the conductively-doped semiconductor material is a lower region of the channel material and has a vertical sidewall. Tunneling material, charge-storage material and charge-blocking material extend along the channel material and are between the channel material and the conductive levels. The tunneling material, charge-storage material and charge-blocking material are not along at least a portion of the vertical sidewall of the lower region of the channel material, and the conductively-doped semiconductor material is directly against such portion. Some embodiments include methods of forming integrated structures.
US11569259B2
A memory die can include an alternating stack of insulating layers and electrically conductive layers located over a substrate, and memory stack structures vertically extending through the alternating stack. A first layer stack within the alternating stack includes a first staircase region in which the first electrically conductive layers have respective lateral extents that increase with a vertical distance from the substrate to provide first stepped surfaces. A second layer stack within the alternating stack includes a second staircase region in which the second electrically conductive layers have respective lateral extents that decrease with the vertical distance from the substrate to provide second stepped surfaces. The second layer stack can be more distal from the substrate than the first layer stack. Contact via structures can be formed from the top side and the bottom side of the alternating stack.
US11569250B2
A memory device includes metal interconnect structures embedded within dielectric material layers that overlie a top surface of a substrate, a thin film transistor embedded in a first dielectric material layer selected from the dielectric material layers, and is vertically spaced from the top surface of the substrate, and a ferroelectric memory cell embedded within the dielectric material layers. A first node of the ferroelectric memory cell is electrically connected to a node of the thin film transistor through a subset of the metal interconnect structures that is located above, and vertically spaced from, the top surface of the substrate.
US11569243B2
A DRAM integrated circuit device is described in which at least some of the peripheral circuits associated with the memory arrays are provided on a first substrate. The memory arrays are provided on a second substrate stacked on the first substrate, thus forming a DRAM integrated circuit device on a stacked-substrate assembly. Vias that electrically connect the memory arrays on the second substrate to the peripheral circuits on the first substrate are fabricated using high aspect ratio via fabrication techniques.
US11569240B2
The present disclosure provides a semiconductor structure and a manufacturing method thereof. The manufacturing method includes: providing a base; forming bit lines on the base, and forming semiconductor channels on surfaces of the bit lines away from the base, the semiconductor channel including a first doped region, a channel region and a second doped region arranged sequentially; forming a first dielectric layer, the first dielectric layer surrounding sidewalls of the semiconductor channels, and a first gap being provided between parts of the first dielectric layer located on sidewalls of adjacent semiconductor channels on a same bit line; forming a second dielectric layer, the second dielectric layer filling up the first gaps, and a material of the second dielectric layer being different from a material of the first dielectric layer; removing a part of the first dielectric layer to expose sidewalls of the channel regions.
US11569239B2
Semiconductor memory devices may include first and second stacks on a substrate and first and second interconnection lines on the first and second stacks. Each of the first and second stacks may include semiconductor patterns vertically stacked on the substrate, conductive lines connected to the semiconductor patterns, respectively, and a gate electrode that is adjacent to the semiconductor patterns and extends in a vertical direction. The first stack may include a first conductive line and a first gate electrode, and the second stack may include a second conductive line and a second gate electrode. Lower surfaces of the first and second conductive lines may be coplanar. The first interconnection line may be electrically connected to at least one of the first and second conductive lines. The second interconnection line may be electrically connected to at least one of the first and second gate electrodes.
US11569222B2
An electrostatic discharge protection circuit for an integrated circuit and a method for electrostatic discharge protection thereof are disclosed. The integrated circuit includes a power source, a ground, a signal input, and a signal output. The integrated circuit further comprises one or more essentially identically configured electrostatic discharge protection circuits, configured to provide electrostatic discharge protection between any two of the power source, the ground, the signal input, and the signal output. A method of providing electrostatic discharge protection includes providing one or more essentially identically configured electrostatic discharge protection circuits coupled between and providing electrostatic discharge protection for any two of the power source, the ground, the signal input, and the signal output. The disclosed integrated circuit and method provide advantages of simplifying the integrated circuit design and reducing design time.
US11569218B2
Provided is a layout structure capable of reducing the parasitic capacitance between storage nodes of an SRAM cell using vertical nanowire (VNW) FETs. In the SRAM cell, a first storage node is connected to top electrodes of some transistors, and a second storage node is connected to bottom electrodes of other transistors. Accordingly, the first and second storage nodes have fewer regions adjacent to each other in a single layer.
US11569217B2
An image sensor package and a manufacturing method thereof are provided. The image sensor package includes a redistribution circuit structure; an image sensing chip disposed on the redistribution circuit structure and having a sensing surface, on which a sensing area and a first conductive pillar arranged in the periphery of the sensing area are disposed; a lid covering the sensing area; an encapsulant disposed on the redistribution circuit structure and encapsulating at least part of the image sensing chip and the cover; and a top tier semiconductor chip disposed above the image sensing chip and having an active surface on which a first conductor is disposed. The first conductor overlaps the image sensing chip in a direction perpendicular to the sensing surface. The first conductive pillar and the first conductor are aligned and bonded to each other to electrically connect the image sensing chip and the top tier semiconductor chip.
US11569214B2
A display apparatus includes a display panel having an image acquisition region within a display area, and an image acquisition device over a side of the display panel opposing to its display surface. The image acquisition device is at a position corresponding to the image acquisition region, and is configured to capture an image based on lights from an outside pattern over a side of the display panel proximal to the display surface. The display panel includes a substrate and a plurality of light-emitting elements over the substrate. The plurality of light-emitting elements comprises one or more first light-emitting elements positionally within the image acquisition region. At least one first light-emitting element includes a non-transparent electrode provided with at least one through-hole configured to allow the lights from the outside pattern to pass through the display panel.
US11569211B2
A semiconductor die includes a structural body that has a power region and a peripheral region surrounding the power region. At least one power device is positioned in the power region. Trench-insulation means extend in the structural body starting from the front side towards the back side along a first direction, adapted to hinder conduction of heat from the power region towards the peripheral region along a second direction orthogonal to the first direction. The trench-insulation means have an extension, in the second direction, greater than the thickness of the structural body along the first direction.
US11569203B2
Systems and methods for multi-height interconnect structures for a semiconductor device are provided herein. The multi-height interconnect structure generally includes a primary level semiconductor die having a primary conductive pillar and a secondary conductive pillar, where the primary conductive pillar has a greater height than the secondary conductive pillar. The semiconductor device may further include a substrate electrically coupled to the primary level semiconductor die through the primary conductive pillar and a secondary level semiconductor die electrically coupled to the primary level semiconductor die through the secondary conductive pillar. The multi-height pillars may be formed using a single photoresist mask or multiple photoresist masks. In some configurations, the primary and secondary conductive pillars may be arranged on only the front-side of the dies and/or substrate.
US11569195B2
A semiconductor packaging structure manufactured in a manner which does not leave the chip damaged or susceptible to damage upon the removal of temporary manufacturing supports includes at least one electrical conductor, at least one conductive layer, a chip, and a colloid. The chip is spaced from the conductive layer, the electrical conductor is disposed between the conductive layer and the chip and electrically connects the conductive layer to the chip. The colloid covers all outer surfaces of the chip. A method of fabricating such a semiconductor packaging structure is also provided.
US11569191B2
A multi-feed packaged antenna based on fan-out package, which relates to packaged antennas. A first passivation layer is arranged under a packaging layer, and first and second redistribution layers are arranged on the first passivation layer to build the multi-feed packaged antenna. Connecting ends of multiple channels of a chip are connected to a feed structure of a packaged antenna. A metal layer of the feed structure is achieved by the first redistribution layer, and the second redistribution layer is mainly configured to package an antenna. The coaxial feed is adopted herein, in which two redistribution layers are provided, by which a multi-port power combining can be achieved on the antenna, providing a wide-beam performance.
US11569189B2
The present disclosure relates to a semiconductor device structure with a conductive polymer liner and a method for preparing the semiconductor device structure. The semiconductor device structure includes a first metal layer disposed over a semiconductor substrate, and a second metal layer disposed over the first metal layer. The semiconductor device structure also includes a conductive structure disposed between the first metal layer and the second metal layer. The conductive structure includes a first conductive via and a first conductive polymer liner surrounding the first conductive via.
US11569182B2
Gallium nitride-based monolithic microwave integrated circuits (MMICs) can comprise aluminum-based metals. Electrical contacts for gates, sources, and drains of transistors can include aluminum-containing metallic materials. Additionally, connectors, inductors, and interconnect devices can also comprise aluminum-based metals. The gallium-based MMICs can be manufactured in complementary metal oxide semiconductor (CMOS) facilities with equipment that produces silicon-based semiconductor devices.
US11569180B2
Structures for an optical fiber groove and methods of forming a structure for an optical fiber groove. A photonics chip includes a substrate and an interconnect structure over the substrate. The photonics chip has a first exterior corner, a second exterior corner, and a side edge extending from the first exterior corner to the second exterior corner. The substrate includes a groove positioned along the side edge between the first exterior corner and the second exterior corner. The groove is arranged to intersect the side edge at a groove corner, and the interconnect structure includes metal structures adjacent to the first groove corner. The metal structures extend diagonally in the interconnect structure relative to the side edge of the photonics chip.
US11569178B2
Various embodiments of an integrated circuit package and a method of forming such package are disclosed. The package includes a substrate having a core layer disposed between a first dielectric layer and a second dielectric layer, a die disposed in a cavity of the core layer, and an encapsulant disposed in the cavity between the die and a sidewall of the cavity. The package further includes a first patterned conductive layer disposed within the first dielectric layer, a device disposed on an outer surface of the first dielectric layer such that the first patterned conductive layer is between the device and the core layer, a second patterned conductive layer disposed within the second dielectric layer, and a conductive pad disposed on an outer surface of the second dielectric layer such that the second patterned conductive layer is between the conductive pad and the core layer.
US11569161B2
Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, the electronic package comprises a package substrate, that comprises a bumpout region on a first surface of the package substrate, and a pin region on a second surface of the package substrate. In an embodiment, a data path from the bumpout region to the pin region is included in the electronic package. In an embodiment, a ground path brackets the data path from the bumpout region to the pin region.
US11569158B2
A semiconductor package includes a redistribution substrate having a dielectric layer and a wiring pattern in the dielectric layer, the wiring pattern including a line part that extends horizontally, and a via part connected to the line part, the via part having a width less than a width of the line part, a passivation layer on a top surface of the redistribution substrate, the passivation layer including a material different from a material of the dielectric layer, a conductive pillar that penetrates the passivation layer, the conductive pillar being connected to the via part, and a connection terminal on a top surface of the conductive pillar, a distance between the top surface of the conductive pillar and a top surface of the passivation layer being greater than a thickness of the passivation layer.
US11569155B2
A bonding pad such as for a ball grid array includes a conductive pad having a top surface and a first interface surface in contact with a signal trace of a substrate, and a plating layer having a bottom surface in direct contact with the top surface of the conductive pad. The plating layer includes one or more protrusions extending toward the signal trace in a direction generally parallel to a longitudinal axis of the signal trace. Each of the one or more protrusions includes two parallel sidewalls extending upwardly from the bottom surface of the plating layer, and a second interface surface contiguous with the bottom surface of the plating layer. The second interface surface is positioned over and in direct contact with a top surface of the signal trace. The protrusions prevent the connection to the signal trace from being compromised.
US11569145B2
A semiconductor package includes a first semiconductor chip mounted on the package substrate, a second semiconductor mounted on the package substrate and set apart from the first semiconductor chip in a horizontal direction thereby forming a gap between the first semiconductor chip and the second semiconductor chip. The semiconductor package further includes a first thermal interface material layer formed in the gap and having a first modulus of elasticity and a second thermal interface material layer formed on each of the first semiconductor chip and the second semiconductor chip and having a second modulus of elasticity, wherein the first modulus of elasticity is less than the second modulus of elasticity.
US11569143B2
An electronic component package of an embodiment of the disclosure includes a base, a first plated layer, a first electronic component chip, a second plated layer, and a second electronic component chip. The base includes a first surface and a second surface. The first plated layer covers the first surface. The first electronic component chip is provided on the first plated layer with a first insulating layer being interposed therebetween. The second plated layer covers the second surface. The second electronic component chip is provided on the second plated layer with a second insulating layer being interposed therebetween. The first plated layer and the second plated layer each include a first metal material that is less likely to undergo an ion migration phenomenon than silver (Ag).
US11569139B2
A method includes providing a first wafer including a respective set of first metal bonding pads and at least one first alignment diagnostic structure, providing a second wafer including a respective set of second metal bonding pads and a respective set of second alignment diagnostic structures, overlaying the first wafer and the second wafer, measuring at least one of a current, voltage or contact resistance between the first alignment diagnostic structures and the second alignment diagnostic structures to determine an overlay offset, and bonding the second wafer to the first wafer.
US11569128B2
A semiconductor device includes a substrate including an active pattern, a first interlayer dielectric layer on the substrate, the first interlayer dielectric layer including a recess on an upper portion thereof, and a lower connection line in the first interlayer dielectric layer, the lower connection line being electrically connected to the active pattern, and the lower connection line including a conductive pattern, the recess of the first interlayer dielectric layer selectively exposing a top surface of the conductive pattern, and a barrier pattern between the conductive pattern and the first interlayer dielectric layer, the first interlayer dielectric layer covering a top surface of the barrier pattern.
US11569127B2
In one embodiment, a method of forming metal interconnects uses a direct metal etch approach to form and fill the metal gap. The method may include directly etching a metal layer to form metal patterns. The metal patterns may be spaced apart from one another by recesses. A dielectric spacer may be formed extending along the sidewalls of each of the recesses. The recesses may be filled with a conductive material to form a second set of metal patterns. By directly etching the metal film, the technique allows for reduced line width roughness. The disclosed structure may have the advantages of increased reliability, better RC performance and reduced parasitic capacitance.
US11569123B2
Disclosed herein is a semiconductor device, including: a first substrate including a first electrode, and a first insulating film configured from a diffusion preventing material for the first electrode and covering a periphery of the first electrode, the first electrode and the first insulating film cooperating with each other to configure a bonding face; and a second substrate bonded to and provided on the first substrate and including a second electrode joined to the first electrode, and a second insulating film configured from a diffusion preventing material for the second electrode and covering a periphery of the second electrode, the second electrode and the second insulating film cooperating with each other to configure a bonding face to the first substrate.
US11569122B2
Methods and apparatus for cleaving a substrate in a semiconductor chamber. The semiconductor chamber pressure is adjusted to a process pressure, a substrate is then heated to a nucleation temperature of ions implanted in the substrate, the temperature of the substrate is then adjusted below the nucleation temperature of the ions, and the temperature is maintained until cleaving of the substrate occurs. Microwaves may be used to provide heating of the substrate for the processes. A cleaving sensor may be used for detection of successful cleaving by detecting pressure changes, acoustic emissions, changes within the substrate, and/or residual gases given off by the implanted ions when the cleaving occurs.
US11569118B2
A semiconductor manufacturing apparatus includes a thrust-up unit having a plurality of blocks in contact with a dicing tape, a head having a collet absorbing the die and capable of being moved up and down, and a control section controlling the operation of the thrust-up unit and the head. The thrust-up unit can operate each of the plurality of blocks independently. The control section configures the thrust-up sequences of the plurality of blocks in a plurality of steps, and controls the operation of the plurality of blocks on the basis of a time chart recipe capable of setting the height and the speed of the plurality of blocks for each block and in each step.
US11569106B2
The present invention provides an apparatus for packing wafer cassettes, the apparatus including: a loading part to which a wafer cassette is loaded; an accessory inspecting part configured to check a recipe attached to the wafer cassette and inspect accessories of the wafer cassette; a first label attaching part configured to attach a first label to the wafer cassette on which the accessory inspection has been completed; a primary film packing part configured to receive a primary film according to the recipe and pack the wafer cassette using the primary film; a secondary film packing part configured to receive a secondary film according to the recipe and secondarily pack the wafer cassette using the secondary film; a second label attaching part configured to attach a second label to the secondary film with which the wafer cassette has been packed; and an unloading part configured to discharge the wafer cassette which has been completely packaged.
US11569100B2
The inventive concept relates to a substrate heating unit. The substrate heating unit includes a chuck stage having an inner space defined by a base and sidewalls, a heating unit provided in the inner space of the chuck stage, and a quartz window that covers the inner space of the chuck stage and has an upper surface on which the substrate is placed. The heating unit includes a heating plate having a disk shape with an opening in the center thereof and heating modules installed in respective heating zones on the heating plate that are divided from each other, each heating module having a printed circuit board on which heating light sources emitting light for heating are mounted.
US11569095B2
A method may include providing a set of features in a mask layer, wherein a given feature comprises a first dimension along a first direction, second dimension along a second direction, orthogonal to the first direction, and directing an angled ion beam to a first side region of the set of features in a first exposure, wherein the first side region is etched a first amount along the first direction. The method may include directing an angled deposition beam to a second side region of the set of features in a second exposure, wherein a protective layer is formed on the second side region, the second side region being oriented perpendicularly with respect to the first side region. The method may include directing the angled ion beam to the first side region in a third exposure, wherein the first side region is etched a second amount along the first direction.
US11569091B2
Disclosed herein are techniques for bonding components of LEDs. According to certain embodiments, a device includes a first component and a second component. The first component includes a semiconductor layer stack having an n-side semiconductor layer, an active light emitting layer, and a p-side semiconductor layer. The semiconductor layer stack includes a III-V semiconductor material. The second component includes a passive or an active matrix integrated circuit within a Si layer. A first dielectric material of the first component is bonded to a second dielectric material of the second component. First contacts of the first component are aligned with and bonded to second contacts of the second component. The first contacts of the first component form a first pattern within the first dielectric material of the first component, and the second contacts of the second component form a second pattern within the second dielectric material of the second component.
US11569089B2
A method including forming an insulating film over first, second, third and fourth regions of a semiconductor substrate; forming a polyimide film on the insulating film; and patterning the polyimide film with a lithography method using a photomask including at least a first region of a first transmittance rate, a second region of a second transmittance rate, a third region having a shading material, and a fourth region, wherein the first, second, third and fourth regions of the photomask correspond to the first, second, third and fourth regions of the semiconductor substrate, respectively.
US11569088B2
Methods of enhancing selective deposition are described. In some embodiments, a passivation layer is deposited on a metal surface before deposition of a dielectric material. A block I molecule is deposited on a metal surface, and a block II molecule is reacted with the block I molecule to form a passivation layer.
US11569084B2
A method for removing nodule defects is disclosed. The nodule defects may be formed on a non-selected portion of a semiconductor structure during formation of a semiconductor region on a selected portion of the semiconductor structure. A plasma having a higher selectivity to etch the nodule defects relative to the semiconductor region may be used to selectively remove the nodule defects on the non-selected portion.
US11569083B2
In the excimer lamp according to the present invention, a flat discharge vessel having a substantially rectangular cross-sectional shape and comprising a pair of planar parts and a pair of side-surface parts has a pair of external electrodes disposed on the respective outer surfaces of the planar parts. The end parts of the external electrodes are provided with an auxiliary electrode extending to a region that is made smaller than the distance between the planar parts. A lead that supplies electricity to the external electrode is connected to the auxiliary electrode in the region that is made smaller than the distance between the planar parts.
US11569074B2
A gold sputtering target is made of gold and inevitable impurities, and has a surface to be sputtered. In the gold sputtering target, an average value of Vickers hardness is 40 or more and 60 or less, and an average crystal grain size is 15 μm or more and 200 μm or less. A {110} plane of gold is preferentially oriented at the surface to be sputtered.
US11569073B2
An assembly provided with a coolant flow channel includes a base in which the coolant flow channel is formed; and a protrusion component that is disposed in the coolant flow channel, wherein the protrusion component is liftable or rotatable.
US11569070B2
A plasma processing apparatus includes a balun having a first input terminal, a second input terminal, a first output terminal, and a second output terminal, a vacuum container, a first electrode electrically connected to the first output terminal, a second electrode electrically connected to the second output terminal, and a connection unit configured to electrically connect the vacuum container and ground, the connection unit including an inductor.
US11569068B2
A plasma processing apparatus includes a microwave output unit, a wave guide tube, a tuner, a demodulation unit, and a calculation unit. The microwave output unit outputs a microwave having power corresponding to setting power while frequency-modulating the microwave in a setting frequency range. The wave guide tube guides the microwave to an antenna of a chamber main body. The tuner is provided in the wave guide tube and adjusts a position of a movable plate. The demodulation unit is provided in the wave guide tube, and acquires travelling wave power and reflected wave power for each frequency. The calculation unit calculates a frequency at which a reflection coefficient, which is calculated on the basis of the travelling wave power and the reflected wave power, for each frequency becomes a minimum point as an absorption frequency.
US11569062B2
An ion implantation system includes an ion implanter containing an ion source unit and a dopant source gas supply system. The system includes a dopant source gas storage tank inside a gas box container located remotely to the ion implanter and a dopant source gas supply pipe configured to supply a dopant source gas from the dopant source gas storage tank to the ion source unit. The dopant source gas supply pipe includes an inner pipe, an outer pipe enclosing the inner pipe, a first pipe adaptor coupled to first end of respective inner and outer pipes, and a second pipe adaptor coupled to seconds end of respective inner and outer pipes opposite the first end. The first pipe adaptor connects the inner pipe to the dopant source gas storage tank and the second pipe adaptor connects the inner pipe to the ion source unit.
US11569061B2
A multibeam scanning apparatus of an embodiment is a multibeam scanning apparatus configured to emit a plurality of electron beams to a plurality of scan regions set in a matrix on an object and obtain an observation image by detecting secondary beams, the apparatus including a control circuit. Each of the scan regions includes a plurality of separated scan regions obtained by separating the each of the scan regions in a direction orthogonal to a scanning direction of the electron beams. The control circuit controls the irradiation positions of the electron beams, in two of the scan regions adjacent to each other in the scanning direction of the electron beams, such that the separated scan regions to be scanned at a same time are displaced from each other by a predetermined distance in the direction orthogonal to the scanning direction of the electron beams.
US11569057B2
According to one aspect of the present invention, a pattern inspection apparatus includes a circuit configured to perform, for each direction, filter processing on the image, using a plurality of two-dimensional spatial filter functions with different orientations; a circuit configured to extract a plurality of pixels each having a predetermined value larger than a first threshold, in pixel values each for the each direction of after the filter processing, as a plurality of outline pixel candidates through which an outline of the figure pattern passes; and a circuit configured to extract a plurality of outline pixels from the plurality of outline pixel candidates by excluding outline pixel candidates each of which has a differential value, greater than or equal to a second threshold, obtained by differentiating a pixel value of before the filter processing in a second direction orthogonal to a first direction corresponding to the predetermined value.
US11569055B2
Provided are a scanning-type X-ray source and an imaging system therefor. The scanning-type X-ray source comprises a vacuum cavity (1), wherein a cathode (2) and a plurality of anode target structures (3) are arranged in the vacuum cavity (1); a gate electrode (4) is arranged in a position, close to the cathode (2), in the vacuum cavity (1); a focusing electrode (5) is arranged in a position, close to the gate electrode (4), in the vacuum cavity (1); and a deflection coil (6) is arranged in a position, close to the gate electrode (4), at the outer periphery of the vacuum cavity (1). The scanning-type X-ray source generates electron beams by using cathode (2), controls the powering-on/off of the electron beams by the gate electrode (4), and the deflection coil (6) controls the direction of motion of the electron beams, so as to complete the switching between multiple focuses.
US11569054B2
Disclosed is a ceramic shielding apparatus including at least one shield made of a ceramic material and provided inside or outside an X-ray tube to shield radiation; and supports configured to support the shield. According to such a configuration, disadvantages of conventional shielding materials such as lead can be addressed, so that a shield apparatus having excellent shielding properties while being harmless to the human body can be provided.
US11569049B1
A combined dual-conductive key switch including a base, a cover arranged above the base, a conductive core, a mechanical-conducting component and an inductive switch which are electrically connected to a PCB respectively; and a conduction trigger block corresponding to the mechanical-conducting component and a magnet corresponding to the inductive switch are respectively arranged on the conductive core; and the conduction trigger block triggers a conduction stroke of conducting the mechanical-conducting component, which is different from a conduction stroke of conducting the inductive switch triggered by the magnet. The combined dual-conductive key switch is provided for achieving dual-conductive functions of pressing once and performing two actions for a product.
US11569037B2
A ceramic electronic component includes a body including a dielectric layer and an internal electrode, and an external electrode disposed on the body and connected to the internal electrode. The dielectric layer includes a plurality of dielectric grains, and at least one of the plurality of dielectric grains has a core-dual shell structure having a core and a dual shell. The dual shell includes a first shell surrounding at least a portion of the core, and a second shell surrounding at least a portion of the first shell, and a concentration of a rare earth element included in the second shell is more than 1.3 times to less than 3.8 times a concentration of a rare earth element included in the first shell.
US11569036B2
A dielectric film is provided. The dielectric film includes a dielectric polymer substrate having two surfaces opposite to each other and a coating layer formed on at least one of the two surfaces of the dielectric polymer substrate by chemical vapor deposition polymerization and/or irradiation polymerization. A power capacitor includes the dielectric film. A process for preparing the dielectric film is provided.
US11569018B2
A reactor includes a coil having a winding portion, and a magnetic core including a core piece having an inner core portion disposed inside the winding portion. The core piece is a compact made of a composite material that contains a magnetic powder and a resin. The reactor further includes: a first projection that is integrated with and projects from an outer peripheral face of the inner core portion, and comes into contact with an inner peripheral face of the winding portion so as to position the winding portion in a diameter direction of the winding portion, and a second projection that is integrated with and projects from the core piece at a position opposing an end face of the winding portion, and comes into contact with the end face of the winding portion so as to position the winding portion in an axial direction thereof.
US11569016B2
A coil assembly for a magnetic actuator is described, the coil assembly comprising: —a tubular coil holder (100) comprising a first (110) and second open distal end (120); —the first open distal end comprising an outer circular rim (112) and an inner circular rim (114) separated by a circular groove (116); —the second open distal end comprising an outer circular rim (122); the tubular coil holder further comprising a central circular rim (130) arranged substantially halfway between the inner circular rim of the first open distal end and the outer circular rim of the second open distal end; —a coil (140) formed of a single wire (150) the coil comprising a first coil section (142) arranged in a first winding area (144) between the inner circular rim of the first open distal end and the central circular rim, and a second coil section (146) in a second winding area (148) between the central circular rim and the outer circular rim of the second distal end; the first coil section and the second coil section being wound about the tubular coil holder in opposite directions; whereby a first end (152) and a second end (154) of the single wire are arranged in the circular groove, the inner circular rim comprising a longitudinal groove (114.1) to extend the first aid and the second end of the single wire from the circular groove to the first winding area; the central circular rim composing a longindinal groove (130.1) to extend the single wire form the first winding area to the second winding area and vice versa; —an external connection (160) comprising a first conductor (162) and a second conductor (164); whereby an end of the first conductor is electrically connected to the first end of the single wire so as to form a first electrical connection (166) arranged in the circular groove and an end of the second conductor is electrically connected to the second end of the single wire so as to form a second electrical connection (168) in the circular groove and wherein the first and second conductor extend through the outer circular rim via a longitudinal groove (112.1) of the outer circular rim.
US11569013B2
This ferrite magnet has a magnetoplumbite structure and is characterized in that, when representing the composition ratios of the total of each metal element A, R, Fe and Me with expression (1) A1-xRx(Fe12-yMey)z, the Fe2+ content (m) in the ferrite magnet is greater than 0.1 mass % and less than 5.4 mass % (in expression (1), A is at least one element selected from Sr, Ba, Ca and Pb; R is at least one element selected from the rare-earth elements (including Y) and Bi, and includes at least La, and Me is Co, or Co and Zn). The invention makes it possible to achieve a ferrite magnet with increased Br.
US11569008B1
A cable includes a first metal conductor, a first insulator, a second metal conductor and a second insulator. The first insulator includes a first arc-shaped surface. The second insulator includes a second arc-shaped surface. A distance between a central axis of the first metal conductor and a central axis of the second metal conductor is S. The first insulator and/or the second insulator are formed with a deformation surface at a position where the first insulator and the second insulator are in contact with each other. An outer diameter of a circle where the first arc-shaped surface is located and/or an outer diameter of a circle where the second arc-shaped surface is located is D, where S/D≤0.99. The cable of the present disclosure can achieve low mode conversion and improve high frequency characteristics.
US11569005B2
A cable includes a cable core including a linear filler, and a plurality of core wires for signal transmission, a shield layer covering around the cable core, and a sheath covering around the shield layer. The filler includes a first filler provided at a cable center, and a plurality of second fillers provided around the first filler to form a cross-shape with the first filler in a cross-section perpendicular to a cable longitudinal direction. The cable core is configured in such a manner that the plurality of core wires and the plurality of second fillers are spirally twisted around the first filler to be alternately arranged in a circumferential direction.
US11568992B2
A method comprises providing a pre-treatment image of a target subject to at least one deep learning model uniquely trained to predict immunotherapy treatment responses. The method further comprises generating, by a processing device, a predicted treatment response score to a treatment based on the single pre-treatment image and the at least one deep learning model. The method further comprises providing, based on the predicted treatment response score, a recommended treatment plan.
US11568988B2
Systems and methods for providing a universal platform for at-home health testing and diagnostics are provided herein. In particular, a health testing and diagnostic platform is provided to connect medical providers with patients and to generate a unique, private testing environment. In some embodiments, the testing environment may facilitate administration of a medical test to a patient with the guidance of a proctor. In some embodiments, the patient may be provided with step-by-step instructions for test administration by the proctor within a testing environment. The platform may display unique, dynamic testing interfaces to the patient and proctor to ensure proper testing protocols and accurate test result verification.
US11568986B2
Disclosed is a system for remote controlling and monitoring of at least one instrument, for example a bioprocessing instrument, said system comprising: at least one instrument to be controlled and/or monitored; at least one instrument server connected to the at least one instrument, said instrument server comprising an instrument control software; at least one gateway connected to the at least one instrument server; a transferring means provided in the at least one instrument server, said transferring means being arranged to receive information from the at least one connected instrument and forward said information to the at least one gateway; a first self-hosted web server containing a web application provided in the at least one instrument server for providing possibility to control the at least one instrument via a web browser in an instrument control web page; a publishing means provided in the at least one gateway, said publishing means being arranged to receive information from at least one instrument server and publish said information in an instrument monitoring web page; a second self-hosted web server containing a web application provided in the at least one gateway for providing possibility to monitor the at least one instrument in the instrument monitoring web page via a web browser.
US11568982B1
A computer-based system and method to assign patients to providers. In one embodiment, the invention predicts the performance of provider-patient pairs in terms of different outcome-, financial- and satisfaction-related metrics across providers using advanced machine learning methodologies to develop distinct models for each of these metrics across each of the providers using a historical database. In another embodiment, patients are assigned to providers in a batch or online manner using this information through an optimization framework that looks to maximize or minimize arbitrary combinations of the outcome-, financial-, and satisfaction-related metrics subject to practical operational constraints. In another embodiment, the invention includes logic to avoid ‘boxing’ providers and uses exploration to continuously update the profiles of providers for metrics in a manner that accounts for provider performance getting better or worse over time, and the historical database not being representative of all potential patients to be assigned by this system.
US11568979B1
One or more embodiments described herein relate to predicting, using adaptive artificial intelligence techniques, typical and aberrant physiological reactions of a patient to psychiatric counseling. Treatment plans can be determined and calculated based on previously-gathered demographic and/or biometric data, and/or modifications to treatment plans can be determined and/or implemented based on emergent recognition of reaction types, such as reclassifying reactions that would previously have been deemed typical as aberrant (or vice versa).
US11568975B2
Systems, devices, and techniques are disclosed for administering and tracking medicine to patients and providing health management capabilities for patients and caregivers. In some aspects, a method includes receiving one or more analyte values associated with a health condition of the patient user; receiving contextual data associated with the patient user obtained by the mobile computing device, where the obtained contextual data includes information associated with a meal; determining a medicine metric value associated with an amount of medicine active in the body of the patient user; autonomously calculating a dose of the medicine without input from the user based at least on the one or more analyte values, the medicine metric value, and the information associated with a meal; and continuously displaying the calculated dose of the medicine.
US11568961B2
A system and method for accelerating the calculations of free energy differences by automating FEP-path-decision-making and replacing the standard series of alchemical interpolations typically created by molecular dynamic (MD) simulations with voxelated interpolated states. A novel machine learning approach comprising a restricted variational autoencoder (ResVAE) is used which can reduce the computational-cost associated with interpolations by restricting the dimensions of a molecular latent space. The ResVAE generates a model based on flow-based transformations of a 3D-VAE latent point that is trained to maximize the log-likelihood of MD samples which enables the model to compute transformations more efficiently between molecules and also handle deletions of atoms more efficiently during iterative FEP calculation steps.
US11568955B2
A process and system for efficiently producing reference data that can be fed into a predictive model for predicting quality attribute concentrations in cell culture processes. A perfusion bioreactor is operated at pseudo-steady-state conditions and one or more attribute influencing parameters are manipulated and changed over time. As the one or more attribute influencing parameters are manipulated, one or more quality attributes are monitored and measured. In one embodiment, multiple quality attributes are monitored and measured in parallel. The quality attribute information is recorded in conjunction with the changes in the attribute influencing parameters. This information is then fed to the predictive model for propagating cell cultures in commercial processes and maintaining the cell cultures within desired preset limits.
US11568954B2
A memory apparatus and method of operation is provided. The apparatus has blocks each including non-volatile storage elements. Each of the non-volatile storage elements stores a threshold voltage representative of an element data. The apparatus also includes one or more managing circuits configured to erase at least one of the blocks in an erase operation and program the element data in a program operation. The one or more managing circuits are also configured to proactively identify ones of the blocks as potential bad blocks and selectively apply stress to the ones of the blocks identified as the potential bad blocks and determine whether the potential bad blocks should be retired from the erase and program operations and put in a grown bad block pool or released to a normal block pool used for the erase and program operations based on a judgment after selectively applying the stress.
US11568951B2
Systems and methods of screening memory cells by modulating bitline and/or wordline voltage. In a read operation, the wordline may be overdriven or underdriven as compared to a nominal operating voltage on the wordline. In a write operation, the one or both of the bitline and wordline may be overdriven or underdriven as compared to a nominal operating voltage of each. A built-in self test (BIST) system for screening a memory array has bitline and wordline margin controls to modulate bitline and wordline voltage, respectively, in the memory array.
US11568948B2
A memory circuit includes a non-volatile memory cell, a sense amplifier coupled to the non-volatile memory cell, and configured to generate a first output signal, and a detection circuit coupled to the sense amplifier and the non-volatile memory cell. The detection circuit is configured to latch the first output signal and disrupt a current path between the non-volatile memory cell and the sense amplifier.
US11568947B2
A memory device includes a memory cell array including a plurality of memory cells connected to a plurality of word lines. The memory device also includes a peripheral circuit configured to perform a plurality of program loops to program memory cells, among the plurality of memory cells, connected to a selected word line among the plurality of word lines. The memory device further includes control logic configured to control the peripheral circuit to set a step voltage based on the number of turned off memory cells among the selected memory cells and then apply a program voltage, to which the step voltage is added, to the selected word line in a next program loop, during a verify operation of a program operation and the verify operation included in each of the plurality of program loops.
US11568942B2
The abstract of the disclosure was objected to because of informality (e.g. format, reference to figures, etc.). See MPEP § 608.01 (b). Please amend the abstract to recite: Non-volatile memory device may include at least an array of memory cells. The non-volatile memory cells may include associated decoding and sensing circuitry and a memory controller. Methods for checking the erasing phase of a non-volatile device may include performing a dynamic erase operation of at least a memory block and storing in a dummy row at least an internal block variable of the dynamic erase operation and/or a known pattern.
US11568940B2
Memory having a controller configured to cause the memory to determine a respective raw data value of a plurality of possible raw data values for each memory cell of a plurality of memory cells, count occurrences of each raw data value for a first set of memory cells of the plurality of memory cells, store a cumulative number of occurrences for each raw data value, determine a plurality of valleys of the stored cumulative number of occurrences for each raw data value with each valley corresponding to a respective raw data value of the plurality of possible raw data values, and, for each memory cell of a second set of memory cells of the plurality of memory cells, determine a data value for that memory cell in response to the raw data value for that memory cell and the respective raw data values of the plurality of valleys.
US11568935B2
A semiconductor storage device including an output pad, a first circuit connected to the output pad, a second circuit connected to the first circuit, a third circuit configured to output a first setting signal for controlling the first circuit accordance with a characteristic variation of the first circuit, and a fourth circuit configured to generate a second setting signal for controlling the second circuit in accordance with the first setting signal received from the third circuit and output the second setting signal to the second circuit.
US11568930B2
Memory devices may have an array of elements in two or more dimensions. The memory devices use multiple access lines arranged in a grid to access the memory devices. Memory cells located at intersections of the access lines in the grid. Drivers are used for each access line and configured to transmit a corresponding signal to respective memory cells of the plurality of memory cells via a corresponding access line. The memory devices uses an electrical distance calculator to determine an electrical distance from a memory cell to a respective driver of the plurality of drivers. The memory device also uses a driver modulator to modulate the corresponding signal based at least in part on the electrical distance.
US11568925B2
A memory device is disclosed. The memory device includes a memory array including a first memory cell arranged in a first row and a first column and a second memory cell arranged in the first row and a second column next to the first column. The first memory cell is configured to perform a write operation in response to a first write signal transmitted through a first write word line. The second memory cell is configured to perform the write operation in response to a second write signal transmitted through a second write word line. The second write word line is separated from and next to the first write word line. The first write signal and the second write signal have different logic values.
US11568913B2
Methods, systems, and devices for voltage adjustment based on, for example, pending refresh operations are described. A memory device may periodically perform refresh operations to refresh volatile memory cells and may at times postpone performing one or more refresh operations. A memory device may determine a quantity of pending (e.g., postponed) refresh operations, such as by determining a quantity of refresh intervals that have elapsed without receiving or executing a refresh command, among other methods. A memory device may pre-emptively adjust (or cause to be adjusted) a supply voltage associated with the memory device or memory device component based on the quantity of pending refresh operations to prepare for the current demand associated with the performing the one or more pending refresh operations. For example, the memory device may increase a supply voltage associated with one or more components to prepare for performing multiple pending refresh operations.
US11568912B2
A memory cell includes a write bit line, a write transistor and a read transistor. The write transistor is coupled between the write bit line and a first node. The read transistor is coupled to the write transistor by the first node. The read transistor includes a ferroelectric layer. The write transistor is configured to set a stored data value of the memory cell by a write bit line signal that adjusts a polarization state of the read transistor. The polarization state corresponds to the stored data value.
US11568909B2
An example article includes a composite free layer and a conductive channel. The composite free layer includes a high-anisotropy ferromagnetic layer, a non-magnetic transition metal layer adjacent to the high anisotropy ferromagnetic layer, and an ultra-low damping magnetic insulator. The non-magnetic transition metal layer is between the ultra-low damping magnetic insulator and the high-anisotropy ferromagnetic layer. An example spin-orbit torque (SOT) stack may include the example article. Techniques for forming and switching example articles and SOT stacks are described.
US11568908B2
A semiconductor device includes a memory array arranged in a matrix, a plurality of word lines provided corresponding to memory cell rows, a word driver for driving one of the plurality of word lines, a plurality of row select lines connected to the word driver, and a row decoder for outputting a row select signal to the plurality of row select lines based on input row address information. According to the embodiment, the semiconductor device can detect a failure of the address decoder in a simple method.
US11568904B1
A memory is provided that includes a write multiplexer, which multiplexes among a plurality of bit line columns. The multiplexer includes a positive boost circuit that applies a positive boost to a voltage at the gates of transistors to strengthen an on state of those transistors. The positive boosting may be in addition to, or instead of, negative boosting at a write driver circuit.
US11568903B2
A memory device includes a memory cell array, a page buffer circuit, and a counting circuit. The page buffer circuit includes a first and second page buffer columns connected to the memory cell array. The first page buffer column includes a first page buffer unit and the second page buffer column includes a second page buffer unit in a first stage. The first page buffer unit performs a first sensing operation in response to a first sensing signal, and the second page buffer unit performs a second sensing operation in response to a second sensing signal. The counting circuit counts a first number of memory cells included in a first threshold voltage region from a result of the first sensing operation, and counts a second number of memory cells included in a second threshold voltage region from a result of the second sensing operation.
US11568898B2
A multimedia compositing method comprises selecting, from a plurality of video clip templates stored in a database of the computing system, a first video clip template that includes frames that depict a first object template moving in a first manner. The method further includes selecting, from a plurality of static images stored in the database of the computing system, a first static image that depicts a surface of a first object associated with the first object template; and overlaying the first static image over the first object template depicted in the first video clip template, respectively, to thereby provide a first rendered video clip associated with the first video clip template that includes frames that depict the first object moving in the particular manner.
US11568887B1
Various examples are provided for surveillance of an audio stream. In one example, a method includes identifying presence or absence of a sound type of interest at a location during a time period; selecting the sound type from a library of sound type information to provide a collection of sound type information; incorporating the collection on a device proximate to the location; acquiring an audio stream from the location by the device to provide a locational audio stream; analyzing the locational audio stream to determine whether a sound type in the collection is present in the audio stream; and generating a notification to a user or computer if a sound type in the collection is present. The device can acquire and process the audio stream. In another example, a bulk sound type information library can be generated by identifying sound types of interest including them based upon a confidence level.
US11568886B2
Methods, systems and computer program products are provided for determining acoustic feature vectors of query and target items in a first vector space, and mapping the acoustic feature vectors to a second vector space having a lower dimension. The distribution of vectors in the second vector space can then be used to identify items from the same songs, and/or items that are complementary. A mapping function is trained using a machine learning algorithm, such that complementary audio items are closer in the second vector space than the first, according to a given distance metric.
US11568876B2
Provided in embodiments of the present application are a method and apparatus for user registration and electronic device. The method includes: after obtaining a wake-up voice of a user each time, extracting and storing a first voiceprint feature corresponding to the wake-up voice; clustering the stored first voiceprint features to divide the stored first voiceprint features into at least one category, wherein, each of the at least one category includes at least one first voiceprint feature which belongs to the same user; assigning one category identifier to each category; storing each category identifier in correspondence to at least one first voiceprint feature corresponding to this category identifier to complete user registration. The embodiments of the present application can simplify the user operation and improve the user experience.
US11568873B2
Devices for preventing unintended conversation from being recorded by a voice activated assistant device/application (VAD) are disclosed. The device is contoured to fit over a functional surface of a VAD that typically includes a plurality of microphones and control buttons. The device covers the microphones and uses its own microphones to monitor for an authorization input signal. In an embodiment, the devices uses speakers aligned with and opposing each VAD microphone. The device emits interfering audible signals during this mode of operation. Once the device senses an authorization input, the device decouples its speakers from the interfering audible signal and instead allows the device microphones to pass through to the VAD. During this mode, the VAD is in normal operation.
US11568872B2
An information processing method, a system, an apparatus, an electronic device and a storage medium, where the method is applied to a client, and includes: receiving a transcript and a sentence identifier of the transcript sent by a service server; reading a local sentence identifier, and when the received sentence identifier is the same as the local sentence identifier, updating a displayed caption content corresponding to the local sentence identifier with the transcript. When the received sentence identifier of the client is the same as the local sentence identifier, the displayed caption content is replaced with the received transcript.
US11568871B1
An interactive media system enables creation, editing, and presentation of voice-driven interactive media content. The interactive media content may include prompts for user input via voice, manual input, or gestures. In the case of an audio input, the interactive media player application obtains a text string representing the spoken phrases and matches the text string against a set of expected values corresponding to different predefined responses and each associated with a different possible action. Based on the matching of the phrase to an expected value, the interactive media player application dynamically selects and performs the action associated with the matching response. The action may comprise, for example, transitioning to playback of a different media object (e.g., a second video segment) and/or causing some other functionality programmatically accessible by the interactive media player application to occur.
US11568870B2
Implementations relate to an automated assistant that can respond to communications received via a third party application and/or other third party communication modality. The automated assistant can determine that the user is participating in multiple different conversations via multiple different third party communication services. In some implementations, conversations can be processed to identify particular features of the conversations. When the automated assistant is invoked to provide input to a conversation, the automated assistant can compare the input to the identified conversation features in order to select the particular conversation that is most relevant to the input. In this way, the automated assistant can assist with any of multiple disparate conversations that are each occurring via a different third party application.
US11568863B1
Devices and techniques are generally described for application determination in speech processing. Input data corresponding to a spoken utterance may be received. Speech recognition processing may be performed on the input data to generate text data. A machine learning encoder may generate a vector representation of the input data. A first binary classifier may determine a first probability that the input data corresponds to a first speech-processing application. A second binary classifier may determine a second probability that the input data corresponds to a second speech-processing application. A selection between the first speech-processing application and the second speech-processing application may be made based at least in part on the first probability and the second probability.
US11568862B2
A system and method for training a virtual assistant to recognize and learn new context for known terms is presented. The method includes receiving a natural language input, corresponding to at least one of a desired intent and a desired entity, at a natural language processor. The method involves scoring known intents based on the natural language input to generate an intent confidence score for each known intent, and scoring known entities based on the natural language input to generate an entity confidence score for each known entity. The method involves comparing the intent confidence scores and entity confidence scores to a threshold value, and determining that the natural language input does not correspond to at least one of the known intents and the known entities based on the comparing. Finally, at least one of a new intent and a new entity are determined based on the natural language input.
US11568861B2
In various examples, systems and methods of the present disclosure combine open and closed dialog systems into an intelligent dialog management system. A text query may be processed by a natural language understanding model trained to associate the text query with a domain tag, intent classification, and/or input slots. Using the domain tag, the natural language understanding model may identify information in the text query corresponding to input slots needed for answering the text query. The text query and related information may then be passed to a dialog manager to direct the text query to the proper domain dialog system. Responses retrieved from the domain dialog system may be provided to the user via text output and/or via a text to speech component of the dialog management system.
US11568860B2
A system and method for federated, context-sensitive, acoustic model refinement comprising a federated language model server and a plurality of edge devices. The federated language model server may comprise one or more machine learning models trained and developed centrally on the server, and distribute these one or more machine learning models to edge devices wherein they may be operated locally on the edge devices. The edge devices may gather or generate context data that can be used by a speech recognition engine, and the local language models contained therein, to develop adaptive, context-sensitive, user-specific language models. Periodically, the federated language model server may select a subset of edge devices from which to receive uploaded local model parameters, that may be aggregated to perform central model updates wherein the updated model parameters may then be sent back to edge devices in order to update the local model parameters.
US11568853B2
Disclosed is a voice recognition method and apparatus using artificial intelligence. A voice recognition method using artificial intelligence may include: generating a utterance by receiving a voice command of a user; obtaining a user's intention by analyzing the generated utterance; deriving an urgency level of the user on the basis of the generated utterance and prestored user information; generating a first response in association with the user's intention; obtaining main vocabularies included in the first response; generating a second response by using the main vocabularies and the urgency level of the user; determining a speech rate of the second response on the basis of the urgency level of the user; and outputting the second response according to the speech rate by synthesizing the second response to a voice signal.
US11568851B2
An active noise reduction device includes: a reference signal inputter; an adaptive filter; a μ adjuster that calculates a step size parameter by multiplying a reference value for the step size parameter by a correction coefficient that is proportional to a reciprocal of a first representative input value that indicates a signal level of the reference signal in a first predetermined period; a filter coefficient updater that updates adaptive filter coefficient W by using the step size parameter calculated; and a determiner. When it is determined that a second representative input value is greater than a threshold value, at least one of the adaptive filter or the filter coefficient updater is transitioned from a normal state to a restriction state in which an effect of reducing noise is smaller than in the normal state.
US11568849B2
Various aspects include a wearable audio device having active noise reduction (ANR), where the ANR device includes: a feedback microphone; an electroacoustic transducer; and a feedback compensator configured to output a noise reduction signal to the electroacoustic transducer in response to a feedback signal from the feedback microphone, wherein the feedback compensator includes a tunable filter that modulates a loop gain in response to an adverse low frequency event being detected in the noise reduction signal outputted from the tunable filter, wherein the tunable filter is configured to maintain a substantially similar loop gain shape near a low frequency cross-over as the low frequency cross-over changes during loop gain modulation.
US11568847B2
An absorbing system for disrupting short and long sound energy wavelengths. The absorbing system comprises a two hanging bars, a plurality of hanging straps, a suspended mass assembly. The suspended mass assembly hangs from the two hanging bars with the plurality of hanging straps. The suspended mass assembly comprises a suspended absorbing mass. The suspended absorbing mass comprises a cover and an absorptive portion. The cover encases and holds the absorptive portion. The suspended absorbing mass comprises a plurality of depths between a top point and a bottom point. The plurality of depths comprise a minimum depth and a maximum depth.
US11568846B2
Disclosed herein are implementations of acoustic metamaterial structures and geometric configurations of acoustic metamaterial structures which produce sound amplification or cancellation. An acoustic metamaterial device for using with a sound source includes a plurality of fins, where each fin is made from a very dense material with respect to air which creates the anisotropic properties of the acoustic metamaterial device, where each fin has a length dimension, a width dimension, and a thickness dimension, the width and length dimension being equal and substantially perpendicular to the direction of sound wave propagation from the sound source, where each fin is sized different from other fins along the width and length dimension, and where the plurality of fins are interconnected such that planes formed by the width and length dimension of each fin faces perpendicular to the sound wave propagation direction from the sound source.
US11568840B2
Multi tonal cymbals are provided having a metallic structure, the structure having a plurality of radial cuts therein defining a plurality of segments, each of the plurality of segments providing a tone different than another of the plurality of segments. The different tone may be achieved with radial cuts having different dimensions and/or placed on different locations on the cymbal to create different shaped/sized segments.
US11568839B2
A performance support device includes a first surface, a second surface, and a flow path. The first surface is configured to face a blow hole of an air reed instrument. The second surface is configured to be displaced from the blow hole. The flow path penetrates from the first surface to the second surface and that is configured to flow an exhaled breath toward the blow hole. A cross-sectional area of the flow path at the first surface is smaller than a cross-sectional area of the flow path at a position displaced from the first surface toward the second surface.
US11568836B2
A system may render glyphs based on stored textures without loss of quality at subpixel scales. The system may determine a content of a pixel of a display corresponds to a glyph, determine a subpixel alignment offset of a specified screen coordinates for the glyph with respect to the pixels of the display, based on the subpixel alignment offset, select one or more versions of the glyph from a plurality of versions of the glyph, a first version of the glyph of the plurality of versions of the glyph having a corresponding first subpixel alignment offset and a second version of the glyph of the plurality of versions of the glyph having a corresponding second subpixel alignment offset, and generate a display version of the pixel based on the selected one or more versions of the glyph and the subpixel alignment offset of the specified screen coordinates.
US11568831B2
An output circuit includes a first switch that outputs a positive voltage signal received via a first node when in an ON state, a second switch that outputs a negative voltage signal received via a second node when in an ON state, third and fourth switches that set the first and second nodes to a reference power supply voltage when in an ON state, a first follower circuit that generates, as a gate voltage, a voltage signal following and being in phase with a voltage signal of the first node through source follower operation and supplies the gate voltage to a gate of the first switch, and a second follower circuit that generates, as a gate voltage, a voltage signal following and being in phase with a voltage signal of the second node through source follower operation and supplies the gate voltage to a gate of the second switch.
US11568830B2
It is an object to provide a display device which can favorably display a image without delayed or distorted signals. The display device includes a first gate driver and a second gate driver. The first gate driver and the second gate driver each include a plurality of flip flop circuits and a plurality of transfer signal generation circuits. Both the flip flop circuit and the transfer signal generation circuit are circuits which output a signal inputted to a first input terminal with a half clock cycle delay. In addition, an output terminal of the transfer signal generation circuit is directly connected to a first input terminal of the flip flop circuit in the next stage. Therefore, delay and distortion of the signal which is inputted from the transfer signal generation circuit to the flip flop circuit can be reduced.
US11568828B2
A transceiver system includes a transmitter including a first driving signal output unit and a second driving signal output unit and a receiver including a first sensing signal input unit and a second sensing signal input unit. A first channel includes a first input/output line and a second input/output line that connect the first driving signal output unit and the first sensing signal input unit, and are configured to transfer signals having different phases; a second channel including a third input/output line and a fourth input/output line that connect the second driving signal output unit and the second sensing signal input unit, and are configured to transfer signals having different phases; and a first compensation capacitor including a first electrode electrically connected to the second input/output line and a second electrode electrically connected to the third input/output line.
US11568821B2
A array substrate includes: a first sub-pixel, a second sub-pixel and a dummy sub-pixel that are located in a display region; a luminance attenuation degree of the first sub-pixel is greater than that of the second sub-pixel along a target direction; and a light-emitting layer of the dummy sub-pixel is configured to emit light having a color the same as that of light emitted by the first sub-pixel. As the dummy sub-pixel further includes the connecting electrode electrically connecting the pixel circuit with the light-emitting layer of the dummy sub-pixel the luminance attenuation of the first sub-pixel may be effectively compensated by driving the dummy sub-pixel to emit light.
US11568820B2
A display panel, a display device, and a drive method are provided. The display panel includes a plurality of sub-pixel units arranged in an array and a gate drive circuit, and the array includes N rows. The gate drive circuit includes a plurality of cascaded shift register units and N+1 output terminals arranged in sequence, each of the plurality of cascaded shift register units is configured to output a gate scan signal for driving at least two rows of sub-pixel units in the N rows of the array to work; pixel drive circuits of an (n)-th row of sub-pixel units are connected to an (n)-th output terminal of the gate drive circuit to receive the gate scan signal as a scan drive signal, and sensing circuits of the (n)-th row of sub-pixel units are connected to an (n+1)-th output terminal of the gate drive circuit.
US11568810B2
According to one embodiment, a display apparatus includes a plurality of semiconductor layers, a first insulation film, a first conductive layer, a second insulation film and a display element includes a second conductive layer. The first conductive layer and the second conductive layer are opposed to each other to form a capacitance unit.
US11568791B2
The present disclosure discloses a shift register, a gate driving circuit and a display device. The shift register includes a display pre-charge reset circuit, a sensing cascade circuit, a sensing pre-charge reset circuit, a pull-down control circuit and an output circuit, where the display pre-charge reset circuit, the sensing cascade circuit and the sensing pre-charge reset circuit share the same pull-down control circuit and the same output circuit, the output circuit is coupled to at least one signal output terminal, the output circuit includes output sub-circuits in one-to-one correspondence with the at least one signal output terminal, and each output sub-circuit is configured to write a driving clock signal into the corresponding signal output terminal in a display output stage and a sensing output stage in response to a control of a voltage of a pull-up node in an effective level state.
US11568789B2
Display panel redundancy schemes and methods of operation are described. In an embodiment, and display panel includes an array of drivers (e.g. microdrivers), each of which including multiple portions to independently receive control and pixel bits. In an embodiment, each driver portion is to control a group of redundant emission elements.
US11568782B2
A method of driving a display panel that includes first and second display-regions includes: determining maximum luminance data among first data including first red data, first green data, and first blue data for the first display-region, calculating a threshold gray-level based on a luminance gain, a gray-level of the maximum luminance data, and a gamma value for the display panel, selecting a smaller value between the threshold gray-level and a maximum gray-level as a gain determination gray-level, calculating a compensation gain obtained by dividing the gain determination gray-level by the gray-level of the maximum luminance data, generating first compensated data by applying the compensation gain to the first data, displaying a first-image in the first display-region based on the first compensated data, and displaying a second-image in the second display-region based on second data including second red data, second green data, and second blue data for the second display-region.
US11568779B2
A method for operating a visual display apparatus is specified. The apparatus comprises a first optoelectronic semiconductor component configured to emit electromagnetic radiation of a first wavelength and comprising a first intrinsic switch-on delay. The apparatus comprises a second optoelectronic semiconductor component configured to emit electromagnetic radiation of a second wavelength and comprising a second intrinsic switch-on delay. The second wavelength is different from the first wavelength. The first semiconductor component is operated with a first operating current according to a first actuation signal. The second semiconductor component is operated with a second operating current according to a second actuation signal. The first and/or the second actuation signal comprise a delay clock signal selected such that emissions of electromagnetic radiation from the first and second semiconductor components comprise a switch-on delay with respect to each other that is smaller than a difference of the first and second intrinsic switch-on delays.
US11568773B2
A display device having a wedge shape body for displaying indicia on a dashboard of a vehicle between a windshield and a dashboard. The wedge shape body having a front surface, a lower surface, a rear surface and a pair of sides. The front surface includes indicia displayed thereon. The lower surface of the wedge shape body is a gripping surface that prevents slippage of the display device. Various items can be secured to the rear surface of the display device, such as a mobile device holder, a deodorant and the like.
US11568772B2
One embodiment includes a display system for use on the exterior of a vehicle having a display, a vehicle speed sensor, and a processor coupled to the vehicle speed sensor. The processor is configured to implement one of three operational modes of the display system based on the speed and state of the vehicle: a first operational mode, wherein a first content, including identification and/or registration information of the vehicle is rendered on the display at a first power consumption level; a second operational mode, wherein a second content, including a message, identification and/or registration information of the vehicle, is rendered on the display; and a third operational mode, wherein content is rendered on the display at a second power consumption level less than the first power consumption level.
US11568764B2
Techniques regarding a reclosure label are provided. For example, one or more embodiments described herein can comprise a reclosure label that includes a flap portion connected to a label base. Further, the flap portion can comprise a rigid material layer. Additionally, the reclosure label can comprise a flexible material layer that is integral with the flap portion and the label base and forms a hinge portion that enables the flap portion to pivot with respect to the label base. Moreover, the rigid material layer can be absent from the hinge portion.
US11568751B2
A dynamic platoon formation method under a mixed autonomous vehicles flow is provided. The method implements dynamic platooning by taking into account a fact that a traffic flow is a mixture of HDVs and CAVs. The dynamic platoon formation method includes: selecting lanes as candidate lanes in turn; constructing a decision tree from a current moment to a moment of platoon formation according to the following process: constructing a decision space for each CAV, generating a compatible decision set, selecting and executing a compatible decision, and updating location and speed information of all vehicles; and selecting, according to a predetermined index (including TTP and DTP), an optimal decision sequence as a decision sequence corresponding to the candidate lane.
US11568750B2
An approach is provided for estimating false positive reports of detectable road events. For example, the approach involves determining a first number of road reports from a fleet of vehicles, and operating in a geographic area during a first time period and a second number of road reports from the fleet operating in the geographic area during a second time period. The first number of road reports and the second number of reports relate to a road event detected by vehicle sensors. The approach further involves computing a difference between the first number and the second number. The approach further involves determining a percentage of defective vehicles in the fleet based on the difference. The defective vehicles are defective with respect to a detection of the road event. The approach further involves providing the percentage of defective vehicles as an output.
US11568744B2
Provided herein is a system and method for a vehicle system on a vehicle. The system comprises a server comprising sensor data of stop points, one or more processors, and a memory storing instructions that, when executed by the one or more processors, cause the system to perform: determining, from the stop points, one or more available stop points; selecting, from the one or more available stop points, a stop point based on a criteria; and stopping the vehicle at the selected stop point.
US11568739B2
A multiply redundant safety system that protects humans and assets while transfer(s)/fueling of on road/off road, rail, marine, aircraft, spacecraft, rockets, and all other vehicles/vessels utilizing Compressed and or Liquefied Gas Fuels/compound(s). Utilizing Natural Gas Chemical Family of Hydrogen/Propane/ethane/ammonia/and any mixtures along with or with out oxidizer(s), such as Liquefied Oxygen, Oxygen Triplet (O3)/ozone/hydrogen peroxide/peroxide/solid oxidizer(s) one or more processors, utilizing Artificial Intelligence techniques/machine learning in combination with one or more sensors; in combination with one or more micro switches/actuator(s) combine to detect any leaks/fire(s)/or explosion hazards/vehicle motion/arc's, spark(s)/and other hazards for quickly mitigating/locking out/stopping fueling/gas/transfers/vehicle releasing system(s).
US11568719B2
After an installation of an apparatus, although a state confirmation is necessary, if a display having a high display capability is mounted to the apparatus to facilitate checking, the apparatus becomes large. Further, although it is considered that a terminal such as a personal computer is connected to an apparatus to display state information, when the apparatus is installed in a high place or a narrow gap, the connection is difficult. An apparatus is provided which includes a storage unit that stores state information on a plurality of types of states, a switching unit that switches a to-be-output state from among the plurality of types of states in response to receiving a switching operation by a user, an identification information output unit that outputs a first indication for identifying a type of a to-be-output state, and a state information output unit that outputs state information on a to-be-output state.
US11568716B1
A game method and system involving distributing a plurality of cards to participating players, receiving player selections to divide the cards into a plurality of final hands with each final hand being associated by the player with a preset designation, comparing the ranks of the final hands to determine a point total for each player and awarding an additional amount of points to each player having the highest ranked hand of any player for each of the preset designations.
US11568708B2
A gaming machine includes a video display mounting configuration, such as for mounting a secondary video display to a base cabinet having a first or primary video display. The mounting comprises connectors on a display frame which drop into mounts of a display support. The mounting may include a locking mechanism. An alignment configuration is also provided, such as for aligning different gaming machine components such as two video displays and/or light rings, trim or the like, relative to one another in three dimensions.
US11568702B2
Vending machines for storing and dispensing products to consumers in a space-efficient manner. A vending machine may include a product compartment, a product storage system, a support structure, a dispensing port, and a product delivery system. The support structure may elevate the product compartment and form a void beneath the product compartment. Other structures may occupy the void beneath the product compartment, or humans may walk through the void beneath the product compartment. A product may be automatically moved from the product compartment to the dispensing port using the product delivery system.
US11568700B2
A sheet processing apparatus in the present invention operates in a self-service mode, in which a user does not receive operation support provided by an operation assistant, and a non-self-service mode, in which the user receives the operation support. The sheet processing apparatus includes an inlet that takes in sheets in a deposit process, a transport section that transports the sheets taken in from the inlet, storage sections that store the sheets transported by the transport section, and a control section that causes the transport section in such a way as to transport the sheets to the storage sections on a basis of storage conditions for storing the sheets in the storage sections. The control section changes the storage conditions for at least one of the storage sections between the self-service mode and the non-self-service mode.
US11568698B2
A media storage bin has a guide member mounted via a hinge adjacent to a wall of an enclosure and a second free end. The guide member directs inserted media items downward and pivots around an axis of the hinge. A base plate is mounted below the guide member in the enclosure and is arranged to hold a stack of inserted media items on a top surface thereof. A motor is coupled to move the base plate up and down within the enclosure. A controller is coupled to control movement of the motor and is configured to provide signals to the motor to move the base plate to a predetermined home position adjacent to the guide member upon startup and move the base plate upward to compress any deformed inserted media items on the base plate until an input feedback signal reaches a predetermined level.
US11568692B2
Aspects of the invention are directed towards a system and a method for activating a privacy status of a lock. One or more embodiments of the invention describe the method comprising steps of capturing activity information of a user by a user device. The method also describes steps of analyzing the captured activity information and determining a busy status of the user based on the analysis. The method further describes steps of transmitting the busy status of the user to a lock for activating a privacy status of the lock.
US11568689B2
The present disclosure provides systems and methods to obtain feedback descriptive of autonomous vehicle failures. In particular, the systems and methods of the present disclosure can detect that a vehicle failure event occurred at an autonomous vehicle and, in response, provide an interactive user interface that enables a human located within the autonomous vehicle to enter feedback that describes the vehicle failure event. Thus, the systems and methods of the present disclosure can actively prompt and/or enable entry of feedback in response to a particular instance of a vehicle failure event, thereby enabling improved and streamlined collection of information about autonomous vehicle failures.
US11568688B2
A system is described that can include a first database, a simulator, and a second database. The first database can store data indicating operation of at least one module within a computing device of an autonomous vehicle. The simulator can receive the stored data from the first database. The simulator can generate, based on the received data, a simulation of the operation of the at least one module. The simulator can identify at least one portion of the simulation that indicates a deviation between the collected data and the simulated operation of the autonomous vehicle. The simulator can analyze the at least one portion of the simulation to generate metrics for the at least one portion of the simulation. The metrics can be used to avoid another deviation between the collected data and the simulated operation of the autonomous vehicle. The second database can store the metrics.
US11568682B2
Techniques are provided for recognition of activity in a sequence of video image frames that include depth information. A methodology embodying the techniques includes segmenting each of the received image frames into a multiple windows and generating spatio-temporal image cells from groupings of windows from a selected sub-sequence of the frames. The method also includes calculating a four dimensional (4D) optical flow vector for each of the pixels of each of the image cells and calculating a three dimensional (3D) angular representation from each of the optical flow vectors. The method further includes generating a classification feature for each of the image cells based on a histogram of the 3D angular representations of the pixels in that image cell. The classification features are then provided to a recognition classifier configured to recognize the type of activity depicted in the video sequence, based on the generated classification features.
US11568680B2
Systems for detecting when a person exhibits a smile with therapeutic benefits including a facial expression detection device and a system processor. The facial expression detection device is configured to acquire facial expression data. The system processor is in data communication with the facial expression detection device and is configured to execute stored computer executable system instructions. The computer executable system instructions include the steps of receiving facial expression parameter data establishing target facial expression criteria, receiving current facial expression data from the facial expression detection device, comparing the current facial expression data to the target facial expression criteria of the facial expression parameter data, and identifying whether the current facial expression data satisfies the target facial expression criteria. The target facial expression criteria define a smile with therapeutic benefits.
US11568676B2
An information processing system includes a vehicle, and a server communicable with the vehicle. The vehicle includes a first acquisition unit configured to acquire first vital information on a user who boards the vehicle. The vehicle is configured to transmit to the server the first vital information on the user acquired with the first acquisition unit. The server is configured to prestore first vital information and settlement information on a registered user, determine whether or not the user is the registered user based on the first vital information on the user received from the vehicle and the first vital information on the registered user, and execute, when determining that the user is the registered user, a settlement process based on the settlement information on the registered user.
US11568669B2
Provided are an ultrasonic fingerprint identification circuit, a driving method thereof, and a display device. The ultrasonic fingerprint identification circuit comprises fingerprint identification units each including an ultrasonic fingerprint identification sensor connected to a first node; a control module connected to a composite signal line, a first control signal line and the first node and configured to provide a reset potential to the first node and to provide a pull-up potential to the first node in response to a first level provided by the composite signal line; a reading module connected to a second control signal line, the first node and a reading signal line, and configured to read a detection signal of the first node. The first control signal line connected to one fingerprint identification unit is reused as the second control signal line connected to another fingerprint identification unit.
US11568654B2
Provided is an object recognition device for performing object recognition on a field of view (FoV). The object recognition device includes a light detection and ranging (LiDAR) data acquisition module configured to acquire data for the FoV from a sensor configured to project the FoV with a laser and receive reflected light, and a control module configured to perform object recognition on an object of interest in the FoV using an artificial neural network, wherein the control module includes a region of interest extraction module configured to acquire region of interest data based on acquired intensity data for the FoV, and an object recognition module configured to acquire object recognition data using an artificial neural network, and recognize the object of interest for the FoV.
US11568653B2
System and techniques for vehicle environment modeling with a camera are described herein. A device for modeling an environment comprises: a hardware sensor interface to obtain a sequence of unrectified images representative of a road environment, the sequence of unrectified images including a first unrectified image, a previous unrectified image, and a previous-previous unrectified image; and processing circuitry to: provide the first unrectified image, the previous unrectified image, and the previous-previous unrectified image to an artificial neural network (ANN) to produce a three-dimensional structure of a scene; determine a selected homography; and apply the selected homography to the three-dimensional structure of the scene to create a model of the road environment.
US11568646B2
A non-immersive virtual reality (NIVR) method includes receiving sets of images of a first user and a second user, each image from the sets of images being an image of the associated user taken at a different angle from a set of angles. Video of the first user and the second user is received and processed. A first location and a first field of view are determined for a first virtual representation of the first user, and a second location and a second field of view are determined for a second virtual representation of the second user. Frames are generated for video planes of each of the first virtual representation of the first user and the second virtual representation of the second user based on the processed video, the sets of images, the first and second locations, and the first and second fields of view.
US11568645B2
An electronic device and a controlling method thereof are provided. A controlling method of an electronic device according to the disclosure includes: performing first learning for a neural network model for acquiring a video sequence including a talking head of a random user based on a plurality of learning video sequences including talking heads of a plurality of users, performing second learning for fine-tuning the neural network model based on at least one image including a talking head of a first user different from the plurality of users and first landmark information included in the at least one image, and acquiring a first video sequence including the talking head of the first user based on the at least one image and pre-stored second landmark information using the neural network model for which the first learning and the second learning were performed.
US11568641B1
In one embodiment, a computing system may receive, from a first electronic device associated with a first user, a first request to generate a link associated with an artificial reality application and an action to be performed by the artificial reality application. The computing system may then generate a link to instructions that are executable on an artificial reality device to cause the artificial reality device to launch the artificial reality application and perform the action. The computing system may then receive, from a second electronic device associated with a second user, an indication that the second user activated the link on the second electronic device, and send the instructions associated with the link to an artificial reality device associated with the second user to cause the artificial reality device associated with the second user to launch the artificial reality application and perform the action.
US11568638B2
A method can include identifying a geolocation of an object in an image, the method comprising receiving data indicating a pixel coordinate of the image selected by a user, identifying a data point in a targetable three-dimensional (3D) data set corresponding to the selected pixel coordinate, and providing a 3D location of the identified data point.
US11568637B2
The present disclosure provides a UAV video aesthetic quality evaluation method based on multi-modal deep learning, which establishes a UAV video aesthetic evaluation data set, analyzes the UAV video through a multi-modal neural network, extracts high-dimensional features, and concatenates the extracted features, thereby achieving aesthetic quality evaluation of the UAV video. There are four steps, step one to: establish a UAV video aesthetic evaluation data set, which is divided into positive samples and negative samples according to the video shooting quality; step two to: use SLAM technology to restore the UAV's flight trajectory and to reconstruct a sparse 3D structure of the scene; step three to: through a multi-modal neural network, extract features of the input UAV video on the image branch, motion branch, and structure branch respectively; and step four to: concatenate the features on multiple branches to obtain the final video aesthetic label and video scene type.
US11568636B2
A reflective cable system for a geophysical survey system includes a reflective cable that includes a conductive wire surrounded by an electrically insulating sheath and an exterior surface. The reflective cable includes reflective material that is on or visible through the exterior surface and that is configured to reflect a complete spectrum of light provided by a light source back to the light source. The reflective cable system also includes a connector electrically coupled to at least one end of the reflective cable and configured to couple to a geophysical survey system. The reflective cable may be used to locate the reflective cable in a physical environment and used to determine a position of the reflective cable using lidar or photogrammetry for generating geophysical survey models.
US11568635B2
An apparatus for recording license plates of vehicles travelling on a road having several adjacent lanes comprises a vehicle classification sensor configured to detect a predetermined shape characteristic of a vehicle or group of vehicles. The apparatus further comprises at least one camera mounted at an elevated point beside one of the lanes and having an angle of aperture covering at least one of said lanes, each lane covered by at least one camera. The vehicle classification sensor is configured to, upon detecting the predetermined shape characteristic on a lane, trigger the camera that covers the lane the predetermined shape characteristic is detected on to record an image of a license plate on the back of the vehicle or group's leading vehicle, respectively, for which the predetermined shape characteristic is detected. The triggered camera is of a lane either adjacent to or at least one lane apart from the lane.
US11568629B2
This invention provides a system and method for finding patterns in images that incorporates neural net classifiers. A pattern finding tool is coupled with a classifier that can be run before or after the tool to have labeled pattern results with sub-pixel accuracy. In the case of a pattern finding tool that can detect multiple templates, its performance is improved when a neural net classifier informs the pattern finding tool to work only on a subset of the originally trained templates. Similarly, in the case of a pattern finding tool that initially detects a pattern, a neural network classifier can then determine whether it has found the correct pattern. The neural network can also reconstruct/clean-up an imaged shape, and/or to eliminate pixels less relevant to the shape of interest, therefore reducing the search time, as well significantly increasing the chance of lock on the correct shapes.
US11568621B2
Systems and methods for modifying three-dimensional digital items to fit different character models are described herein. In an embodiment a machine learning system is configured to compute a shape and size of three-dimensional digital objects to fit a second character model based on the shape and size that the same three-dimensional digital objects have to fit a first character model. A server computer receives particular input data defining a plurality of particular input vertices for a particular input three-dimensional digital object fit for the first character model. In response to receiving the particular input data, the server computer computes, using the machine learning system, particular output data defining a plurality of particular output vertices for a particular output three-dimensional digital object, the particular output three-dimensional digital object comprising the particular input three-dimensional digital object fit for the second character model. The server computer then causes displaying, on the client computing device, of the particular output three-dimensional digital object combined with the second character model.
US11568618B2
Described herein are systems and methods of processing immobilization molds for application of treatment, A computing system may generate a three-dimensional mold model of immobilization mold within with a subject is to be positioned for application of a treatment. The computing system may subtract a three-dimensional scan of at least a portion of the subject from the three-dimensional mold model to define an opening therein. The computing system may remove, from the three-dimensional mold model, a first portion to define an imprint in the opening from a first axis along which the subject is to enter. The computing system may remove, from a second portion of the three-dimensional mold model remaining with the removal of the first portion, inward protrusions into the imprint of relative to the second axis intersecting the first axis.
US11568613B2
A virtual local presence display apparatus, system and method is disclosed. Included are an extraction engine capable of automatically disassociating the virtual local presence from its production background; a first data feed of an actual background in which the displaying device resides; a background data feed of a plurality of optional backgrounds including at least the production background of the virtual local presence; a stream subject data feed of an extracted one of the virtual local presence extracted from the production background; an integrated data feed in which the virtual local presence and a background are integrated; a first processing having a receiver capable of receiving the data feeds and assessing a plurality of focal lengths to focal planes for the virtual presence in the production background, and in a selected one of the other backgrounds; and a second processing for causing displaying, on the display device, the virtual presence at a suitable location with regard to the focal planes in a selected one of the other backgrounds.
US11568612B2
A method includes: determining, by the computing device, an activity associated with a physical object in a physical environment, the physical object being a physical object about which a user lacks knowledge; retrieving, by the computing device and from a digital library, a digital object that is associated with the activity; personalizing, by the computing device, the digital object, the personalizing being based on feedback from prior interactions of the user with the digital object; generating, by the computing device, an augmented reality activity including the determined activity, the augmented reality activity comprising a reactive association between the personalized digital object and the physical object; and generating, by the computing device, an augmented reality animation that comprises the augmented reality activity, the physical object, and the personalized digital object.
US11568606B2
A method of and apparatus configured to perform obtaining a captured image of a real environment. The real environment includes a device having a screen. The captured image includes the device having the screen. The pose of the screen is determined based on the captured image. From a source other than the captured image, 2D content to be displayed on a representation of the screen in the virtual scene is obtained. The 2D content is projected to produce projected 2D content. The projected 2D content aligned to the pose of the screen. The virtual scene is generated as a combination of a virtual content item and the projected 2D content.
US11568603B1
A method, apparatus, and computer readable storage medium directed to implementing a room scale virtual reality system which enables players to walk through a large virtual playing area in a physically limited size room. Physical tracking of a virtual reality headset is used so that the position and orientation of the virtual reality headset is identified to translate the physical player's motion into the virtual world which is displayed on the virtual reality headset. Relocation objects are placed in the virtual world so they correspond to physical location against physical walls. Relocation objects in the virtual world rotate and/or relocate the player in the virtual world which would typically cause the player in the physical world to turn around and thus walk away from the physical wall. Placement of relocation objects throughout the virtual world enable a large virtual world to be implemented using a small finite sized physical room.
US11568599B2
A navigation system for a motor vehicle is provided. The navigation system comprises: a display interface located in the vehicle and configured to display a position of the vehicle; and a processor in communication with a vehicle sensor and a server and configured to receive vehicle-related information. The processor is configured to display the related information on the display interface in real time following the vehicle position when the related information belongs to a first preset category. A display method of a navigation map is also provided. The navigation system and the display method provided in the present application can help users obtain auxiliary information needed to drive on the current route from the navigation interface more conveniently in the process of using the navigation map, and thus provide a better driving experience to users.
US11568597B2
A method and apparatus for performing automated supervision and inspection of an assembly process. The method is implemented using a computer system. Sensor data is generated at an assembly site using a sensor system positioned relative to the assembly site. A three-dimensional global map for the assembly site and an assembly being built at the assembly site is generated using the sensor data. A current stage of an assembly process for building an assembly at the assembly site is identified using the three-dimensional global map. A context for the current stage is identified. A quality report for the assembly is generated based on the three-dimensional global map and the context for the current stage.
US11568593B2
Embodiments of the present disclosure relate to a three-dimensional reconstruction method and apparatus for a material pile, an electronic device, and a computer-readable medium. The method may include: acquiring, in response to an instruction for controlling an excavator body of an excavator to rotate to transport materials being detected, a sequence of depth images of an excavated material pile collected by a binocular camera provided on a side of the excavator; and performing three-dimensional reconstruction based on the sequence of depth images of the material pile, to generate a three-dimensional model of the material pile.
US11568587B2
A computer-implemented method for generating personalized image filters is disclosed. The computer-implemented method includes receiving a user request to generate a filter for an input image. The computer-implemented method further includes generating one or more keyword lists associated with the input image. The computer-implemented method further includes determining one or more themes associated with the input image based, at least in part, on one or more keywords selected from the one or more keyword lists. The computer-implemented method further includes identifying one or more candidate images matching the one or more themes associated with the image. The computer-implemented method further includes generating one or more personalized image filters based on one or more features from one or more of the candidate images.
US11568574B1
An encoding method and a decoding method. The encoding method includes generating curved image by creating projection of visual scene onto inner surface of imaginary 3D geometric shape that is curved in at least one dimension; dividing curved image into input portion and plurality of input rings; encoding input portion and input rings into first planar image and second planar image, respectively, such that input portion is stored into first planar image, and input rings are packed into corresponding rows of second planar image; and communicating, to display apparatus, first and second planar images and information indicative of sizes of input portion and input rings.
US11568545B2
Various embodiments of a framework which allow, as an alternative to resource-taxing decompression, efficient computation of feature maps using a compressed content data subset, such as video, by exploiting the motion information, such as a motion vector, present in the compressed video. This framework allows frame-specific object recognition and action detection algorithms to be applied to compressed video and other media files by executing only on I-frames in a Group of Pictures and linearly interpolating the results. Training and machine learning increases recognition accuracy. Yielding significant computational gains, this approach accelerates frame-wise feature extraction I-frame/P-frame/P-frame videos as well as I-frame/P-frame/B-frame videos. The present techniques may also be used for segmentation to identify and label respective regions for objects in a video.
US11568538B2
A device and a method for detecting a tumor using a medical image and diagnosing a shape and a property of the detected tumor are disclosed. An exemplary medical image-based tumor detection and diagnostic device includes: an input unit configured to obtain a medical image related to a patient; a preprocessing unit configured to preprocess the obtained medical image to observe a tumor region; an analysis unit configured to divide the preprocessed image into a plurality of regions by applying a deep neural network-based deep learning technique; and a measurement unit configured to group the plurality of divided regions by performing clustering on the plurality of divided regions. The measurement unit extracts a group feature value in respect to each of the grouped regions and derives diagnosis information related to the tumor based on the extracted group feature value.
US11568533B2
A computer-implemented method for automated classification of 3D image data of teeth includes a computer receiving one or more of 3D image data sets where a set defines an image volume of voxels representing 3D tooth structures within the image volume associated with a 3D coordinate system. The computer pre-processes each of the data sets and provides each of the pre-processed data sets to the input of a trained deep neural network. The neural network classifies each of the voxels within a 3D image data set on the basis of a plurality of candidate tooth labels of the dentition. Classifying a 3D image data set includes generating for at least part of the voxels of the data set a candidate tooth label activation value associated with a candidate tooth label defining the likelihood that the labelled data point represents a tooth type as indicated by the candidate tooth label.
US11568526B2
A dual sensor imaging system and an imaging method thereof are provided. The method includes: identifying an imaging scene; controlling a color sensor and an IR sensor to respectively capture color images and IR images by adopting capturing conditions suitable for the imaging scene; calculating a signal-to-noise ratio (SNR) difference between each color image and the IR images, and a luminance mean value of each color image; selecting the color image and IR image captured under capturing conditions of having the SNR difference less than an SNR threshold and the luminance mean value greater than a luminance threshold to execute a feature domain transformation to extract partial details of the imaging scene; and fusing the selected color image and IR image to adjust the partial details of the color image according to a guidance of the partial details of the IR image to obtain a scene image with full details.
US11568521B2
An apparatus includes a reference coordinate selection unit configured to select reference coordinates of two points from a focus frame area set by a setting unit, and determines arrangement intervals of focus frames based on coordinates on image data before correction corresponding to the coordinates selected by the reference coordinate selection unit and a number of focus frames.
US11568519B2
An image enhancement method, an image enhancement apparatus, and a method and apparatus for training the image enhancement apparatus are provided. The image enhancement apparatus may enhance a quality of a raw image captured by an under-display camera (UDC). The image enhancement apparatus may process the raw image for each channel according to characteristics of a photographing environment of the UDC. The image enhancement apparatus may further enhance the image by processing the raw image to reflect characteristics for each channel.
US11568514B2
Disclosed herein is a method of transmitting point cloud data. The method may include acquiring point cloud data, encoding geometry information including positions of points in the point cloud data, encoding attribute information including attribute values of points in the point cloud data based on the geometry information, and transmitting the encoded geometry information, the encoded attribute information and signaling information.
US11568510B2
Systems and methods for setting correspondence between pieces of equipment, locations and elements of a lockout procedure checklist comprising a procedure checklist and marking tools. The procedure checklist is printed over a markable support and comprises elements printed thereon each comprising a unique graphical assemblage. Marking tools, provided at locations to perform securing operations on pieces of equipment, are adapted to generate markings on the support matching the graphical assemblages. The operator following each of the elements of the procedure uses the marking tools at the locations to generate markings on the support, and thereby completion of the procedure may be validated by comparing the markings generated on the support with the graphical assemblages thereon. Procedure allows to validate that operations are performed only on appropriate pieces of equipment and location, and that all steps are performed.
US11568509B2
A transportation request processing device includes: a memory; and a processor coupled to the memory, and configured to: receive, from a terminal of an orderer, a transportation request to transport a target person or object to a destination by a vehicle traveling by remote driving and to deliver the target person or object to a recipient, divide a task corresponding to the transportation request into a remote driving task of causing the vehicle to travel by remote driving, and a safety check task of checking a periphery of the vehicle when delivering the target person or object to the recipient at the destination, and transmit information of the remote driving task to a first terminal of a first contractor who will undertake the remote driving task, and transmit information of the safety check task to a second terminal of a second contractor who will undertake the safety check task.
US11568504B2
Disclosed herein is a musical works administration service to digital music service providers (DSPs), to provide a streamlined approach for such DSPs to comply with copyright licensing, accounting, and reporting requirements. The service receives, from the DSP, information relating to sound recordings used by the DSP during a relevant time period. Using several matching techniques, the service identifies specific musical compositions embodied in each sound recording, and also determines corresponding publisher-share information. Subsequently, the service employs several mechanisms to attempt to obtain licenses for publisher-shares that are not already covered by preexisting client licenses. Based on the client's usage of such sound recordings and other related information, the service also performs accounting, reporting, and payment operations for the client. The service, in some instances, receives funds from the client and makes corresponding royalty payments (and makes accounting reports available) to the respective rights holders.
US11568494B1
In a computer-implemented method, one or more digital aerial images of a property of a current or potential policyholder may be received. The digital aerial image(s) may be processed to determine one or more features of the property, including one or more features of a tree. A predicted location of roots of the tree is determined based upon the tree feature(s). The property feature(s) is/are analyzed to determine a risk of damage to a structure located on the property, by analyzing at least the predicted location of roots of the tree to determine a risk of damage to a foundation of the structure. Based at least in part on this risk, a risk output is generated that includes an indication of whether action should be taken to mitigate the risk of damage and/or whether insurance coverage should be offered, and/or includes a measure of the risk of damage.
US11568489B1
Systems and methods described herein for automated cross-border settlement transactions, the system comprising: a trading platform network coupled to a plurality of settlement solution networks; and an autonomous bot configured to execute a plurality of instructions for: executing a scheduler to convert a plurality of user requirements and system requirements into a target schedule; executing a plurality of settlement transactions via the settlement solutions using the trading platform; determining a differential between the executed settlement transactions and the target schedule; and modifying the execution of future settlement transactions if the differential is greater than a predefined threshold.
US11568488B2
A method for performing an auction implemented via an exchange computer system includes receiving, from a user device, a security transaction order, receiving a first matching order, initiating a delay timer that runs for a first period of time, initiating an auction timer that runs for a second period of time, determining that the first period of time has expired, notifying a plurality of market participants of an auction, receiving, during the second period of time, one or more additional matching orders, wherein each of the one or more additional matching orders includes a request for participation in the auction, determining that the second period of time has expired, and facilitating a transaction based on the security transaction order.
US11568484B2
A system, method, and non-transitory computer-readable information recording medium allows a user or trader to prepare, and send to an exchange, a trade order using a trading device. The trading device receives market data from an exchange and displays the received market data on a display unit of the trading device. The trading device also receives a trade order instruction via an input device at the trading device and detecting an occurrence of a market update as a function of the received market data within an established trade order time period associated with a time at which the trade order was received. If the occurrence of the market update was detected during the established trade order time period, the execution of the trade order is prevented.
US11568476B2
An information providing apparatus provides information concerning a lendable electric power supply device. More specifically, the information providing apparatus for providing information via a network in response to a request from a terminal, performs the following processes. The apparatus receives, from the terminal via the network, an information request concerning a lendable electric power supply device configured to supply electric power, acquires information concerning electric power that can be provided by the electric power supply device and a lending price of the electric power supply device by communicating with the electric power supply device via the network. The apparatus further edits, based on the acquired information, information to be provided to the terminal that has issued the information request, and transmits the edited information to the terminal that has issued the information request via the network.
US11568472B2
Methods and apparatus are disclosed for facilitating, via an interactive display platform, a sales transaction conducted in real time between a consultant associated with a consultant device and a customer associated with a customer device. Independent user interaction control capabilities are assigned to the consultant device and the customer device for controlling the sharing of information, the identification of selections pertaining to the shared information and the population of a virtual shopping cart based on the selections, and/or for interacting with the shared information, selections and populated virtual shopping cart. The disclosed methods and apparatus can facilitate a sales transaction involving any type of product and/or service, including the sale of a report containing product data.
US11568460B2
A product evaluation device includes a receiving means for receiving product specifying information for specifying a product attribute, an acquisition means for acquiring designation in formation corresponding to a product attribute specified by the product specifying information from a storage means storing, for each product attribute, a genuine image showing a characteristic part for evaluating whether a product is a genuine product and designation information designating the characteristic part in association with each other, a request means for requesting a user to take a photograph by designating a characteristic part of the product based on the designation information acquired from the storage means and requesting a photographed image obtained by the photographing, and an output means for outputting an evaluation result obtained based on the photographed image provided in response to the request and the genuine image stored in the storage means.
US11568457B2
A control method including: receiving first transaction data including a first electronic signature from the a home of a first user; verifying whether the received first electronic signature included in the first transaction data is valid; verifying validity of the received first transaction data; when the first electronic signature and the validity of the first transaction data are verified successfully, executing a first consensus algorithm for the first transaction data; and when the validity of the first transaction data is verified according to the first consensus algorithm, recording a block including the first transaction data in a distributed ledger. The first electronic signature is a group signature assigned to a group to which the first user belongs.
US11568456B2
This disclosure describes a solution to assign values to personal objects. These values can be calculated based on a number of criteria and stored for the objects. Future values can also be projected. Types of value can include monetary, sentimental, and donation value. Personal objects, such as objects within the inventory of a house, apartment, or other dwelling, can be tagged using a radio frequency identification (RFID) tag or other tag that has at least a memory store, an antenna for communication within a near-field range, and optionally, a power supply, such as a battery. Such a tag can be applied to, or otherwise associated with, a personal object, such as a chair, a piece of artwork, or any other tangible object. The memory can be used to contain data associated with the object, which can be accessed via an RFID reader, which can be used to collect objects into an object inventory.
US11568439B2
Methods and apparatus for pre-scaling media content to facilitate audience measurement are disclosed. An example method includes encoding a media content sample in accordance with a first encoding configuration and playing the encoded sample. The example method also includes attempting to detect the codes in the sample, and computing a ratio between the codes encoded in the sample and the codes detected when the sample is played.
US11568437B2
Systems, methods, and apparatuses for implementing commerce rewards across tenants for commerce cloud customers utilizing blockchain technologies in conjunction with a cloud based computing environment are described herein. For example, according to one embodiment there is a system having at least a processor and a memory therein executing within a host organization and having therein: means for operating a commerce cloud platform on behalf of a plurality of merchants, in which the commerce cloud platform provides at least customer payment processing on behalf of the plurality of merchants; receiving a first purchase transaction for an unknown customer from a first one of the plurality of merchants, in which the purchase transaction indicates transaction source information; creating a new global ID for the unknown customer and associating the purchase transaction and the transaction source information with the new global ID at the commerce cloud platform; allocating commerce rewards points to the unknown customer via the new global ID based on the first purchase transaction; receiving a second purchase transaction for the unknown customer from a second one of the plurality of merchants, in which the second purchase transaction indicates transaction source information for the second purchase transaction; prompting the unknown customer associated with the second purchase transaction to confirm they are associated with the first transaction based on at least a partial matching of the transaction source information associated with the first and second purchase transactions; and inviting the unknown customer to participate in a commerce rewards program to redeem the commerce rewards points. Other related embodiments are disclosed.
US11568429B2
A demand forecasting method and a demand forecasting apparatus are provided. A preliminary prediction amount corresponding to a part number is obtained based on historical demand data. A demand probability of the part number is calculated based on the preliminary prediction amount. A prediction demand amount corresponding to the part number is obtained based on the historical demand data, the preliminary prediction amount and the demand probability.
US11568421B1
Systems and methods are provided for diagnosing an issue associated with an enterprise application on a client device by initiating a communication from the client device to a CSR device to report the issue, generating a matter identifier associated with the reported issue, transmitting a communication containing a deep link to the client device, invoking the deep link to initiate mining of logging data corresponding to the use of the enterprise application and stored locally on the client device, formatting and/or tagging the mined logging data with the matter identifier, transmitting the formatted mined logging data from the client device to the CSR device and/or a proprietary server, analyzing the mined logging data to diagnose a source of the reported issue, and attempting to resolve the reported issue based on the analysis of the mined logging data.