US11557713B2
There is provided a laminated substrate having a piezoelectric film, including: a substrate; and a piezoelectric film provided on the substrate interposing a base film, wherein the piezoelectric film has an alkali niobium oxide based perovskite structure represented by a composition formula of (K1-xNax)NbO3 (0
US11557705B2
The present invention relates to a method for manufacturing a display device using semiconductor light-emitting elements and a display device. The method for manufacturing a display device according to the present invention comprises the steps of: transferring semiconductor light-emitting elements provided on a growth substrate to an adhesive layer of a temporary substrate; curing the adhesive layer of the temporary substrate; aligning the temporary substrate with a wiring substrate having a wiring electrode and a conductive adhesive layer; compressing the temporary substrate to the wiring substrate so that the semiconductor light-emitting elements bond to the wiring substrate together with the adhesive layer of the temporary substrate, and then removing the temporary substrate; and removing at least a part of the adhesive layer to expose the semiconductor light-emitting elements to the outside, and depositing electrodes on the semiconductor light-emitting elements.
US11557701B2
The present disclosure provides an electronic device including a substrate and at least one light emitting unit. The light emitting unit includes a light emitting diode, a protective layer, and a light conversion layer. The protective layer includes a portion having a ripped section and not overlapped with the light emitting diode in a top view direction of the electronic device. The electronic device of the present disclosure may provide an electronic device that may reduce the influence from the outside or a subsequent process on the light emitting diode and improve luminance performance and reliability.
US11557698B2
Disclosed is a conversion element (1) comprising an active region (13) that is formed by a semiconductor material and includes a plurality of barriers (131) and quantum troughs (132), a plurality of first structural elements (14) on a top face (la) of the conversion element (1), and a plurality of second structural elements (15) and/or third structural elements (16) which are arranged on a face of the active region (13) facing away from the plurality of first structural elements (14). Also disclosed is a method for producing a conversion element of said type.
US11557697B2
An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.
US11557692B2
The invention is directed towards enhanced systems and methods for employing a pulsed photon (or EM energy) source, such as but not limited to a laser, to electrically couple, bond, and/or affix the electrical contacts of a semiconductor device to the electrical contacts of another semiconductor devices. Full or partial rows of LEDs are electrically coupled, bonded, and/or affixed to a backplane of a display device. The LEDs may be μLEDs. The pulsed photon source is employed to irradiate the LEDs with scanning photon pulses. The EM radiation is absorbed by either the surfaces, bulk, substrate, the electrical contacts of the LED, and/or electrical contacts of the backplane to generate thermal energy that induces the bonding between the electrical contacts of the LEDs' electrical contacts and backplane's electrical contacts. The temporal and spatial profiles of the photon pulses, as well as a pulsing frequency and a scanning frequency of the photon source, are selected to control for adverse thermal effects.
US11557689B2
An integrated tandem solar cell includes a first solar cell including a rear electrode, a light absorption layer disposed on the rear electrode, and a buffer layer disposed on the light absorption layer; a recombination layer including a first transparent conductive layer disposed on the buffer layer; a nanoparticle layer that is transparent and conductive, that is disposed on the first transparent conductive layer, and that planarizes the first solar cell; and a second transparent conductive layer disposed on the nanoparticle layer; and a second solar cell that is a perovskite solar cell including a perovskite layer and that is disposed on and bonded to the second transparent conductive layer of the recombination layer. The recombination layer electrically joins the first and second solar cells and planarizes the first solar cell so that the second solar cell is uniformly deposited in all regions thereof.
US11557676B2
Techniques and mechanisms to impose stress on a transistor which includes a channel region and a source or drain region each in a fin structure. In an embodiment, a gate structure of the transistor extends over the fin structure, wherein a first spacer portion is at a sidewall of the gate structure and a second spacer portion adjoins the first spacer portion. Either or both of two features are present at or under respective bottom edges of the spacer portions. One of the features includes a line of discontinuity on the fin structure. The other feature includes a concentration of a dopant in the second spacer portion being greater than a concentration of the dopant in the source or drain region. In another embodiment, the fin structure is disposed on a buffer layer, wherein stress on the channel region is imposed at least in part with the buffer layer.
US11557659B2
Embodiments of the present disclosure includes a method of forming a semiconductor device. The method includes providing a substrate having a plurality of first semiconductor layers and a plurality of second semiconductor layers disposed over the substrate. The method also includes patterning the first semiconductor layers and the second semiconductor layers to form a first fin and a second fin, removing the first semiconductor layers from the first and second fins such that a first portion of the patterned second semiconductor layers becomes first suspended nanostructures in the first fin and that a second portion of the patterned second semiconductor layers becomes second suspended nanostructures in the second fin, and doping a threshold modifying impurity into the first suspended nanostructures in the first fin.
US11557657B2
Aspects of the present disclosure provide a method of fabricating a semiconductor device. For example, the method can include forming a multilayer stack on a substrate. The multilayer stack can include alternate metal layers and dielectric layers. The method can also include forming at least one opening through the multilayer stack to uncover the substrate and forming at least two vertical channel structures within the opening that are stacked on each other. The vertical channel structures can have source, gate and drain regions being in contact with the metal layers of the multilayer stack, respectively. The method can also include removing a central portion of the vertical channel structures and filling the central portion of the vertical channel structures with a dielectric core. The dielectric core can isolate the vertical channel structures from each other and from the substrate.
US11557656B2
Disclosed are semiconductor devices and methods of manufacturing the same. The semiconductor device comprises a gate electrode on a substrate, an upper capping pattern on the gate electrode, and a lower capping pattern between the gate electrode and the upper capping pattern. The lower capping pattern comprises a first portion between the gate electrode and the upper capping pattern, and a plurality of second portions extending from the first portion onto corresponding side surfaces of the upper capping pattern. The upper capping pattern covers a topmost surface of each of the second portions.
US11557651B2
A method is presented for constructing a nanosheet transistor. The method includes forming a nanosheet stack including alternating layers of a first material and a second material over a substrate, forming a dummy gate over the nanosheet stack, forming sacrificial spacers adjacent the dummy gate, and selectively etching the alternating layers of the first material to define gaps between the alternating layers of the second material. The method further includes filling the gaps with inner spacers, epitaxially growing source/drain regions adjacent the nanosheet stack, selectively removing the sacrificial spacers and the inner spacers to define cavities, and filling the cavities with a spacer material to define first airgaps adjacent the dummy gate and second airgaps adjacent the etched alternating layers of the first material.
US11557648B2
In a trench gate type power MOSFET having a super-junction structure, both improvement of a breakdown voltage of a device and reduction of on-resistance are achieved. The trench gate and a column region are arranged so as to be substantially orthogonal to each other in a plan view, and a base region (channel forming region) and the column region are arranged separately in a cross-sectional view.
US11557645B2
The present invention provides a semiconductor memory device and a fabricating method thereof. The semiconductor memory device includes a substrate, a plurality of capacitors and a supporting layer disposed on the substrate, wherein each of the capacitors is connected with at least one of the adjacent capacitors through the supporting layer. Each of the capacitors includes first electrodes, a high-k dielectric layer and a second electrode, and the high-k dielectric layer is disposed between the first electrodes and the second electrode. Due to the supporting layer directly contacts the high-k dielectric layer through a surface thereof, and the high-k dielectric layer completely covers the surface, the second electrode may be formed directly within openings with an enlarged dimension. Accordingly, the process difficulty of performing the deposition and etching processes within the openings may be reduced, and the capacitance of the capacitors is further increased.
US11557644B2
A transparent display panel and a transparent display device including the same are disclosed. In a transparent display panel, a VSS voltage line does not surround an outer periphery of a display region. Rather, upper and lower VSS voltage lines respectively disposed on upper and lower sides to the display region are electrically connected to each other via at least one VSS voltage connection line extending across the display region. Thus, left and right non-transparent and thick VSS voltage lines disposed on the left and right sides to the display region may be omitted. Thus, a transparent region of the transparent display panel and a bezel of a transparent display device may be increased or maximized or the bezel thereof may be made slim.
US11557639B2
The present application provides a display panel and a display device. The display panel includes a substrate, a driving circuit layer disposed on the substrate, and a light-emitting layer disposed on the driving circuit layer. The driving circuit layer includes a first metal layer, the first metal layer includes a first metal trace, the light-emitting layer includes multiple light-emitting portions, and a vertical distance between an orthographic projection of a center of each light-emitting portion projected on the first metal layer and a symmetry axis of the first metal trace is less than or equal to 5 μm.
US11557637B2
A light emitting device includes a transistor, a light reflection layer, a first insulation layer that includes a first layer thickness part, a second layer thickness part, and a third layer thickness part, a pixel electrode that is provided on the first insulation layer, a second insulation layer that covers a peripheral section of the pixel electrode, a light emission functional layer, a facing electrode, and a conductive layer that is provided on the first layer thickness part. The pixel electrode includes a first pixel electrode which is provided in the first layer thickness part, a second pixel electrode which is provided in the second layer thickness part, and a third pixel electrode which is provided in the third layer thickness part. The first pixel electrode, the second pixel electrode, and the third pixel electrode are connected to the transistor through the conductive layer.
US11557631B2
Disclosed is a semiconductor device including first conductive lines, second conductive lines crossing the first conductive lines, and memory cells at intersections between the first conductive lines and the second conductive lines. Each of the memory cells includes a magnetic tunnel junction pattern, a bi-directional switching pattern connected in series to the magnetic tunnel junction pattern, and a conductive pattern between the magnetic tunnel junction pattern and the bi-directional switching pattern.
US11557626B2
A pixel includes a workpiece having a protrusion and a bulk, wherein the protrusion extends from an upper surface of the bulk. The pixel further includes a floating diffusion node in the protrusion. The pixel further includes a gate structure over the bulk, wherein a top surface of the gate structure is above a top surface of the floating diffusion node. The pixel further includes a photosensitive device in the bulk. The pixel further includes an isolation well surrounding the photosensitive device.
US11557621B2
The present technology relates to a solid state imaging sensor that is possible to suppress the reflection of incident light with a wide wavelength band. A reflectance adjusting layer is provided on the substrate in an incident direction of the incident light with respect to the substrate such as Si and configured to adjust reflection of the incident light on the substrate. The reflectance adjusting layer includes a first layer formed on the substrate and a second layer formed on the first layer. The first layer includes a concavo-convex structure provided on the substrate and a material which is filled into a concave portion of the concavo-convex structure and has a refractive index lower than that of the substrate, and the second layer includes a material having a refractive index lower than that of the first layer. It is possible to reduce the reflection on the substrate such as Si by using the principle of the interference of the thin film. Such a technology can be applied to solid state imaging sensors.
US11557620B2
A high k passivation layer, an anti-reflective coating layer, and a buffer layer are disposed over semiconductor substrate including photodiodes formed therein. Trenches are etched into the semiconductor substrate through the buffer layer, anti-reflective coating layer, and the high k passivation layer in a grid-like pattern surrounding each of the photodiodes in the semiconductor substrate. Another high k passivation layer lines an interior of the trenches in the semiconductor substrate. An adhesive and barrier layer is deposited over the high k passivation layer that lines the interior of the trenches. A deep trench isolation (DTI) structure is formed with conductive material deposited into the trenches over the adhesive and barrier layer to fill the trenches. A grid structure is formed over the DTI structure and above a plane of the buffer layer. The grid structure is formed with the conductive material.
US11557619B2
The incidence of incident light transmitted through a photoelectric conversion unit onto a charge holding unit, a pixel in the adjacency, and the like can be blocked in a pixel. An image sensor includes a pixel, a wiring layer, and an incident light attenuation unit. The pixel includes a photoelectric conversion unit that is formed in a semiconductor substrate and performs photoelectric conversion based on incident light, and a pixel circuit that generates an image signal according to a charge generated by the photoelectric conversion. The wiring layer is arranged on a surface of the semiconductor substrate different from a surface onto which the incident light is incident, and transports either the image signal or a signal applied to the pixel circuit. The incident light attenuation unit attenuates the incident light transmitted through the photoelectric conversion unit.
US11557617B2
An image sensing device is disclosed. The image sensing device includes a pixel array including a plurality of unit pixels, each of which is configured to generate a pixel signal in response to incident light. The pixel array includes a substrate layer including a plurality of photoelectric conversion elements configured to convert the incident light into an electric signal, a plurality of microlenses formed over the substrate layer to respectively correspond to the photoelectric conversion elements, and configured to converge the incident light into the corresponding photoelectric conversion elements, a plurality of color filters disposed between the plurality of photoelectric conversion elements and the plurality of microlenses and configured to transmit light at predetermined wavelengths to corresponding photoelectric conversion elements, and one or more grid structures disposed over the substrate layer at intervals to separate the microlenses and the color filters from adjacent microlenses and the color filter. The grid structures have different heights at different locations in the pixel array such that one or more of the grid structure include a top portion protruding from a top surface of an abutting microlens.
US11557616B2
An image sensing device includes a photoelectric conversion element, a floating diffusion (FD) region, and a transfer gate. The photoelectric conversion element is disposed in a substrate, and generates photocharges in response to incident light. The floating diffusion (FD) region is disposed over the photoelectric conversion element, and stores the photocharges generated by the photoelectric conversion element. The transfer gate transfer the photocharges generated by the photoelectric conversion element to the floating diffusion (FD) region in response to a transmission signal. The transfer gate includes a horizontal gate disposed over the photoelectric conversion element, and a vertical gate coupled to the horizontal gate. The vertical gate is positioned at a side of the photoelectric conversion element, and surrounds the photoelectric conversion element.
US11557615B2
A method of manufacturing a display substrate which includes a central display area and an arc-shaped stretch area located at a corner of the central display area, wherein the method includes: preparing a substrate to be etched, which includes a flexible substrate, a stack structure disposed on the flexible substrate, and a last-dry-etched metal layer disposed on a side of the stack structure away from the flexible substrate, the stack structure including an active layer, at least one conductive layer, and a plurality of insulating layers, wherein the last-dry-etched metal layer is a last metal layer that is formed through dry etching; and forming a stretch groove by patterning the substrate to be etched, wherein the stretch groove is disposed in the stretch area and passes through the stack structure and a part of the flexible substrate. A display substrate, a display panel and a display device are further provided.
US11557612B2
To improve field-effect mobility and reliability of a transistor including an oxide semiconductor film. Provided is a semiconductor device including an oxide semiconductor film. The semiconductor device includes a first insulating film, the oxide semiconductor film over the first insulating film, a second insulating film and a third insulating film over the oxide semiconductor film, and a gate electrode over the second insulating film. The oxide semiconductor film includes a first oxide semiconductor film, a second oxide semiconductor film over the first oxide semiconductor film, and a third oxide semiconductor film over the second oxide semiconductor film. The first to third oxide semiconductor films contain the same element. The second oxide semiconductor film includes a region where the crystallinity is lower than the crystallinity of one or both of the first oxide semiconductor film and the third oxide semiconductor film.
US11557611B2
Disclosed are a method and a device for manufacturing an array substrate, and an array substrate. The method includes: depositing and forming a gate insulation layer on a pre-formed base substrate and a pre-formed gate, the gate insulation layer covering the pre-formed gate; depositing and forming an amorphous silicon layer, a doped amorphous silicon layer including at least three doped layers, and a metal layer on the gate insulation layer in sequence, doping concentrations of the at least three doped layers of the doped amorphous silicon layer increasing from bottom to top; etching patterns of the amorphous silicon layer, the doped amorphous silicon layer and the metal layer to form the array substrate.
US11557610B2
A semiconductor integrated circuit device including a plurality of rows of IO cells has a configuration capable of avoiding a latchup error without causing an increase in area. The device includes a first IO cell row placed closest to an edge of a chip and a second IO cell row placed adjacent to a core region side of the first IO cell row. Each of the IO cells of the first and second IO cell rows has a high power supply voltage region and a low power supply voltage region provided separately in a direction perpendicular to a direction in which the IO cells are lined up. The IO cell rows are placed so that the high power supply voltage regions of these rows are mutually opposed.
US11557605B2
According to an embodiment, a semiconductor memory device includes a substrate, a stacked body, a plurality of first members, and at least one first insulating member. The stacked body is provided on the substrate and includes a plurality of electrode layers. The electrode layers are stacked apart from each other in a first direction and extend in a second direction parallel to an upper surface of the substrate. The first members are provided in the stacked body and extend in the first direction and the second direction. The first insulating member is provided in the stacked body and extends in the first direction and a third direction so that the electrode layers are divided into a plurality of regions in the second direction, the third direction intersecting with the second direction and being parallel to the upper surface of the substrate.
US11557601B2
Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a substrate, a peripheral circuit on the substrate, a memory stack including interleaved conductive layers and dielectric layers above the peripheral circuit, a P-type doped semiconductor layer above the memory stack, a plurality of channel structures each extending vertically through the memory stack into the P-type doped semiconductor layer, and a source contact above the memory stack and in contact with the P-type doped semiconductor layer. An upper end of each of the plurality of channel structures is flush with or below a top surface of the P-type doped semiconductor layer.
US11557599B2
A nonvolatile memory device includes; a memory cell area including a cell structure and a common source plate. The memory cell area is mounted on a peripheral circuit area including a buried area covered by the memory cell area and an exposed area uncovered by the memory cell area. A first peripheral circuit (PC) via extending from the exposed area, and a common source (CS) via extending from the common source plate, wherein the first PC via and the CS via are connected by a CS wire disposed outside the cell structure and providing a bias voltage to the common source plate.
US11557593B2
A method used in forming an array of memory cells comprises forming a vertical stack comprising transistor material directly above and directly against a first capacitor electrode material. A mask is used to subtractively etch both the transistor material and thereafter the first capacitor electrode material to form a plurality of pillars that individually comprise the transistor material and the first capacitor electrode material. Capacitors are formed that individually comprise the first capacitor electrode material of individual of the pillars. Vertical transistors are formed above the capacitors that individually comprise the transistor material of the individual pillars. Other aspects and embodiments are disclosed, including structure independent of method.
US11557591B2
A method used in forming an array of memory cells comprises forming lines of top-source/drain-region material, bottom-source/drain-region material, and channel-region material vertically there-between in rows in a first direction. The lines are spaced from one another in a second direction. The top-source/drain-region material, bottom-source/drain-region material, and channel-region material have respective opposing sides. The channel-region material on its opposing sides is laterally recessed in the second direction relative to the top-source/drain-region material and the bottom-source/drain-region material on their opposing sides to form a pair of lateral recesses in the opposing sides of the channel-region material in individual of the rows. After the pair of lateral recesses are formed, the lines of the top-source/drain-region material, the channel-region material, and the bottom-source/drain-region material are patterned in the second direction to comprise pillars of individual transistors. Rows of wordlines are formed in the first direction that individually are operatively aside the channel-region material of individual of the pillars in the pairs of lateral recesses and that interconnect the transistors in that individual row. Other embodiments, including structure independent of method, are disclosed.
US11557588B2
A multi-transistor device includes first and second lateral double-diffused metal-oxide-semiconductor field effect (LDMOS) transistors sharing a first p-type reduced surface field (RESURF) layer and a first drain n+ region. In certain embodiments, the first LDMOS transistor includes a first drift region, the second LDMOS transistor includes a second drift region, and the first and second drift regions are at least partially separated by the first p-type RESURF layer in a thickness direction.
US11557586B2
A device includes standard cells in a layout of an integrated circuit, the standard cells includes first and second standard cells sharing a first active region and a second active region. The first standard cell includes first and second gates. The first gate includes a first gate finger and a second gate finger that are arranged over the first active region, for forming the first transistor and the second transistor. The second gate is separate from the first gate, the second gate includes a third gate finger and a fourth gate finger that are arranged over the second active region, for forming the third transistor and the fourth transistor. The second standard cell includes a third gate arranged over the first active region and the second active region, for forming the fifth transistor and the sixth transistor. The first to fourth transistors operate as an electrostatic discharge protection circuit.
US11557585B2
A semiconductor device includes a substrate having a plurality of active patterns. A plurality of gate electrodes intersects the plurality of active patterns. An active contact is electrically connected to the active patterns. A plurality of vias includes a first regular via and a first dummy via. A plurality of interconnection lines is disposed on the vias. The plurality of interconnection lines includes a first interconnection line disposed on both the first regular via and the first dummy via. The first interconnection line is electrically connected to the active contact through the first regular via. Each of the vias includes a via body portion and a via barrier portion covering a bottom surface and sidewalls of the via body portion. Each of the interconnection lines includes an interconnection line body portion and an interconnection line barrier portion covering a bottom surface and sidewalls of the interconnection line body portion.
US11557578B2
The present embodiment comprises: a plurality of light-emitting units; and a reflector including reflector units having spaces formed to receive the plurality of light-emitting units, respectively. Each of the plurality of light-emitting units includes an LED package mounted on a substrate and a light diffusion layer having a groove portion formed on a surface opposite to the substrate in the LED package, wherein the outer circumference of the light diffusion layer faces the inner surface of a reflector unit. In the reflector, the plurality of reflector units are integrally formed, the spaces expand along a direction extending away from the substrate, and a wall forming each of the spaces surrounds the outer circumference of each of the LED package and the light diffusion layer.
US11557575B2
A LED light display having a plurality of LED bulb arrays and a louver panel defining a plurality of hole arrays. Each hole array can define openings that are sized and spaced to receive at least the distal end portions of the bulbs forming a single LED bulb array. The louver panel further has a plurality of shaped protrusions in the form of louvers that are configured to extend outwardly and forwardly from a front surface of the louver panel and are arranged in a plurality of columns and in a plurality of rows in regularly repeating patterns related to the pattern of the placement of a plurality of the plurality of hole arrays in the louver panel and are further configured to block at least a portion of the emission of light from the LED bulbs in both a horizontal and vertical direction.
US11557571B2
A stack package includes a package substrate; a lower stack including lower dies stacked on the package substrate to form a zigzag shape in a vertical direction; an upper stack including upper dies that are sequentially offset stacked in an offset direction while providing a first upper side of a down staircase shape, a first end of an uppermost upper die among the upper dies protruding, in a horizontal direction, further than a first lower side of the lower stack; and a first passive device disposed on the package substrate and spaced apart from the first lower side, and disposed between a first portion of the package substrate and the first upper side.
US11557560B2
A semiconductor package includes a chip level unit including a semiconductor chip; a medium level unit; and a solder ball unit. The solder ball unit is to be connected to a circuit substrate. The medium level unit includes: a wiring pad layer on a first protection layer; a second protection layer including a pad-exposing hole on the first protection layer, a post layer in the pad-exposing hole on the wiring pad layer; and a third protection layer including a post-exposing hole on the second protection layer. A width or diameter of the post-exposing hole is smaller than a width or diameter of the pad-exposing hole; and a barrier layer is disposed in the post-exposing hole on the post layer. The solder ball unit includes a solder ball on the barrier layer.
US11557557B2
Disclosed is a flip-chip device. The flip-chip device includes a die having a plurality of under bump metallizations (UBMs); and a package substrate having a plurality of bond pads. The plurality of UBMs include a first set of UBMs having a first size and a first minimum pitch and a second set of UBMs having a second size and a second minimum pitch. The first set of UBMs and the second set of UBMs are each electrically coupled to the package substrate by a bond-on-pad connection.
US11557553B2
Disclosed is a semiconductor device including a semiconductor die, a base member, a side wall, first and second conductive films, and first and second conductive leads. The base member has a conductive main surface including a region that mounts the semiconductor die. The side wall surrounds the region and is made of a dielectric. The side wall includes first and second portions. The first and second conductive films are provided on the first and second portions, respectively and are electrically connected to the semiconductor die. The first and second conductive leads are conductively bonded to the first and second conductive films, respectively. At least one of the first and second portions includes a recess on its back surface facing the base member, and the recess defines a gap between the at least one of the first and second portions below the corresponding conductive film and the base member.
US11557549B2
The present disclosure provides a method of manufacturing a semiconductor structure. The method includes providing a substrate defined with a peripheral region and an array area at least partially surrounded by the peripheral region; disposing an insulating layer over the substrate; disposing a capping layer over the insulating layer; disposing a hardmask stack on the capping layer; patterning the hardmask stack; removing portions of the capping layer exposed through the hardmask stack; removing portions of the insulating layer exposed through the hardmask stack; removing portions of the substrate exposed through the capping layer and the insulating layer to form a plurality of fins in the array area and a first elongated member at least partially surrounding the plurality of fins; removing the hardmask stack; and forming an isolation over the substrate and surrounding the plurality of fins and the first elongated member.
US11557547B2
A leadframe for semiconductor devices, the leadframe comprising a die pad portion having a first planar die-mounting surface and a second planar surface opposed the first surface, the first surface and the second surface having facing peripheral rims jointly defining a peripheral outline of the die pad wherein the die pad comprises at least one package molding compound receiving cavity opening at the periphery of said first planar surface.
US11557544B2
A semiconductor device is provided. The device includes a semiconductor die and a launcher structure attached to a package substrate. The launcher structure includes a launcher substrate, a launcher portion formed from a conductive layer at a major surface of the launcher substrate, and a translation pad formed from the conductive layer at the major surface. The translation pad is separate from the launcher portion. A translation feature is formed on the translation pad. The translation feature is configured for alignment of a waveguide structure.
US11557542B2
An electronic circuit device according to the present invention includes a base substrate including a wiring layer having a connection part, at least one electronic circuit element, and a re-distribution layer including a photosensitive resin layer, the photosensitive resin layer enclosing a surface on which a connection part of the electronic circuit element is formed and a side surface of the electronic circuit element and embedding a first wiring photo via, a second wiring photo via and a wiring, the first wiring photo via directly connected to the connection part of the electronic circuit element, the second wiring photo via arranged at the outer periphery of the electronic circuit element and directly connected to a connection part of the wiring layer, the wiring electrically connected to the first wiring photo via and the second wiring photo via on a same surface.
US11557540B2
A semiconductor device having a substrate, a semiconductor chip, and a plurality of electrode terminals is provided. The substrate has first and second principal surfaces. The semiconductor chip is disposed on the first principal surface. The electrode terminals are disposed on the second principal surface. The substrate has a via interconnection near a position at which an outer edge line of the semiconductor chip intersects an outer outline of the electrode terminal farthest from a center of the substrate, the electrode terminal farthest from the center of the substrate being among the plurality of electrode terminals overlapping the outer edge line in a predetermined condition as seen through the substrate of the semiconductor device from a direction perpendicular to the first principal surface, the via interconnection connecting a first interconnection layer on a first principal surface-side to a second interconnection layer on a second principal surface-side.
US11557534B2
A semiconductor package includes a semiconductor chip having an active surface on which a connection pad is disposed and an inactive surface opposing the active surface, and a first encapsulant covering at least a portion of each of the inactive surface and a side surface of the semiconductor chip. A metal layer is disposed on the first encapsulant, and includes a first conductive layer and a second conductive layer, sequentially stacked. A connection structure is disposed on the active surface of the semiconductor chip, and includes a first redistribution layer electrically connected to the connection pad. A lower surface of the first conductive layer is in contact with the first encapsulant and has first surface roughness, and an upper surface of the first conductive layer is in contact with the second conductive layer and has second surface roughness smaller than the first surface roughness.
US11557532B2
A 3D-IC includes a first tier device and a second tier device. The first tier device and the second tier device are vertically stacked together. The first tier device includes a first substrate and a first interconnect structure formed over the first substrate. The second tier device includes a second substrate, a doped region formed in the second substrate, a dummy gate formed over the substrate, and a second interconnect structure formed over the second substrate. The 3D-IC also includes an inter-tier via extends vertically through the second substrate. The inter-tier via has a first end and a second end opposite the first end. The first end of the inter-tier via is coupled to the first interconnect structure. The second end of the inter-tier via is coupled to one of: the doped region, the dummy gate, or the second interconnect structure.
US11557531B2
A semiconductor device includes: a substrate; a semiconductor element arranged on the substrate; a plate-like member electrically connected to the semiconductor element; a first electrode formed on the semiconductor element and joined to the plate-like member with solder; a second electrode formed on the semiconductor element and spaced from the first electrode, and including a metal capable of forming an alloy with the solder; and a metal film formed on the semiconductor element and spaced from the second electrode in a region on the first electrode side as seen from the second electrode, in a two-dimensional view of the semiconductor element as seen from the plate-like member, and including a metal capable of forming an alloy with the solder.
US11557527B2
An object is to provide a technique capable of suppressing reduction in sticking force of a semiconductor package and a radiation fin in a semiconductor device including the semiconductor package and the radiation fin when the semiconductor package and the radiation fin stick and are fixed to each other by magnetic force. A semiconductor device includes: a semiconductor package; an insulating substrate; a radiation fin; a first fixed part made up of one of a magnetic body and a bond magnet integrally formed with the semiconductor package; and a second fixed part made up of another one of the magnetic body and the bond magnet integrally formed with the radiation fin, wherein the semiconductor package and the radiation fin stick to each other by magnetic force occurring between the first fixed part and the second fixed part.
US11557524B2
In one example, a semiconductor device can comprise (a) an electronic device comprising a device top side, a device bottom side opposite the device top side, and a device sidewall between the device top side and the device bottom side, (b) a first conductor comprising, a first conductor side section on the device sidewall, a first conductor top section on the device top side and coupled to the first conductor side section, and a first conductor bottom section coupled to the first conductor side section, and (c) a protective material covering the first conductor and the electronic device. A lower surface of the first conductor top section can be higher than the device top side, and an upper surface of the first conductor bottom section can be lower than the device top side. Other examples and related methods are also disclosed herein.
US11557509B1
A method for etching a metal containing feature is provided. Using a pattern mask, layers of material are etched to expose a portion of a metal containing feature. At least a portion of the exposed metal containing feature is etched, and is replaced by the growth of a filler dielectric. The etched portion of the metal containing feature and the filler dielectric reduce the unwanted conductivity between adjacent metal containing features.
US11557506B2
Methods for processing a semiconductor substrate are proposed. An example of a method includes forming cavities in the semiconductor substrate by implanting ions through a first surface of the semiconductor substrate. The cavities define a separation layer in the semiconductor substrate. A semiconductor layer is formed on the first surface of the semiconductor substrate. Semiconductor device elements are formed in the semiconductor layer. The semiconductor substrate is separated along the separation layer into a first substrate part including the semiconductor layer and a second substrate part.
US11557500B2
Embodiments of the present disclosure provide a heated support pedestal including a body comprising a ceramic material, a support arm extending radially outward from a periphery of the body that is coupled to a shaft, and a vacuum conduit disposed within the shaft and through the body to connect with a surface of the body.
US11557499B2
Methods and apparatus for protecting parts of a process chamber from thermal cycling effects of deposited materials. In some embodiments, a method of protecting the part of the process chamber includes wet etching the part with a weak alkali or acid, cleaning the part by bead blasting, coating at least a portion of a surface of the part with a stress relief layer. The stress relief layer forms a continuous layer that is approximately 50 microns to approximately 250 microns thick and is configured to preserve a structural integrity of the part from the thermal cycling of aluminum deposited on the part. The method may also include wet cleaning of the part with a heated deionized water rinse after formation of the stress relief layer.
US11557495B2
A coating film forming method includes: rotating a substrate at a first rotation speed in a coating cup with an upper surface open, and supplying and diffusing a coating solution for forming a coating film on the substrate; and after the supplying and diffusing the coating solution, drying the substrate by exhausting air through a gap between an annular member arranged above the substrate with centers thereof being located on a same axis and the front surface of the substrate, while rotating the substrate at a second rotation speed lower than the first rotation speed, wherein at the drying the substrate, a flow velocity of the air exhausted through the gap is higher than a flow velocity of air supplied from above the substrate in the coating cup to the substrate.
US11557492B2
A substrate processing apparatus includes: a processing container including a processing space capable of accommodating a substrate in a state where a surface of the substrate is wet by a liquid; a processing fluid supply that supplies a processing fluid in a supercritical state to the processing space toward the liquid; a first exhaust line connected to a first exhaust source; a second exhaust line connected to a second exhaust source and connected to the first exhaust line between the first exhaust source and the processing space; and a controller controlling the second exhaust pressure. The processing fluid in the supercritical state contacts the liquid to dry the substrate, and the controller makes the second exhaust pressure to be higher than the first exhaust pressure during a period in which the processing fluid supply stops supplying the processing fluid to the processing space.
US11557489B2
Disclosed herein are cavity structures in integrated circuit (IC) package supports, as well as related methods and apparatuses. For example, in some embodiments, an IC package support may include: a cavity in a dielectric material, wherein the cavity has a bottom and sidewalls; conductive contacts at the bottom of the cavity, wherein the conductive contacts include a first material; a first peripheral material outside the cavity, wherein the first peripheral material is at the sidewalls of the cavity and proximate to the bottom of the cavity, and the first peripheral material includes the first material; and a second peripheral material outside the cavity, wherein the second peripheral material is at the sidewalls of the cavity and on the first peripheral material, and the second peripheral material is different than the first peripheral material.
US11557487B2
In certain embodiments, a method of processing a semiconductor structure includes forming a patterned layer over a copper layer to be etched. The copper layer is disposed over a substrate. The method includes patterning the copper layer, using the patterned layer as an etch mask, by performing a cyclic etch process to form a recess in the copper layer. The cyclic etch process includes forming, in a first etch step, a passivation layer on an exposed surface of the copper layer by exposing the exposed surface of the copper layer to a chlorine gas. The passivation layer replaces at least a portion of a surface layer of the copper layer. The cyclic etch process includes subsequently etching, in a second etch step, the passivation layer using a first plasma that includes a noble gas. Each cycle of the cyclic etch process extends the recess in the copper layer.
US11557485B2
A plasma processing apparatus which forms a first film on a pattern formed on a substrate having dense and coarse areas, and then performs sputtering or etching on the first film.
US11557482B2
An electrode structure with an alloy interface is provided. In one aspect, a method of forming a contact structure includes: patterning a via in a first dielectric layer; depositing a barrier layer onto the first dielectric layer, lining the via; depositing and polishing a first metal layer (Element A) into the via to form a contact in the via; depositing a second metal layer (Element B) onto the contact in the via; annealing the first and second metal layers under conditions sufficient to form an alloy AB; depositing a third metal layer onto the second metal layer; patterning the second and third metal layers into a pedestal stack over the contact to form an electrode over the contact, wherein the alloy AB is present at an interface of the electrode and the contact; and depositing a second dielectric that surrounds the pedestal stack. A contact structure is also provided.
US11557477B2
An apparatus for treating a substrate includes a heat treatment chamber having an interior space, a housing that is provided in the interior space and that has a treatment space therein, a gas supply line that supplies, into the treatment space, a hydrophobic gas for hydrophobicizing the substrate, and a decomposition unit that decomposes an alkaline gas leaking from the treatment space to the interior space.
US11557474B2
A method for forming a doped layer is disclosed. The doped layer may be used in a NMOS or a silicon germanium application. The doped layer may be created using an n-type halide species in a n-type dopant application, for example.
US11557469B2
There is provided a gas analyzer apparatus including: a sample chamber which is equipped with a dielectric wall structure and into which only sample gas to be measured is introduced; a plasma generation mechanism that generates plasma inside the sample chamber, which has been depressurized, using an electric field and/or a magnetic field applied through the dielectric wall structure; and an analyzer unit that analyzes the sample gas via the generated plasma. By doing so, it is possible to provide a gas analyzer apparatus capable of accurately analyzing sample gases, even those including corrosive gas, over a long period of time.
US11557468B2
A heater controller controls power supplied to a heater capable of adjusting the temperature of a placement surface such that the heater reaches a set temperature. A temperature monitor measures the power supplied in the non-ignited state where the plasma is not ignited and in the transient state where the power supplied to the heater decreases after the plasma is ignited, while the power is controlled such that the temperature of the heater becomes constant. A parameter calculator calculates a heat input amount and the thermal resistance by using the power supplied in the non-ignited state and in the transient state to perform a fitting on a calculation model for calculating the power supplied in the transient state. A set temperature calculator calculates the set temperature of the heater at which the wafer reaches the target temperature, using the heat input amount and thermal resistance.
US11557465B2
According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate, a base plate, and first and second electrode layers. The ceramic dielectric substrate includes first and second major surfaces. The first and second electrode layers are provided inside the ceramic dielectric substrate. The second electrode layer is provided between the first electrode layer and the first major surface. The first electrode layer includes first and second portions. The first portion is positioned more centrally of the ceramic dielectric substrate than is the second portion. The first portion includes first and second surfaces. The second portion includes third and fourth surfaces. The third surface is positioned between the first surface and the second electrode layer. An electrical resistance of the first surface is less than an average electrical resistance of the first portion.
US11557463B2
In a vacuum processing apparatus including: a vacuum container including a processing chamber therein; a plasma formation chamber; plate members being arranged between the processing chamber and the plasma formation chamber; and a lamp and a window member being arranged around the plate members, in order that a wafer and the plate members are heated by electromagnetic waves from the lamp, a bottom surface and a side surface of the window member is formed of a member transmitting the electromagnetic waves therethrough.
US11557458B2
A reference image is generated based on an illumination condition and element information of a specimen. The reference image includes a figure indicating a characteristic X-ray generation range, a numerical value indicating a characteristic X-ray generation depth, or the like. The reference image changes with a change of an accelerating voltage, a tilt angle, or an element forming the specimen. The reference image may include a figure indicating a landing electron scattering range, a figure indicating a back-scattered electron generation range, or the like.
US11557455B2
The disclosed embodiments relate to a charged particle source module for generating and emitting a charged particle beam, such as an electron beam, comprising: a frame including a first frame part, a second frame part, and one or more rigid support members which are arranged between said first frame part and said second frame part; a charged particle source arrangement for generating a charged particle beam, such as an electron beam, wherein said charged particle source arrangement, such as an electron source, is arranged at said second frame part; and a power connecting assembly arranged at said first frame part, wherein said charged particle source arrangement is electrically connected to said connecting assembly via electrical wiring.
US11557452B2
An x-ray emitter includes an x-ray tube and an x-ray emitter housing. In an embodiment, the x-ray tube includes an evacuated x-ray tube housing, a cathode for emitting electrons and an anode for generating x-rays as a function of the electrons. Further, in an embodiment, the x-ray emitter housing includes the x-ray tube and outside of the x-ray tube, a gaseous cooling medium. In an embodiment, the x-ray emitter further includes a compressor for a forced convection of the gaseous cooling medium for cooling the x-ray tube, a pressure ratio between the intake side and pressure side of the compressor being greater than 1.3.
US11557448B2
In an embodiment a switching device includes at least one stationary contact in a switching chamber containing a gas comprising H2 and one movable contact in the switching chamber, wherein the switching chamber has a switching chamber wall and a switching chamber base, and wherein the switching chamber at least partially comprises a polymer material configured to release hydrogen when heated.
US11557440B2
In a first aspect, the present invention relates to a perovskite material comprising negatively charged layers alternated with and neutralized by positively charged layers; the negatively charged layers having a general formula selected from the list consisting of: Ln−1MnX3n+1, LnMnX3n+2, and Ln−1M′nX3n+3, and the positively charged layers comprising: one or more organic ammonium cations independently selected from monovalent cations Q and divalent cations Q′, or a polyvalent cationic conjugated organic polymer Z, wherein Q, Q′ and Z comprise each a π-conjugated system in which at least 8 and preferably at least 10 atoms participate, L is a monovalent cation, Mn are n independently selected metal cations averaging a valence of two, M′n are n independently selected metal cations averaging a valence equal to 2+2/n, X is a monovalent anion, and n is larger than 1.
US11557435B2
In a multilayer ceramic electronic component, a stacked body includes a first outer layer and a first outermost internal electrode layer. The first outer layer defines a first main surface. The first outermost internal electrode layer is adjacent to the first outer layer. The first outermost internal electrode layer is in contact with a first external electrode at a first end surface. The thickness of the first outer layer at the first end surface is greater than the thickness of the first outer layer at the center or approximate center in a length direction.
US11557428B2
A transformer is provided, which includes a tank having an enclosed volume with an insulating material, the tank including at least one channel extending through the tank, wherein the interior of the at least one channel is separated from the enclosed volume of the tank by a channel wall. A transformer core is provided outside of the enclosed volume, including at least one core leg extending through the tank via the at least one channel. At least one coil is located inside the enclosed volume, the coil being wound about the at least one channel, the tank has an inner wall or outer wall including a weakly-conductive layer, which includes fibers embedded in an impregnating material.
US11557426B2
An isolated switch-mode power supply includes at least one input, at least one output, and a power circuit coupled between the at least one input and the at least one output for converting an input voltage or current to an output voltage or current. The power circuit includes a transformer having one or more primary windings, one or more secondary windings, an electrical insulator, and a core magnetically coupling the one or more primary windings and the one or more secondary windings. Upper portions of the primary and secondary windings are covered with the electrical insulator. Other example switchmode power supplies, transformers, magnetic chokes and methods are also disclosed.
US11557418B2
A coil component includes: a core part including: a winding shaft; and a planar flange part provided at an axial-direction end of the winding shaft, and having a groove part provided on an exterior face thereof where a lead part led out from a conductor wound around the winding shaft into the groove part, wherein the flange part has a first recessed part provided on a first side face intersecting with the long axis of the groove part and communicated with the groove part, wherein the area of a cross section, taken in a direction parallel with the first side face, of the first recessed part, is greater than the area of a cross section, taken in a direction parallel with the first side face.
US11557409B2
A thermistor includes a thermistor element, a protective film formed on the surface of the thermistor element, and electrode portions formed on both end portions of the thermistor element, in which the protective film is formed of silicon oxide, and, as a result of observing a bonding interface between the thermistor element and the protective film, a ratio L/L0 of a length L of an observed peeled portion to a length L0 of the bonding interface in an observation field is 0.16 or less.
US11557407B2
An automated assembly sensor cable has a generally wide and flat elongated body and a registration feature generally traversing the length of the body so as to identify the relative locations of conductors within the body. This cable configuration facilitates the automated attachment of the cable to an optical sensor circuit and corresponding connector. In various embodiments, the automated assembly sensor cable has a conductor set of insulated wires, a conductive inner jacket generally surrounding the conductor set, an outer jacket generally surrounding the inner jacket and a registration feature disposed along the surface of the outer jacket and a conductive drain line is embedded within the inner jacket. A strength member may be embedded within the inner jacket.
US11557406B2
A method for manufacturing an electrically conductive composite material includes obtaining a composite material which includes a thermoplastic matrix and short carbon fibers and is free of carbon nanotubes, preheating a furnace until a predetermined target temperature is reached, inserting the composite material into the preheated furnace once the target temperature has been reached, and heating the composite material in the furnace at the predetermined target temperature which is kept constant for a predetermined duration.
US11557405B2
A nuclear fuel storage cask includes an outer shell having a length extending from a first end to a second end of the outer shell, the outer shell defining an inner cavity circumscribed by the outer shell, an outer perimeter extending around the outer shell, an inner perimeter positioned inward from the outer perimeter, and a cooling circuit extending along the length of the outer shell, the cooling circuit including an inner passage, and an outer passage, a coolant positioned within the cooling circuit, where the coolant is configured to move through the inner passage, absorbing heat from the inner cavity of the outer shell, and the coolant is configured to move through the outer passage, dissipating heat through the outer perimeter of the outer shell, and a lid coupled the outer shell, where the lid covers the inner cavity of the outer shell.
US11557404B2
A nanofuel engine including receiving nanofuel (including a molecular mixture, where the molecular mixture includes at least one molecule with dimensions on a nanometer scale) internally in an internal engine that releases nuclear energy, is set forth. A nanofuel chemical composition of fissile fuel, passive agent, and moderator. A method of operating a nanofuel engine loaded with nanofuel in spark or compression ignition mode. A method of cycling a nanofuel engine, including compressing nanofuel; igniting nanofuel; capturing energy released in nanofuel, which is also the working fluid; and using the working fluid to perform mechanical work or generate heat.
US11557397B2
The method comprises receiving a representation of a visual symbol, wherein the visual symbol comprises a code string identifying the garment that is encoded into the visual symbol (101). The method comprises establishing, based on the representation of the visual symbol, the identity of the garment (102). The method comprises transmitting, to the identified garment, an authorisation code to activate a sensor of the garment to record activity data (103).
US11557391B2
The pose and shape of a human body may be recovered based on joint location information associated with the human body. The joint location information may be derived based on an image of the human body or from an output of a human motion capture system. The recovery of the pose and shape of the human body may be performed by a computer-implemented artificial neural network (ANN) trained to perform the recovery task using training datasets that include paired joint location information and human model parameters. The training of the ANN may be conducted in accordance with multiple constraints designed to improve the accuracy of the recovery and by artificially manipulating the training data so that the ANN can learn to recover the pose and shape of the human body even with partially observed joint locations.
US11557390B2
Techniques for generating radiotherapy treatment plans and establishing machine learning models for the generation and optimization of radiotherapy dose data are disclosed. An example method for generating a radiotherapy dose distribution using a generative model, trained in a generative adversarial network, includes: receiving anatomical data of a human subject that indicates a mapping of an anatomical area for radiotherapy treatment; generating radiotherapy dose data corresponding to the mapping with use of the trained generative model, as the generative model processes the anatomical data as an input and provides the dose data as output; and identifying the radiotherapy dose distribution for the radiotherapy treatment of the human subject based on the dose data. Another example method for training of the generative model includes establishing values of the generative model and a discriminative model of the generative adversarial network using adversarial training, including in a conditional generative adversarial network arrangement.
US11557384B2
A graphical user interface, referred to herein as a virtual whiteboard, that provides both: (1) an automatically prioritized display of information related to a particular patient that is tailored to the current user of the system, and (2) a “scratch pad” area in which multiple users of the system may input free-form text and other data for sharing with other users of the system. When each user of the system accesses the virtual whiteboard, the system: (1) automatically prioritizes the patient information based on characteristics of the user and displays the automatically prioritized patient information to that user, and (2) displays the contents of the scratch pad to the user. As a result, the whiteboard displays both information that is tailored to the current user and information that is common to all users (i.e., not tailored to any particular user).
US11557373B2
A system for second lab testing of genetic materials is presented. The system includes a computing device configured to receive a specimen from a human subject and perform a smart test on the specimen. The smart test includes a first lab test configured to generate a first lab test identifying a first disease agent and a second lab test configured to generate a second lab test identifying a second disease agent, wherein identifying the second disease agent includes generating a second lab machine-learning model, training the second lab machine-learning model as a function of a second lab test training set, and outputting, as a function of the second lab machine-learning model, the second lab test result using specimen data as an input. The computing device is further configured to generate a smart test result as a function of the smart test.
US11557371B2
Methods, systems, and devices for imprint recovery for memory cells are described. In some cases, memory cells may become imprinted, which may refer to conditions where a cell becomes predisposed toward storing one logic state over another, resistant to being written to a different logic state, or both. Imprinted memory cells may be recovered using a recovery or repair process that may be initiated according to various conditions, detections, or inferences. In some examples, a system may be configured to perform imprint recovery operations that are scaled or selected according to a characterized severity of imprint, an operational mode, environmental conditions, and other factors. Imprint management techniques may increase the robustness, accuracy, or efficiency with which a memory system, or components thereof, can operate in the presence of conditions associated with memory cell imprinting.
US11557332B2
A semiconductor memory device includes a memory cell array, an error correction code (ECC) engine, a refresh control circuit, a scrubbing control circuit and a control logic circuit. The refresh control circuit generates refresh row addresses for refreshing a memory region on memory cell rows in response to a first command received from a memory controller. The scrubbing control circuit counts the refresh row addresses and generates a scrubbing address for performing a scrubbing operation on a first memory cell row of the memory cell rows whenever the scrubbing control circuit counts N refresh row addresses of the refresh row addresses. The ECC engine reads first data corresponding to a first codeword, from at least one sub-page in the first memory cell row, corrects at least one error bit in the first codeword and writes back the corrected first codeword in a corresponding memory location.
US11557331B2
Embodiments of the disclosure are drawn to apparatuses and methods for controlling refresh operations. Responsive to a refresh command, or one or more pumps generated responsive to the refresh command, different banks of a memory array may perform different types of refresh operations for a pump. In some examples, the type of refresh operation performed by a bank may vary from pump to pump of a refresh operation.
US11557330B1
Methods, systems, and devices for deck-level shunting in a memory device are described. A memory device may include memory arrays arranged in a stack of decks over a substrate, and a combination of deck selection circuitry and shunting circuitry may be distributed among the decks to leverage common substrate-based circuitry, such as logic or addressing circuitry. For example, each memory array of a stack may include a set of digit lines and deck selection circuitry, such as deck selection transistors or other switching circuitry, operable to couple the set of digit lines with a column decoder that may be shared among multiple decks. Each memory array of a stack also may include shunting circuitry, such as shunting transistors or other switching circuitry operable to couple the set of digit lines with a plate node, thereby equalizing a voltage across the memory cells of the respective memory array.
US11557324B2
Systems and methods are described for determining a first media item related to an event, of a plurality of stored media items each comprising video content related to the event, that was captured in a device orientation corresponding to a first device orientation detected for the first computing device; providing, to the first computing device, the first media item to be displayed on the first computing device; in response to a detected change to a second device orientation for the first computing device, determining a second media item that was captured in a device orientation corresponding to the second device orientation detected for the first computing device; and providing, to the first computing device, the second media item to be displayed on the first computing device.
US11557321B2
A data storage device configured to access a magnetic tape is disclosed, wherein the data storage device comprises at least one head configured to access the magnetic tape. A first plurality of data blocks are encoded into a first plurality of ECC sub-blocks including a first ECC sub-block, and the first plurality of ECC sub-blocks are encoded into a first ECC super-block. The first ECC sub-block is written to the magnetic tape, and a write-verify of the first ECC sub-block is executed by reading the first ECC sub-block. When the write-verify passes, a second plurality of data blocks are encoded into a second ECC super-block, and when the write-verify fails, a third plurality of data blocks and the first ECC sub-block are encoded into the second ECC super-block, wherein the second ECC super-block is written to the magnetic tape.
US11557317B2
The present disclosure generally relates to a read head of a data storage device. The read head includes a read sensor sandwiched between two shields. The shields can have different materials as well as a different number of layers. Furthermore the shields can be fabricated by different processes and have different heights and thicknesses. The ratio of the thickness to the height for the shields are substantially identical to ensure that the saturation field are substantially identical and balanced.
US11557315B2
The present disclosure generally relates to a magnetic media drive employing a magnetic recording head. The magnetic recording head comprises a main pole, an EAMR stack disposed on the main pole, and a trailing shield disposed on the EAMR stack. The EAMR stack comprises a seed layer disposed on the main pole, a spin torque layer disposed on the seed layer, and a spacer layer disposed on the spin torque layer. At least one surface of the spacer layer in contact with the spin torque layer has a smaller or reduced area than the spin torque layer. The at least one surface of the spacer layer in contact with the spin torque layer is recessed from a media facing surface and has a smaller cross-track width than the spin torque layer and a smaller width in the stripe height direction than the spin torque layer.
US11557312B2
According to one embodiment, a magnetic disk device includes a first disk, the second disk, and a first head which writes and reads to the first disk, a second head which writes and reads to the second disk, and a controller which calculates an estimated position at which the second head is estimated to be disposed on the second disk based on first relative position information related to a relative position in a radial direction between the first head and the second head when the first head is switched to the second head.
US11557310B2
A method for operating a voice trigger is provided. In some implementations, the method is performed at an electronic device including one or more processors and memory storing instructions for execution by the one or more processors. The method includes receiving a sound input. The sound input may correspond to a spoken word or phrase, or a portion thereof. The method includes determining whether at least a portion of the sound input corresponds to a predetermined type of sound, such as a human voice. The method includes, upon a determination that at least a portion of the sound input corresponds to the predetermined type, determining whether the sound input includes predetermined content, such as a predetermined trigger word or phrase. The method also includes, upon a determination that the sound input includes the predetermined content, initiating a speech-based service, such as a voice-based digital assistant.
US11557308B2
An electronic device measures noise variability of background noise present in a sampled audio signal, and determines whether the measured noise variability is higher than a high threshold value or lower than a low threshold value. If the noise variability is determined to be higher than the high threshold value, the device categorizes the background noise as having a high degree of variability. If the noise variability is determined to be lower than the low threshold value, the device categorizes the background noise as having a low degree of variability. The high and low threshold values are between a high boundary point and a low boundary point. The high boundary point is based on an analysis of files including noises that exhibit a high degree of variability, and the low boundary point is based on an analysis of files including noises that exhibit a low degree of variability.
US11557307B2
Embodiments include techniques and objects related to a wearable audio device that includes a microphone to detect a plurality of sounds in an environment in which the wearable audio device is located. The wearable audio device further includes a non-acoustic sensor to detect that a user of the wearable audio device is speaking. The wearable audio device further includes one or more processors communicatively to alter, based on an identification by the non-acoustic sensor that the user of the wearable audio device is speaking, one or more of the plurality of sounds to generate a sound output. Other embodiments may be described or claimed.
US11557306B2
A method and a system for speech enhancement including a time synchronization unit configured to synchronize microphone signals sent from at least two microphones; a source separation unit configured to separate the synchronized microphone signals and output a separated speech signal, which corresponds to a speech source; and a noise reduction unit including a feature extraction unit configured to extract a speech feature of the separated speech signal and a neural network configured to receive the speech feature and output a clean speech feature.
US11557304B2
Methods and apparatus for performing variable block length watermarking of media are disclosed. Example apparatus include means for evaluating a masking ability of a first audio block; means selecting a first frequency to represent a first code, the means for selecting to (i) select the first frequency selected from a first set of frequencies that are detectable when performing a frequency transformation using a first block length, but are not detectable when performing a frequency transformation using a second block length, and (ii) select a second frequency to represent a second code, the second frequency selected from a second set of frequencies that are detectable when performing a frequency transformation using the second block length; means for synthesizing a first signal having the first frequency with the masking ability of the first audio block; and means for combining the first signal with the first audio block.
US11557284B2
A method, system and computer program product for speech recognition using multiple languages includes receiving, by one or more processors, an input from a user, the input includes a sentence in a first language. The one or more processors translate the sentence to a plurality of languages different than the first language, and create vectors associated with the plurality of languages, each vector includes a representation of the sentence in each of the plurality of languages. The one or more processors calculate eigenvectors for each vector associated with a language in the plurality of languages, and based on the calculated eigenvectors, a score is assigned to each of the plurality of languages according to a relevance for determining a meaning of the sentence.
US11557279B2
A device for acoustic monitoring of a monitoring area includes first and second sensor systems which have first and second acoustic sensors, processors, and transmitter, respectively, and which may be mounted at different locations of the monitoring area. The first and second processors may be configured to classify first and second audio signals detected by the first and second acoustic sensors so as to obtain first and second classification results, respectively. The first and second transmitter may be configured to transmit the first and second classification results to a central evaluator, respectively. In addition, the device may include the central evaluator, which may be configured to receive the first classification result and to receive the second classification result, and to generate a monitoring output for the monitoring area as a function of the first classification result and the second classification result.
US11557277B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.
US11557267B2
A display device includes a first display area including a plurality of first pixel areas, a second display area including a plurality of second pixel areas and a plurality of transmission areas, a plurality of pixels arranged in a matrix form in the first and second display areas, and a first signal line and a second signal line disposed to correspond to each pixel column in the plurality of pixels. In each pixel column, one of the first and second signal lines may extend over the first and second display areas, and a remaining one of the first and second signal lines may not be disposed in the second display area.
US11557263B2
A display panel for displaying an image is provided with a plurality of pixels arranged in a matrix. Each pixel includes one or more units each including a plurality of subunits. Each subunit includes a transistor in which an oxide semiconductor layer which is provided so as to overlap a gate electrode with a gate insulating layer interposed therebetween, a pixel electrode which drives liquid crystal connected to a source or a drain of the transistor, a counter electrode which is provided so as to face the pixel electrode, and a liquid crystal layer provided between the pixel electrode and the counter electrode. In the display panel, a transistor whose off current is lower than 10zA/μm at room temperature per micrometer of the channel width and off current of the transistor at 85° C. can be lower than 100zA/μm per micrometer in the channel width.
US11557256B2
A display apparatus includes an active area, an inactive area surrounding the active area, a pixel disposed in the active area, and a driver IC, a gate driver, a low-potential power supply line, a high-potential power supply line and a subframe controller disposed in the inactive area, wherein the subframe controller is disposed between the pixel and the gate driver.
US11557255B2
A display device including: pixels coupled to first scan lines, second scan lines, emission control lines, and data lines; a first scan driver configured to supply a first scan signal to each of the first scan lines at a first frequency; a second scan driver configured to supply a second scan signal to each of the second scan lines at a second frequency corresponding to a driving frequency of the pixels; an emission driver configured to supply an emission control signal to each of the emission control lines at the first frequency; a data driver configured to supply a data signal to each of the data lines at the second frequency; and a timing controller configured to control the first scan driver, the second scan driver, the emission driver, and the data driver.
US11557248B2
According to one embodiment, a display device includes a display region where pixels are arranged. Each of the pixels includes a pixel electrode, a light emitting element, a drive transistor, a first capacitance electrode layer opposed to the pixel electrode and held at a constant potential, and an insulating layer forming an auxiliary capacitance together with the pixel electrode and the first capacitance electrode layer. A value of the auxiliary capacitance of the first pixel, of the values of the auxiliary capacitance of the pixels is the largest.
US11557245B2
A display device includes a display area and a non-display area adjacent to the display area; a first scan line that extends in a row direction and transmits a first scan signal; a first pixel part electrically connected to the first scan line; a second pixel part electrically connected to the first scan line and spaced apart from the first pixel part in the row direction; and a first inspection pad disposed between the first pixel part and the second pixel part and electrically connected to the first scan line.
US11557242B2
A display apparatus is disclosed, which comprises a display panel including pixels connected to the gate lines and data lines, a data driver configured to sequentially output data signals and output selection signals, and a distributor comprised of transistors connected to each of the data lines and switched in accordance with the selection signal to output the data signals sequentially output from each of a plurality of source channels to the connected data lines, wherein a cycle of each of the selection signals has a transistor-on period and a transistor-off period, a first cycle of a first selection signal among the selection signals is different from a second cycle of the first selection signal, and a first transistor-off period in the first cycle of the first selection signal is different from a second transistor-off period in the second cycle of the first selection signal.
US11557240B2
A driving controller includes an oscillator and a signal generator. The oscillator is configured to generate an oscillation signal based on an input current. The signal generator is configured to generate a gate driving signal and a data driving signal based on the oscillation signal. The oscillator is configured to maintain a frequency of one horizontal period of the oscillation signal to be constant when an oscillation fundamental frequency is shifted. When the oscillation fundamental frequency is f0 and a fundamental constant is N0, the frequency of one horizontal period is f0/N0.
US11557233B2
An information display system includes a frame, a pair of cameras arranged at both side ends of the frame, a transparent display fitted into the frame, a display position setting device that detects a target based on a feature extracted from image data captured by the pair of cameras, and sets, as a display position, a position at which a straight line connecting an eye of a user wearing the frame and the target passes through the transparent display, and a controller that controls the transparent display in such a way as to display a point light at the display position set by the display position setting device.
US11557229B2
The invention relates to an activatable adhesive label comprising a flexible web-shaped viewing material. At least one adhesive layer made of a moisture-activatable adhesive that is not adhesive in the dry state is applied onto one side of the flexible viewing material, wherein at least one central layer is provided which is designed to be adhesive and which is arranged between the viewing material and the adhesive layer.
US11557227B2
A machine and its modules assist in steganography for an animal. A steganography module applies behavioral sequencing to create a cover message and a hidden message to covertly pass information from one animal to another animal, with the information embedded in an individual's brain. A visual module references the steganography module to cause a sequence of visual images on a display screen to guide a motor sequence of an individual as the cover message as well as detect and communicate a timing of the individual's motor sequence, relative in timing, to visual images in the sequence of visual images being displayed on the display screen, in order to train in the cover message and hidden message. The hidden message is then extracted at a destination from a sensor monitoring the individual's sequence of motor actions.
US11557224B2
A system for spatial representation of regions of interest for a visually impaired or blind person, comprises the following elements: at least one tactile map comprising a top surface and a bottom surface, the tactile map having tactile reference marks on the top surface and corresponding contact areas on the bottom surface, each tactile reference mark corresponding to a region of interest; a keyboard with a matrix of contact points configured to come into contact with the corresponding contact areas in response to pressure exerted on the tactile map positioned on the keyboard; and an electronic audio box, which can be actuated by the keyboard, the electronic audio box being provided with a multitude of audio recordings, each audio recording being associated with each tactile reference mark on the top surface of the tactile map.
US11557223B2
A modular and reconfigurable chassis enables minimalization of inventory while facilitating ease of conversion into multiple configurations of a welding simulator. The modular and reconfigurable chassis permits both hardware and software related system configurations. The chassis is adapted to receive hardware interfaces for single and multiple user configurations.
US11557219B2
A method, a computer program product, and a computer system for generating and rating assessments is disclosed. Exemplary embodiments include gathering data relating to one or more specialized subject areas and generating a knowledge base based on extracting one or more concepts from the data. Exemplary embodiments further include generating one or more questions and one or more corresponding answer keys relating to the one or more concepts, as well as generating an assessment related to the one or more concepts based on the one or more questions and one or more answer keys.
US11557214B2
There is provided an information processing apparatus including a processor that obtains, from a first P2P database, evaluation information for evaluating learning of a user, which is obtained by an acquisition device, and performs evaluation on learning performed by the user on the basis of the evaluation information.
US11557195B2
An alarm management system includes a control arrangement, an alarm device, a blockchain, a blockchain application, and a plurality of nodal access sites. The arrangement includes a processor and a storage medium. The device is configured to output an event signal to the control arrangement. The blockchain is stored in the medium, and includes a plurality of transaction types. Each transaction type includes at least one linked transaction, and the at least one linked transaction is time stamped. The blockchain application is stored in the medium, and is executed by the processor, and is configured to time stamp each one of the transactions. The blockchain is applied by the application to determine a current associated transaction with any one of the transaction types, and output data associated with the current transaction. The plurality of nodal access sites are configured to receive and output the data associated with the current transaction.
US11557193B2
An emergency alarm system peripheral, such as a hazard detector, intrusion detector, or a notification appliance, includes a base that is permanently installed on a wall or ceiling, and a head which mounts to the base. Various embodiments and methods are provided to easily and efficiently assign addresses to the peripherals in the system.
US11557190B2
An alarm management module (13) is for a wastewater pumping station that includes at least one pump (9a, 9b) arranged for pumping wastewater out of a wastewater pit (1). The alarm management module (13) is configured to process at least one level variable (h) indicative of a filling level of the wastewater pit (1) and at least one capacity variable (p %, P %, C %) indicative of a pumping capacity of the wastewater pumping station. The alarm management module (13) is configured to trigger an intervention alarm only if all of the following conditions are met: a) the at least one level variable (h) is at or above a predetermined alarm level threshold (hm), b) the at least one level variable (h) is increasing, and c) the at least one capacity variable (p %, P %, C %) is below a capacity threshold.
US11557186B2
A security system is provided to integrate a local existing security system with other security and automation devices which may not be compatible with the existing security system. The security system can connect and integrate an existing security system, and provide a centralized point of controlling all existing and new security and automation devices in a premise, thereby allowing flexibility in modifying and expanding a security system in the premise without need of replacing the security system that has been already installed throughout the premise. The security system can at least partially self-program to communicate with an existing security system when the security system is connected to the existing security system.
US11557184B2
An alarm screen comprises a frame comprising a laser sensor, a processing unit, and a wireless transmitter embedded in a hollow interior. The frame comprises an opening for the laser sensor to project a laser beam outside of the alarm screen. The laser sensor projects the beam through the opening, makes a set of one or more measurements of a distance between the laser sensor and an object in a path of the laser beam, and sends the set of measurements to the processing unit. The processing unit is configured to compare the distance measurements received from the laser sensor with a threshold distance detect, and send one or more signals to the wireless transmitter when at least one of the distance measurements received from the laser sensor exceeds the threshold. The wireless transmitter is configured to receive signals from the processing unit and wirelessly transmit the signals.
US11557166B2
A vending machine system for loading and dispensing pre-baked unpackaged food including a fixed cartridge disposed in a refrigerator of a vending machine, and a transport cartridge adapted to removably attach to the fixed cartridge, the transport cartridge operable for holding trays of unpackaged food and loading the trays of unpackaged food from the transport cartridge into the fixed cartridge, wherein, when the transport cartridge is removably attached to the fixed cartridge, a front opening of the transport cartridge aligns with a front opening of the fixed cartridge, and wherein the rack of the transport cartridge aligns with the conveyor system of the fixed cartridge such that trays of unpackaged food within the transport cartridge can simultaneously be transitioned from the rack to the conveyor system.
US11557165B2
A vending machine system for loading and dispensing pre-baked unpackaged food including a fixed cartridge disposed in a refrigerator of a vending machine, and a transport cartridge adapted to removably attach to the fixed cartridge, the transport cartridge operable for holding trays of unpackaged food and loading the trays of unpackaged food from the transport cartridge into the fixed cartridge, wherein, when the transport cartridge is removably attached to the fixed cartridge, a front opening of the transport cartridge aligns with a front opening of the fixed cartridge, and wherein the rack of the transport cartridge aligns with the conveyor system of the fixed cartridge such that trays of unpackaged food within the transport cartridge can simultaneously be transitioned from the rack to the conveyor system.
US11557158B2
A testing system for interfacing with a vehicle diagnostic system and performing a diagnostic test on a vehicle. The testing system includes a housing configured to at least partially retain a processor in circuit communication with test circuitry configured to selectively communicate with vehicle's onboard diagnostic system via a test cable. The test cable retrieves diagnostic data from the onboard diagnostic system, and the processor performs a diagnostic test which is sent to an output device for displaying the test results. Results are transmitted to a computing device comprising an application system having an interpreter for displaying diagnostic data on a display of the computing device.
US11557145B2
A photo sensor, a manufacturing method thereof, and a display panel are disclosed. By an ion implantation method forming an N-type region and a P-type region on a surface of polycrystalline silicon in a same layer respectively, compatibility with an ion implantation process is ensured, while covering a layer of an amorphous silicon photosensitive layer on the polycrystalline silicon enhances light absorption ability and can increase photo-generated electron-hole pairs. Furthermore, built-in electric fields exist on a horizontal direction and a vertical direction, which can more effectively separate the electron-hole pairs to enhance photo-generated electric current to improve accuracy of fingerprint recognition.
US11557143B2
A display panel includes an array substrate, a protective cover, a fingerprint identification circuit, and an optical structure. The array substrate and the protective cover are disposed oppositely, where the protective cover is located at a light exiting side of the array substrate. The fingerprint identification circuit is located at a side of the array substrate facing away or toward the protective cover and is configured to receive detection light and perform a fingerprint detection according to the detection light. The optical structure is located at a side of the protective cover facing away from the array substrate and is configured to increase a reflection amount of the detection light received by the fingerprint identification circuit.
US11557138B2
A display apparatus includes circuitry to accept input of handwriting data, perform recognition processing of the handwriting data, and control frequency of the recognition processing in accordance with a power supply state of the display apparatus.
US11557137B2
The system includes a metric map creation unit configured to create a metric map using first image data received from a 3D sensor, an image processing unit configured to recognize an object by creating and classifying a point cloud using second image data received from an RGB camera; a probability-based map production unit configured to create an object location map and a spatial semantic map in a probabilistic expression method using a processing result of the image processing unit, a question creation unit configured to extract a portion of high uncertainty about an object class from a produced map on the basis of entropy and ask a user about the portion, and a map update unit configured to receive a response from the user and update a probability distribution for spatial information according to a change in probability distribution for classification of the object.
US11557135B2
In one aspect, a computerized method for anti-counterfeiting solution using a machine learning (ML) model includes the step of providing a pre-defined set of feature detection rules, a pre-defined set of edge detection rules, a pre-defined threshold percentage, an original seal, an original fingerprint of the original seal, and a pre-trained fingerprint identification model. The pre-trained fingerprint identification model is trained by a specified ML algorithm using one or more digital images of the original seal. With a digital camera of a scanning device, the method scans a seal whose authenticity is to be determined. The seal is used to secure a transportation container. The method uses the pre-defined set of feature detection rules to detect and extract an extracted feature image at a specified position on the seal. The method breaks down the extracted feature image of the seal into a ‘kn’ number of sub-images by forming a ‘k’ rows x ‘n’ columns of a grid of the extracted feature image. The method implements the pre-defined set of edge detection rules to extract an edge structure of at least one object in each of the ‘kn’ number of sub-images. The method generates a set of unique fingerprints by specified steps. The method includes generating a unique fingerprint corresponding to a unique number or a feature based on each extracted edge structure. For the set of unique fingerprints, the method generates a match percentage for the set of unique fingerprints using the pre-trained fingerprint identification model. The match percentage corresponds to a matching proportion between each unique fingerprint generated for the seal being verified and the original fingerprint of the original seal on which the pre-trained fingerprint identification model is trained.
US11557125B2
A method for monitoring the environment of a vehicle includes evaluating physical measurement data obtained from the environment of the vehicle to determine whether at least one person is approaching the vehicle, how many people approach the vehicle may also be recorded. The method includes evaluating physical measurement data obtained from the environment of the vehicle to determine whether at least one person is moving away from the vehicle and, if appropriate, the number of people that are moving away from the vehicle is also recorded. The method further includes carrying out a check as to whether the number of people that have moved away from the vehicle corresponds to the number of people that have previously approached the vehicle. In response to the check resulting in a difference, it is determined that the vehicle is in an unsafe state.
US11557122B2
A control apparatus including an extraction unit configured to extract a subject from an image captured by an image capturing apparatus, an estimation unit configured to estimate a skeleton of the subject extracted by the extraction unit and a control unit configured to control an angle of view of the image capturing apparatus based on a result of the estimation by the estimation unit.
US11557114B2
Disclosed are methods, systems, and non-transitory computer-readable medium for color and pattern analysis of images including wearable items. For example, a method may include receiving an image depicting a wearable item, identifying the wearable item within the image by identifying a face of an individual wearing the wearable item or segmenting a foreground silhouette of the wearable item from background image portions of the image, determining a portion of the wearable item identified within the image as being a patch portion representative of the wearable item depicted within the image, deriving one or more patterns of the wearable item based on image analysis of the determined patch portion of the image, deriving one or more colors of the wearable item based on image analysis of the determined patch portion of the image, and transmitting information regarding the derived one or more colors and information regarding the derived one or more patterns.
US11557113B2
The present disclosure is related to an optical encoder which is configured to provide precise coding reference data by feature recognition technology. To apply the present disclosure, it is not necessary to provide particular dense patterns on a working surface. The precise coding reference data can be generated by detecting surface features of the working surface.
US11557104B2
A system and method for providing positional error correction for particles of destructible objects in a three-dimensional volume in a virtual space includes electronic storage to store center-of-mass information of a set of objects, using a high-precision floating point format. Prior to runtime and/or interactive manipulation of the set of objects, a texture map is generated that includes positional information in a floating point format having less precision than the high-precision floating point format. A simulation uses this texture map to determine simulated center-of-mass information of the set of objects. This simulated center-of-mass information is compared with the previously stored center-of-mass information to determine which objects have positional errors, and which offsets are needed to correct the positional errors. The stored center-of-mass information is adjusted by the determined offsets, such that subsequent use, during interactive runtime, has no or reduced positional errors and/or artifacts caused by positional errors.
US11557097B2
According to an aspect, a method for sharing a collaborative augmented reality (AR) environment including obtaining, by a sensor system of a first computing system, visual data representing a physical space of an AR environment, where the visual data is used to create a three-dimensional (3D) map of the physical space. The 3D map includes a coordinate space having at least one virtual object added by a user of the first computing system. The method includes broadcasting, by a transducer on the first computing system, an ultrasound signal, where the ultrasound signal includes an identifier associated with the 3D map. The identifier is configured to be detected by a second computing system to join the AR environment.
US11557096B2
Interactive content can be managed and provided to occupants of an automated vehicle to enhance their experience while in the vehicle. Orchestrator component can determine interactive content based on conditions associated with the vehicle, user preferences, video content, or other information. Interactive content can comprise video content, audio content, and control content. Video content can comprise augmented reality or virtual reality content. Control content can be used to control vehicle operation in relation to or synchronization with presentation of video content. Orchestrator component can correlate between certain roads on which the vehicle can travel and entertainment presentations presented to a vehicle occupant. Orchestrator component can control vehicle operation to have the vehicle recreate a vehicle action sequence (VAS) in a video program being presented to the occupant in the vehicle. Orchestrator component can notify nearby vehicles when VAS is be recreated, or another vehicle also can participate in VAS.
US11557084B2
Techniques for generating aligned, augmented reality views are disclosed. In some embodiments, an estimate of a floorplan of a three-dimensional space is first generated based on one or more received views of the three-dimensional space from a camera located in the three-dimensional space. A camera pose of the camera in the three-dimensional space is next determined based on generating a corrected floorplan from the estimate of the floorplan based on foreknowledge associated with the floorplan. Display of a rendering having the determined camera pose is facilitated in an actual view of the camera, resulting in an aligned, augmented reality view.
US11557083B2
The present disclosure discloses a photography-based 3D modeling system and method, and an automatic 3D modeling apparatus and method, including: (S1) attaching a mobile device and a camera to the same camera stand; (S2) obtaining multiple images used for positioning from the camera or the mobile device during movement of the stand, and obtaining a position and a direction of each photo capture point, to build a tracking map that uses a global coordinate system; (S3) generating 3D models on the mobile device or a remote server based on an image used for 3D modeling at each photo capture point; and (S4) placing the individual 3D models of all photo capture points in the global three-dimensional coordinate system based on the position and the direction obtained in S2, and connecting the individual 3D models of multiple photo capture points to generate an overall 3D model that includes multiple photo capture points.
US11557077B2
Systems and methods are described for retexturing portions of surface in a 2-D image, where the surface is an image of a 3-D object. The systems and methods analyze, with user input, the 2-D image and then, in computer memory, generate a 3-D model of the imaged surface. The surface may then be retextured, that is, for example, artwork may be added to the 2-D image in a realistic manner, taking into account a 3-D geometry in the scene of the 2-D image.
US11557072B2
The present invention discloses a clustering algorithm-based multi-parameter cumulative calculation method for lower limb vascular calcification indexes, including the following steps: firstly carrying out super-pixel segmentation of a CT image, and enabling calcified spots in the CT image to be segmented in each super-pixel region; after the super-pixel segmentation is accomplished, extracting a brightness characteristic value of a super-pixel region where the calcified spots are located by using a Lab color space, and performing edge detection and contour extraction on the calcified spots in the image; and after edge detection and contour extraction, fitting the calcified spots in the image by using a segmented ellipse, and extracting the area of the calcified spots after optimizing an ellipse contour.
US11557066B1
A method and a system for processing an image and transform it into a high resolution and high-definition image using a computationally efficient image transformation procedure is provided. The transformation of the image comprises receiving an intensity image and generating an application programming interface (API) call for transforming the received intensity image. The API call is then transmitted to an image processing server for transforming the intensity image into a layered distance field (DF) image. Further, a response is received from the image processing server, wherein the response comprises one or more functions for obtaining the layered DF image.
US11557061B2
Sensors coupled to a vehicle are calibrated, optionally using a dynamic scene with sensor targets around a motorized turntable that rotates the vehicle to different orientations. One vehicle sensor captures a representation of one feature of a sensor target, while another vehicle sensor captures a representation of a different feature of the sensor target, the two features of the sensor target having known relative positioning on the target. The vehicle generates a transformation that maps the captured representations of the two features to positions around the vehicle based on the known relative positioning of the two features on the target.
US11557060B2
According to at least one aspect, a system for scanning an object is provided. The system comprises at least one hardware processor; and at least one non-transitory computer-readable storage medium storing processor executable instructions that, when executed by the at least one hardware processor, cause the at least one hardware processor to perform: generating a first 3-dimensional (3D) model of the object; identifying a set of imaging positions from which to capture at least one image based on the first 3D model of the object; obtaining a set of images of the object captured at, or approximately at, the set of imaging positions; and generating a second 3D model of the object based on the set of images.
US11557058B2
A machine vision-based method and system to facilitate the unloading of a pile of cartons within a work cell are provided. The method includes the step of providing at least one 3-D or depth sensor having a field of view at the work cell. Each sensor has a set of radiation sensing elements which detect reflected, projected radiation to obtain 3-D sensor data. The 3-D sensor data including a plurality of pixels. For each possible pixel location and each possible carton orientation, the method includes generating a hypothesis that a carton with a known structure appears at that pixel location with that container orientation to obtain a plurality of hypotheses. The method further includes ranking the plurality of hypotheses. The step of ranking includes calculating a surprisal for each of the hypotheses to obtain a plurality of surprisals. The step of ranking is based on the surprisals of the hypotheses.
US11557048B2
A system for obtaining a measurement representative of a thickness of a layer on a substrate includes a support to hold a substrate, an optical assembly to capture two color images with light impinging the substrate at different angles of incidence, and a controller. The controller is configured to store a function that provides a value representative of a thickness as a function of position along a predetermined path in a coordinate space of at least four dimensions. For a pixel in the two color images, the controller determines a coordinate in the coordinate space from the color data, determines a position of a point on the predetermined path that is closest to the coordinate, and calculates a value representative of a thickness from the function and the position of the point on the predetermined path.
US11557040B2
An improved method for examining an article by using a vision system is presented. Also presented is a vision system for use within such a method.
US11557039B2
An image processing apparatus selects one or a plurality of examinations to which a medical image belongs, determines image processing candidate examinations based on the selected one or plurality of examinations, displays medical images belonging to the determined image processing candidate examinations on a display unit, and executes image processing using, of the displayed medical images, a plurality of medical images selected by a user, wherein, when the one examination is selected, the selected one examination and one or a plurality of examinations obtained by a search based on the selected one examination are determined as the image processing candidate examinations, and when the plurality of examinations are selected, in the determining, the selected plurality of examinations are determined as the image processing candidate examinations.
US11557033B2
A method, a computer program product, and a computer system for classifying bacteria. The method comprises extracting a morphology signature corresponding to one or more bacteria and extracting a motility signature corresponding to the one or more bacteria. The method further comprises merging the morphology signature and the motility signature into a merged vector signature and classifying the one or more bacteria based on the merged vector signature.
US11557024B2
Provided is a processing apparatus including a processing unit that is connected to a data bus, and performs control involved with an image which is output by each of a plurality of image sensors connected to the data bus, through the data bus.
US11557017B2
This technology relates to rasterizing and compositing vector graphics in parallel on a data-parallel computing device. For example, vector data of the vector graphics, may be loaded into local memory accessible by the one or more parallel processors. The vector data may include one or more paths comprised of one or more path segments of the vector graphics. The one or more parallel processors may rasterize the one or more path segments into respective rasters and assign each of the rasters into groups based on pixel coordinates of the respective rasters. Each group may have an associated key and the rasters within each group represent a portion of the same vector graphic. The rasters may be placed onto subpixels according to their respective pixel coordinates and rendered onto a display by the one or more parallel processors.
US11557016B2
Methods and systems for tracking image senders using client devices are described herein. A computing system may receive an image containing a first watermark vector corresponding to a user account of an image sender. The computing system may convert the image to a frequency domain image that contains the first watermark vector. From the frequency domain image, the computing system may identify the first watermark vector. The computing system may compare the first watermark vector to each of a plurality of stored watermark vectors, each corresponding to a known user account, to determine a probability of a match. The computing system may determine the user account of the sender of the image by determining which of the plurality of stored watermark vectors has a highest probability of a match, and may send, to a workplace administrator platform, an indication of the user account.
US11557014B2
The present disclosure relates an evacuation management system, EMS, (40, 52, 60, 00, 200) operative to provide real-time evacuation information for evacuation of a building, triggered by alarm notification (S202). Based on determined (S214) precise real-time positions of personal ultra-wide band, UWB, devices, as determined by UWB real-time localization system, RTLS, a controller determines (S210) evacuation plans being personal UWB device specific in real-time. Based on individual evacuation plans and input from building facilities, real-time guidance information is defined (S208) and sent to each personal UWB device, providing guidance to person carrying said personal UWB device, in what direction to move (S212), to reach a safe area. Based on localization signals the UWB RTLSA then calculates updated positions of the personal UWB devices and sends to the evacuation management system. It is an advantage that trapped or injured people can be found, even in low visibility areas.
US11557010B2
Multiple record management functionality can be used for bulk PNR creation. The multiple record management functionality can take a structured input file containing travel requests and process the requests, such as by a set of client-specific rules, to create shell PNRs with the air segments and profile information included. The multiple record management functionality can also provide a reporting capability to detail the outcome of individual requests or a set of requests. Preference-driven bookings can be made based on a customer-defined overall value proposition. Bookings can be made for non-profiled travelers.
US11557006B2
A method for calculating a total transmission probability within a social network based on timing includes a path probability calculating step, a first binary-addition tree searching step, a second binary-addition tree searching step and a transmission probability calculating step. The path probability calculating step is performed to calculate a plurality of time-path probability matrices from the social network. The first binary-addition tree searching step is performed to enumerate a plurality of feasible spread vectors and a plurality of 1-lag temporal vectors. The second binary-addition tree searching step is performed to enumerate a plurality of time-slot vectors of each of the 1-lag temporal vectors. The transmission probability calculating step is performed to calculate the total transmission probability of the social network. The time-path probability matrices are corresponding to a plurality of time values, and the time values are in the specific time and different from each other.
US11556992B2
Systems and methods are described in relation to specific technical improvements adapted for machine learning architectures that conduct classification on numerical and/or unstructured data. In an embodiment, two neural networks are utilized in concert to generate output data sets representative of predicted future states of an entity. A second learning architecture is trained to cluster prior entities based on characteristics converted into the form of features and event occurrence such that a boundary function can be established between the clusters to form a decision boundary between decision regions. These outputs are mapped to a space defined by the boundary function, such that the mapping can be used to determine whether a future state event is likely to occur at a particular time in the future.
US11556991B1
Disclosed in some examples are methods, systems, machine readable mediums that provide a network-based joint investment platform that enforces agreed-upon decision rules on jointly managed investments and provides collaboration and decision-making support tools for joint managers to make decisions about taking actions related to one or more jointly-managed assets. The platform may provide for configuring a plurality of decision rules that identify which managers can take which actions and under what conditions. The joint investment platform may enforce the decision rules by requesting any specified approvals according to the decision rules. Once those rules are satisfied, the joint investment platforms may execute the requested actions. If the required approvals are not obtained, or the rules provide no path to approval, the action may not be executed.
US11556989B2
An enhanced system and method for handling, matching and executing a diverse group of limit-priced orders in an electronic options environment is disclosed. Most of the order types disclosed are automatically repriced and reposted as the NBBO changes to increase their execution opportunities. Market maker entitlements are integrated with the order processing, so that the market maker is guaranteed an allocation of the trade if the market maker is at the NBBO when an order priced at or better than the NBBO is received. Once posted to the order book, the displayed price of an order may be eligible for preferential execution in a market maker entitlement process, regardless of whether the displayed price is original or has been automatically repriced.
US11556986B2
Aspects of the disclosure relate to enhanced tracking of processed events. A computing platform may receive event processing identifiers corresponding to a particular event. Using the event processing identifiers, the computing platform may generate event linkage information corresponding to the particular event, and may store the event processing identifiers along with the event linkage information. The computing platform may receive a request to access event lifecycle information corresponding to the particular event. Using the event linkage information, the computing platform may identify a plurality of event processing systems performed actions associated with the particular event. The computing platform may request and receive, from each of the plurality of event processing systems, system-specific event lifecycle information corresponding to the particular event. The computing platform may send an event lifecycle interface and one or more commands directing an administrator computing device to display the event lifecycle interface.
US11556977B2
An electronic device according to various embodiments of the present invention may include an antenna module configured to sense an electromagnetic (EM) signal generated from an external electronic device, a communication module, a processor operatively connected to the antenna module and the communication module, and a memory storing instructions which, are configured to, when executed, cause the processor to identify the external electronic device based on at least part of the EM signal sensed from the external electronic device via the antenna module, identify whether the identified external electronic device is registered in a designated control application, and provide information related to the external electronic device based on whether the external electronic device is registered. In addition, other various embodiments of the present invention may be possible.
US11556973B2
Techniques for transforming transaction data to subscription data using disparate computing platforms is described, including receiving an input configured to request data associated with a product, generating javascript used to render a web page including the data retrieved using a product identifier, invoking a controller script to request a widget file generated compositely to include an offer identifier, a session identifier, a merchant identifier, and the product identifier, calling a platform associated with the second server to determine whether a subscription is associated with the product identifier, and injecting the data, other data, and further data in a composite interface that is configured to simultaneously present a shopping cart with product content and subscription content.
US11556972B2
A computer software application (APP) is programmed into a smartphone. The smartphone allows a user to access various concessions and facilitate ordering items such as food, beverages, souvenirs, and memorabilia. The APP allows the user to input their seat location so the vendor can locate the user to deliver what has been ordered. The APP includes information concerning the user. The concessionaires all have a communication device allowing them to receive orders from users and to fulfill them.
US11556968B2
Systems and methods for providing price quotes for 3D objects are described herein. In one embodiment, costs related to generating a 3D object molded from a 3D printer mold may be based on various parameters. The process for generating a price quote may include uploading an initial file to a server and converting that file into a 3D CAD file. The method may also include selecting units, materials, a finish, and/or a quantity of objects to be made. Based on the selections, the server may generate a price quote to produce the one or more objects, and a checkout option may be provided allowing the user to purchase the one or more objects.
US11556958B2
The present invention provides a novel approach for consumer-driven interaction with sequencing data or genomic information. Sequencing data access, for users with a variety of access and permissions, may be mediated by a central hub. The hub may also facilitate access to the sequencing data for third party software applications. The hub may also provide data analysis or may have access to analyzed data to use such data in providing a user interface for a genome owner or for non-owner secondary users of the system.
US11556954B2
An on-line marketplace provides systems and methods for a mutually beneficial messaging campaign with one or more merchants, in order to promote the merchants' products. One aspect of the messaging campaign includes augmenting the merchants' budgets across multiple commercial channels. The channels may include merchant-operated channels, marketplace-operated channels, and/or third party channels. The marketplace selects when and how to augment the merchants' budgets. The augmented budget comprises an overall content budget for the messaging campaign, including a first budget portion provided by the merchant(s) and a second budget portion provided by the on-line marketplace. The augmented budget may be determined based on a weighted combination of goals of the marketplace and one or more merchants. The augmented budget may be segmented into static and dynamic portions, in which the dynamic portion is varied between channels to determine variables to optimize budget allocation and message performance.
US11556951B1
Systems, methods, and apparatuses for facilitating augmented reality (AR) rewards are described herein. The system includes a sensor network configured to transmit and receive sensor data within an environment. A first user device associated with a first user and a second user device associated with a second user are configured to communicate with the sensor network and determine a position and an entity positioning characteristic of the first user and the second user, respectively. A computing device is configured to receive the sensor data including the position and entity position characteristics of the first and second users. The computing device is also configured to determine a behavior of the first and second users based on the received data. The computing device is also configured to generate a plurality of reward tokens. Each of the reward tokens is associated with a behavior characteristic.
US11556948B2
A method for awarding blockchain mining fees based on recycling efforts includes: receiving recycling data for each of a plurality of mining systems including an amount of recycled materials associated with the respective mining system; receiving validation data for each mining system from third party entities including, for each mining system, a confirmation of the amount of recycled materials for the respective recycling data; selecting one of the mining systems, which is weighted based on the amount of recycled materials for the respective mining system compared to a total amount of recycled materials for all mining systems; and receiving a new block generated by the selected mining system including a block header and a plurality of blockchain data values including a blockchain data value corresponding to a blockchain transaction for payment of mining fees for the new block to a wallet associated with the selected mining system.
US11556947B2
Systems, methods, and apparatus are described herein for determining a location from anonymous data. For example, a computing device may receive anonymous data associated with a browser session initialized by a user via a browser on a user computing device. The computing device may determine that the user has not been assigned a unique identifier. The computing device may determine whether the user opted-in to location tracking. If the user opted-out of location tracking, the computing device may determine a latitude coordinate and a longitude coordinate of the user computing device during the browser session. The computing device may identify a physical address for the user based on the latitude coordinate and the longitude coordinate, for example, using a map application programming interface (API). The computing device may assign the unique identifier to the user. The computing device may associate the unique identifier to the physical address.
US11556945B1
Systems and methods are disclosed to implement an item metric prediction system that predicts a metric for an item using a feature-based model built using other similar items. In embodiments, the system is used to predict item influence values (IIVs) of items indicating an expected amount of subsequent transactions that is caused by an initial transaction of the items. In embodiments, a sample of item transaction data is distributed to a plurality of task nodes, which execute in parallel to determine the items' observed IIVs from the transaction data. Subsequently, a new IIV is determined for an item whose observed IIV has a low confidence level. A set of similar items is selected, and a set of parameters of a feature-based model are tuned to fit the model to the observed IIVs of the similar items. A new IIV having a high confidence level is then obtained using the model.
US11556942B2
A content consumption monitor (CCM) generates intent data that identifies topics of real-time interest to users. The CCM uses the intent data to direct information to more interested audiences and reduce the information noise/overload that may prevent users from viewing information. This targeted information may increase user conversion rates for seminars, advertising, documents downloads, or any other activity associated with published information. In one example, the CCM generates the intent data from third party content. Using a wide variety of third party content enables the CCM to better identify current user interests. The CCM may aggregate the intent data for different demographics, such as for companies, job positions, age, gender, or geographic locations.
US11556941B2
The present disclosure provides a mechanism for facilitating appropriate pricing for an item to be listed for sale on an electronic commerce platform. In an information processing method, one or a plurality of processors included in an information processing device performs: obtaining first item information of a first item; performing sales evaluations for price ranges of the first item and obtaining evaluation information on the sales evaluations, the sales evaluations being performed based on sales information of second items matched with or similar to the first item, the second items being extracted by using the first item information from among items registered in an electronic commerce platform; and performing control to display the sales evaluations for the price ranges of the first item by using a plurality of regions identifiably on a screen, based on the evaluation information.
US11556937B2
Systems, methods, and computer programmable products are described herein for situational handling using a virtual reality application. A procurement system receives an order including one or more goods and a situation. A cloud platform receives sensor data of a package containing the one or more goods. A scanner scans the package and a storage location of the package. The procurement system provides the storage location to an virtual reality (VR) application for display and a notification of the situation once it occurs.
US11556936B1
A system and method for card control includes a card control computing system configured to enforce a card control rule based upon transactions made with a payment card. The card control computing system includes a memory unit configured to store information associated with a card control dashboard, and a processing unit configured to cause presentation of the card control dashboard via a display associated with a remote computing device, such that the card control dashboard is associated with the payment card and the card control rule. The card control dashboard includes a user interface. The processing unit is further configured to receive an input via the user interface to activate or deactivate one or more features associated with the card control rule, and trigger the card control rule based upon the one or more features that are activated or deactivated.
US11556934B1
A heuristic engine includes capabilities to collect an unstructured data set and detect instances of transaction fraud in a financial account. By providing a heuristic algorithm with unstructured transaction sets and indications of particular instances of transactions that correlate with past fraudulent activity allows prevention of future occurrences of fraud. Such heuristic algorithms may learn from past indications of fraudulent activity and improve accuracy of detection of future fraud detections.
US11556928B2
A method for filtering blockchain value transfer transactions and updating filtering including receiving a transaction request comprising an indication that the transaction request is associated with an update to an existing transaction smart contract, defining an updated transaction smart contract, applying a filter smart contract to the transaction request, and recording to a log an indication that the updated transaction smart contract was made to the existing smart transaction contract, responsive to the applying the filter smart contract.
US11556927B2
The present disclosure relates to systems and methods for creating and using personas. The method includes receiving a first set of input signals associated with data from one or more source; receiving a second set of input signals associated with data from one or more source; converting the first set of input signals and the second set of input signals to a wavelet; constructing a persona based on the wavelet; storing the persona in a ledger; receiving a request for a decision related to a transaction; converting the request to a new wavelet; determining a difference between the new wavelet and the stored persona; generating a score based on the difference; and authorizing the transaction based on the score.
US11556922B2
A method for conversion of digital assets to fiat currency using a secondary blockchain and mirrored accounting includes: receiving transaction data corresponding to a first blockchain transaction processed using a first blockchain, the transaction data including a payer identifier, recipient identifier, and blockchain currency amount; validating an entity as an authorized entity associated with the payer identifier; determining a fiat currency amount based on the blockchain currency amount; generating a second blockchain transaction, the second blockchain transaction including an unspent transaction output, destination address associated with the authorized entity, and the blockchain currency amount and/or the fiat currency amount; confirming addition of the second blockchain transaction to a second blockchain; and initiating a transfer for the fiat currency amount from a first transaction account to a second transaction account, the second transaction account being associated with the authorized entity.
US11556911B2
An equipment rental system comprising a kiosk, the kiosk comprising a user interface configured to receive user input and provide outputs to a user, a processor configured to receive the user input from the user interface, generate user output and control a locker system; and a locker system configured to store the equipment and allow access to the equipment under control of the processor, the processor configured to: receive log in and credential information form a user via the user interface, present the user a choice of equipment, receive a selection of equipment through the user interface, gather payment information from the user through the user interface, wherein the payment information corresponds to a period of use for the selected equipment, and control the locker system to make the selected equipment available to the user.
US11556910B2
A cash-dispensing machine (e.g., a casino kiosk or bank ATM) enables a user to use a bank card (e.g., a credit or debit card) to purchase a negotiable instrument via a quasi-cash transaction, redeem the negotiable instrument, and dispense paper currency for the redeemed negotiable instrument without having to go elsewhere (e.g., a casino cage) to redeem the negotiable instrument. The machine enables a user-verification process to be performed to verify the identity of the user before allowing the negotiable instrument to be redeemed.
US11556907B2
Systems and methods for real-time account access, allowing access to accounts (such as deposit, credit, or debit accounts) through network processing infrastructures such as Electronic Funds Transfer (EFT). In some embodiments, consumers and/or merchants are able to effect transaction requests against accounts, using a pseudo-identifier or other identifier, and without the need to provide an account number or card number. In other embodiments, payment networks are able to route and process transaction requests against accounts, without having a card number or account number. In other embodiments, account processing systems are able to determine an appropriate account based on transaction requests that do not contain card numbers or account numbers.
US11556895B2
A system, computer program product and method for providing high delivery performance in a value chain network utilizing a finite capacity planning and scheduling model. The system includes a plurality of remote computers in communication with a respective plurality of remote users, a service provider computer having a computer program stored in non-transient memory and one or more microprocessors, a network interface in communication with the central server and the plurality of remote computers over a shared network, a shared database, having a master data repository and an execution data repository, in communication with the service provider computer, a multi-party module configured to onboard the plurality of remote users onto the shared network via the network interface, a real-time module configured to manage in real-time a shared data model common to at least a portion of the plurality of remote users, a permissibility network module having a permission system, a control system and software tools that manages access permissions to the shared network, the master data repository and to the execution data repository, and a planner module having an initial overall planning module and re-planning module. The re-planning module is configured to re-plan upon a change in condition in the value chain network and to limit planning to only those portions of the value chain network affected by the change in condition. Each of the plurality of remote users represents one of a plurality of entities in a value chain. Each of the plurality of remote users has at least one of a plurality of roles. The network interface is configured to receive one or more transactions via the shared network. The value chain network has shared access to a shared database on the service provider computer over the shared network. The shared data model is in communication with the master data repository and the execution data repository. The permission system is configured to provide access permissions to the plurality of remote users using predefined configuration settings. The control system includes rules that vary for each of the plurality of entities and by the respective role of the plurality of remote users. The rules define the read, write, edit and delete permissions and access rights to specific portions of the shared data model. The service provider computer is configured to: (i) provide access to the shared network to the plurality of remote computers based on the respective access permission of the one of the plurality of remote users provided by the permissibility network module, (ii) provide access to the master data repository and to the execution data repository based on the respective access permission of the one of the plurality of remote users provided by the permissibility network module, and (iii) manage access and updates to specific portions of the shared data model for all relevant remote users of the plurality of remote users.
US11556890B2
Methods for use in a measurement system. Some embodiments comprise at least one sensor unit and a control unit, wherein the at least one sensor unit is configured to detect a physical quantity and to form a sensor data signal. The method comprises, at the control unit, receiving a data receive signal from the sensor unit, and interpreting the data receive signal to be one of at least the sensor data signal and another data signal, wherein the interpreting is based on an attribute information intrinsic to the data receive signal. Furthermore, there is a sensor unit for use in measurement data acquisition, an apparatus configured to control a measurement data acquisition, a measurement system for use in measurement data acquisition, and a medium incorporating a sequence of operation steps that, when executed, perform a method for use in a measurement system for data acquisition.
US11556871B2
A production environment monitoring system notes when problems or issues arise in a computer-based production environment. A noted problem or issue can trigger an escalation policy that calls for notifying an individual identified in the escalation policy to ask the individual to resolve or mitigate the problem or issue. The notification sent to the individual identified in the escalation policy also includes information about one or more individuals that are knowledgeable about the problem or issue that triggered the escalation policy and that may be able to provide assistance in resolving or mitigating the problem or issue.
US11556865B2
This disclosure provides a system and method for providing intelligently-selected collections of user-centric content in a web browser. When implemented as a method, the method includes maintaining a user-centric graph with a plurality of user-centric facts derived from user interaction with different computer services. The method further includes recognizing different contexts of interest to the user. For each context, a collection of user-centric facts pertaining to the context are recognized in the user-centric graph, such recognition being based on a relationship between user-centric facts in the user-centric graph. The method further includes, for each context, displaying intelligently-selected content based on the collection of user-centric facts.
US11556864B2
Methods, systems, and computer programs are presented for scheduling user notifications to maximize short-term and long-term benefits from sending the notifications. One method includes an operation for identifying features of a state used for reinforcement learning. The state is associated with an action to decide if a notification to a user is to be sent and a reward for sending the notification to the user. Further, the method includes capturing user responses to notifications sent to users to obtain training data and training a machine-learning (ML) algorithm with reinforcement learning based on the features and the training data to obtain an ML model. Additionally, the method includes receiving a request to send a notification to the user, and deciding, by the ML model, whether to send the notification based on a current state. The notification is sent to the user based on the decision.
US11556863B2
This invention discloses a novel system and method for distributing electronic ticketing such that the ticket is verified at the entrance to venues by means of an animation or other human perceptible verifying visual object that is selected by the venue for the specific event. Tins removes the need to use a bar-code scanner on an LCD display of a cell phone or other device and speeds up the rate at which human ticket takers can verify ticket holders.
US11556862B2
The present disclosure relates to systems and methods for using existing data ontologies for generating machine learning solutions for a high-precision search of relevant services to compose pipelines with minimal human intervention. Data ontologies can be used to create a combination of non-logic based and logic-based sematic services that can significantly outperform both kinds of selection in terms of precision. Quality of Service (QoS) and product Key Performance Indicator (KPI) constraints can be used as part of architecture selection in developing, training, validating, and improving machine learning models. For data sets without existing ontologies, one or more ontologies be generated and stored for future use.
US11556859B2
A method to transfer an artificial intelligence (AI) model includes identifying a plurality of layers of the AI model, the plurality of layers organized in a first ordered list. The method further includes randomizing the plurality of layers by reorganizing the first ordered list into a second ordered list, and transferring the plurality of layers of the AI model to a data processing accelerator in an order defined by the second ordered list.
US11556857B2
An electrical panel or an electrical meter may provide improved functionality by interacting with a smart plug. A smart plug may provide a smart-plug power monitoring signal that includes information about power consumption of devices connected to the smart plug. The smart-plug power monitoring signal may be used in conjunction with power monitoring signals from the electrical mains of the building for providing information about the operation of devices in the building. For example, the power monitoring signals may be used to (i) determine the main of the house that provides power to the smart plug, (ii) identify devices receiving power from the smart plug, (iii) improve the accuracy of identifying device state changes, and (iv) train mathematical models for identifying devices and device state changes.
US11556856B2
A method for training an analytics engine hosted by an edge server device is provided. The method includes determining a classification for data in an analytics engine hosted by an edge server and computing a confidence level for the classification. The confidence level is compared to a threshold. The data is sent to a cloud server if the confidence level is less than the threshold. A reclassification is received from the cloud server and the analytics engine is trained based, at least in part, on the data and the reclassification.
US11556853B2
There is provided a learning method. The method includes performing preprocessing on light emission data in a chamber of a plasma processing apparatus, setting a constraint for generating a regression equation representing a relationship between an etching rate of the plasma processing apparatus and the light emission data, selecting a learning target wavelength from the light emission data subjected to the preprocessing, and receiving selection of other sensor data different from the light emission data. The method further includes generating a regression equation based on the set constraint while using, as learning data, the selected wavelength, the received other sensor data, and the etching rate, and outputting the generated regression equation.
US11556844B2
An embodiment of the present invention provides an artificial intelligence (AI) robot for determining a cleaning route using sensor data, comprising: a sensor unit including at least one of an image sensor, a depth sensor or a shock sensor; a cleaning unit including at least one of a suction unit or a mopping unit; a driving unit configured to drive the AI robot; and a processor configured to: acquire the sensor data from the sensor unit, determine a complex area using the acquired sensor data, create a virtual wall for blocking an entry into the determined complex area, determine the cleaning route in consideration of the created virtual wall, and control the cleaning unit and the driving unit based on the determined cleaning route.
US11556837B2
The example embodiments are directed to a continuously expanding cross-domain featuring engineering system. In one example, a method may include one or more of storing predictive features in a cross-domain data store, the predictive features previously used in machine learning modeling in a plurality of different domains, receiving data of an asset included in a target domain and information about an evaluation attribute associated with the asset in the target domain, determining a predictive feature in the received data based on a previously used predictive feature stored in the cross-domain data store which is associated with a machine learning model in a different domain and the evaluation attribute, and outputting the determined predictive feature for display via a user interface.
US11556835B1
It is determined that a first quantum process is to be initiated and will utilize a first quantity of qubits. Quantum computing system (QCS) metadata is accessed that identifies a plurality of QCSs and, for each respective QCS in the plurality of QCSs, a plurality of qubits implemented by the respective QCS. Based on the QCS metadata, a set of QCSs from the plurality of QCSs is selected to form a first distributed QCS. A set of qubits implemented by the QCSs in the set of QCSs is selected. Distributed QCS information is sent to each QCS in the set of QCSs, the distributed QCS information identifying one QCS in the set of QCSs as a primary QCS.
US11556834B1
A device includes: a plurality of qubits arranged in a two-dimensional array and a plurality of readout resonators. Each readout resonator of a first readout resonator group is arranged to electromagnetically couple to a respective qubit of a first qubit group. Each readout resonator of a second readout resonator group is arranged to electromagnetically couple to a respective qubit of a second qubit group. A resonance frequency of each readout resonator of the first readout resonator group is within a first resonance frequency band, and a resonance frequency of each readout resonator of the second readout resonator group is within a second resonance frequency band that is different from the first resonance frequency band.
US11556831B2
A method and a system for generating a hyper-entangled high-dimensional time-bin frequency-bin state, the method comprising generating a hyper-entangled state composed of a time-bin and frequency-bin encoded state, and individually modifying at least one of: i) the amplitude and ii) the phase of the state components at different frequency-bins and different time-bins of the hyper-entangled state. The system comprises a non-linear medium exited with multiple pulses in broad phase-matching conditions, a frequency mode separator and an amplitude/phase modulator, the frequency mode separator temporally and spatially separating frequency modes of the hyper-entangled state, the amplitude/phase modulator individually modifying at least one of: i) the amplitude (and ii) the phase of the state components at different frequency-bins and different time-bins of the hyper-entangled state.
US11556830B2
Systems and methods that address an optimized method in the area of optimization by showing how to generate Ising Hamiltonians automatically for a large class of optimization problems specially handling the constraints. The innovation facilitates qubit reduction in connection with an optimization problem by representing respective integer variables as linear sums of binary variables, wherein depending on the representation, additional equality constraints are provided. Additional slack variables are introduced to change inequality constraints to equality constraints. Based on the equality constraints, an unconstrained pseudo-boolean optimization problem is created. The pseudo-boolean optimization problem is quadratized to generate a quadratic pseudo-boolean function (QPBF) and the number of variables in the QPBF is reduced to facilitate qubit reduction. This results in an automated, problem instance dependent qubit reduction procedure. Thus, this innovation provides an effective method to solve such class of optimization problems by formulating efficient Ising Hamiltonians for integer optimization problems followed by an automated qubit reduction procedure to get the final Ising Hamiltonian, which can be solved using a quantum optimization algorithm.
US11556827B2
A computer-implemented method for transferring data is provided. In an illustrative embodiment, the method includes retrieving, by a computer, an original dataset to be sent from a sender to a receiver. The method also includes generating, by the computer, a model based on at least a subset of the original dataset. The model generates a predicted dataset. The model is selected from a plurality of model types based on data complexity of the original dataset and a desired level of approximation of the predicted dataset to the original dataset. The method also includes transferring, by the computer, the model to the receiver. The receiver uses the model to generate the predicted dataset, wherein the predicted dataset matches the original dataset to a selected degree of approximation. Transfer of the model is quicker than transfer of the original dataset.
US11556825B2
Aspects of the present invention disclose a method for verifying labels of records of a dataset. The records comprise sample data and a related label out of a plurality of labels. The method includes one or more processors dividing the dataset into a training dataset comprising records relating to a selected label and an inference dataset comprising records with sample data relating to the selected label and all other labels out of the plurality of labels. The method further includes dividing the training dataset into a plurality of learner training datasets that comprise at least one sample relating to the selected label. The method further includes training a plurality of label-specific few-shot learners with one of the learner training datasets. The method further includes performing inference by the plurality of trained label-specific few-shot learners on the inference dataset to generate a plurality of sets of predicted label output values.
US11556822B2
One or more computing devices, systems, and/or methods for cross-domain action prediction are provided. Action sequence embeddings are generated based upon a textual embedding and a graph embedding utilizing past user action sequences corresponding to sequences of past actions performed by users across a plurality of domains. An autoencoder is trained to utilize the action sequence embeddings to project the action sequence embeddings to obtain intent space vectors. A service switch classifier is trained using the intent space vectors. In response to the service switch classifier predicting that a current user will switch from a current domain to a next domain, the current user is provided with a recommendation of an action corresponding to the next domain.
US11556815B1
Disclosed herein are systems and methods for using machine learning for managing application incidents. An embodiment takes the form of a method that includes receiving extracted data pertaining to one or more applications, Model-input data is generated from the extracted data. Model-output data is generated at least in part by processing the generated model-input data with one or more machine-learning models trained to make one or more application-incident predictions. Based at least in part on the model-output data, an application-incident-likely determination is made that a likelihood of an occurrence of an application incident exceeds an application-incident-likelihood threshold, where the application incident corresponds to a given application of the one or more applications. Responsive to making the application-incident-likely determination, one or more alerts of the likelihood of the occurrence of the application incident are output.
US11556813B2
A computer-implemented method for refining a qubit calibration model is described. The method comprises receiving, at a learning module, training data, wherein the training data comprises a plurality of calibration data sets, wherein each calibration data set is derived from a system comprising one or more qubits, and a plurality of parameter sets, each parameter set comprising extracted parameters obtained using a corresponding calibration data set, wherein extracting the parameters includes fitting a qubit calibration model to the corresponding calibration data set using a fitter algorithm. The method further comprises executing, at the learning module, a supervised machine learning algorithm which processes the training data to learn a perturbation to the qubit calibration model that captures one or more features in the plurality of calibration data sets that are not captured by the qubit calibration model, thereby to provide a refined qubit calibration model.
US11556795B2
A computing device for training an artificial neural network model includes: a model analyzer configured to receive a first artificial neural network model and split the first artificial neural network model into a plurality of layers; a training logic configured to calculate first sensitivity data varying as the first artificial neural network model is pruned, calculate a target sensitivity corresponding to a target pruning rate based on the first sensitivity data, calculate second sensitivity data varying as each of the plurality of layers is pruned, and output, based on the second sensitivity data, an optimal pruning rate of each of the plurality of layers, the optimal pruning rate corresponding to the target pruning rate; and a model updater configured to prune the first artificial neural network model based on the optimal pruning rate to obtain a second artificial neural network model, and output the second artificial neural network model.
US11556789B2
This disclosure relates generally to system and method for time series prediction using a sparse recurrent mixture density network (RMDN), such as sparse LSTM-MDN and a sparse ED-MDN, for accurate forecasting of a high variability time series. The disclosed sparse RMDN has the ability to handle high-dimensional input features, capture trend shifts and high variability present in the data, and provide a confidence estimate of the forecast. A high-dimensional time series data is passed through a feedforward layer, which performs dimensionality reduction in an unsupervised manner by inducing sparsity on weights of the feedforward layer. The resultant low-dimensional time series is fed through recurrent layers to capture temporal patterns. These recurrent layers also aid in learning latent representation of the input data. Thereafter, a mixture density network (MDN) is used to model the variability and trend shifts present in the input and it also estimates the confidence of the predictions.
US11556785B2
An apparatus identifies partial tensor data that contributes to machine learning using tensor data in a tensor format obtained by transforming training data having a graph structure. Based on the partial tensor data and the training data, the apparatus generates expanded training data to be used in the machine learning by expanding the training data.
US11556784B2
A method includes identifying, by at least one processor, multiple features of input data using a common feature extractor. The method also includes processing, by the at least one processor, at least some identified features using each of multiple pre-processing branches. Each pre-processing branch includes a first set of neural network layers and generates initial outputs associated with a different one of multiple data processing tasks. The method further includes combining, by the at least one processor, at least two initial outputs from at least two pre-processing branches to produce combined initial outputs. In addition, the method includes processing, by the at least one processor, at least some initial outputs or at least some combined initial outputs using each of multiple post-processing branches. Each post-processing branch includes a second set of neural network layers and generates final outputs associated with a different one of the multiple data processing tasks.
US11556780B2
A neural network learning device 20 is equipped with: a determination module 22 that determines the size of a local region in learning information 200 which is to be learned by a neural network 21 containing multiple layers, said determination being made for each layer, on the basis of the structure of the neural network 21; and a control module 25 that, on the basis of size of the local region as determined by the determination module 22, extracts the local region from the learning information 200, and performs control such that the learning of the learning information represented by the extracted local region by the neural network 200 is carried out repeatedly while changing the size of the extracted local region, and thus, a reduction in the generalization performance of the neural network can be avoided even when there is little learning data.
US11556778B2
This document relates to automated generation of machine learning models, such as neural networks. One example system includes a hardware processing unit and a storage resource. The storage resource can store computer-readable instructions cause the hardware processing unit to perform an iterative model-growing process that involves modifying parent models to obtain child models. The iterative model-growing process can also include selecting candidate layers to include in the child models based at least on weights learned in an initialization process of the candidate layers. The system can also output a final model selected from the child models.
US11556771B2
Novel connection between neurons of a neural network is provided.
A perceptron included in the neural network includes a plurality of neurons; the neuron includes a synapse circuit and an activation function circuit; and the synapse circuit includes a plurality of memory cells. A bit line selected by address information for selecting a memory cell is shared by a plurality of perceptrons. The memory cell is supplied with a weight coefficient of an analog signal, and the synapse circuit is supplied with an input signal. The memory cell multiplies the input signal by the weight coefficient and converts the multiplied result into a first current. The synapse circuit generates a second current by adding a plurality of first currents and converts the second current into a first potential. The activation function circuit is a semiconductor device that converts the first potential into a second potential by a ramp function and supplies the second potential as an input signal of the synapse circuit included in the perceptron in a next stage.
US11556752B2
The disclosed embodiments provide a payment card. The payment card may have a first face and a second face opposite the first. Additionally, the payment card may comprise a first smart chip, the first smart chip having contacts that are electronically accessible from the first face of the card. The payment card may further comprise a first antenna coupled to the first smart chip, the first antenna providing near-field contactless access to the first smart chip and a second smart chip, the second smart chip having contacts that are electronically accessible from the second face of the card. Additionally, the payment card may comprise a second antenna coupled to the second smart chip, the second antenna providing near-field contactless access to the second smart chip and an RF block that electronically isolates the first antenna and the second antenna from each other.
US11556748B2
Methods, apparatus, systems and articles of manufacture to improve accuracy of a fog/edge-based classifier system are disclosed. An example apparatus includes a transducer to mounted on a tracked object, the transducer to generate data samples corresponding to the tracked object; a discriminator to: generate a first classification using a first model based on a first calculated feature of the first data samples from the transducer, the first model corresponding to calculated features determined from second data samples, the second data samples obtained prior to the first data samples; generate an offset based on a difference between a first model feature the first model and a second model feature of a second model, the second model being different than the first model; and adjust the first calculated feature using the offset to generate an adjusted feature; a pattern matching engine to generate a second classification using vectors corresponding to the second model based on the adjusted feature; and a counter to, when the first classification matches the second classification, increment a count.
US11556747B2
One embodiment provides a method, including: receiving a dataset and a model corresponding to a bias checker, wherein the bias checker detects bias within both the dataset and the model, based upon a bias checking algorithm and a bias checking policy, wherein the dataset comprises a plurality of attributes; testing the bias checking algorithm of the bias checker by (i) generating test cases that modify the dataset by introducing bias therein and (ii) running the bias checker against the modified dataset; testing the bias checking policy of the bias checker by generating a plurality of test cases and running the bias checker against the plurality of test cases; and providing a notification to a user regarding whether the bias checker failed to indicate bias for one or more of the plurality of attributes.
US11556744B1
Aspects of the disclosure relate to training a labeling model to automatically generate labels for objects detected in a vehicle's environment. In this regard, one or more computing devices may receive sensor data corresponding to a series of frames perceived by the vehicle, each frame being captured at a different time point during a trip of the vehicle. The computing devices may also receive bounding boxes generated by a first labeling model for objects detected in the series of frames. The computing devices may receive user inputs including an adjustment to at least one of the bounding boxes, the adjustment corrects a displacement of the at least one of the bounding boxes caused by a sensing inaccuracy. The computing devices may train a second labeling model using the sensor data, the bounding boxes, and the adjustment to increase accuracy of the second labeling model when automatically generating bounding boxes.
US11556743B2
A highlight learning technique is provided to detect and identify highlights in sports videos. A set of event models are calculated from low-level frame information of the sports videos to identify recurring events within the videos. The event models are used to characterize videos by detecting events within the videos and using the detected events to generate an event vector. The event vector is used to train a classifier to identify the videos as highlight or non-highlight.
US11556742B2
Techniques for training machine learning models for improved accuracy at classifying medical imaging data sets by trimming ambiguous samples from training data sets are described herein. In some embodiments, a machine learning model is trained using a data set, where a subset of the data set comprises data with a conflict between a first label based on an expert opinion and a second label based on a ground truth based on a medical examination. During some epochs of training the machine learning model, loss values for each data sample in the epoch are compared against a loss threshold, with data samples with corresponding loss values that exceed the loss threshold that also belong to the subclass trimmed from the data set for subsequent epochs of training. The loss threshold for the next epoch is then updated based on loss values of the trimmed data set.
US11556736B2
Methods, systems, and computer-readable storage media for receiving input data including a set of entities of a first type and a set of entities of a second type, providing a set of features based on entities of the first type, the set of features including features expected to be included in entities of the second type, filtering entities of the second type based on the set of features to provide a sub-set of entities of the second type, and generating an output by processing the set of entities of the first type and the sub-set of entities of the second type through a ML model, the output comprising a set of matching pairs, each matching pair in the set of matching pairs comprising an entity of the set of entities of the first type and at least one entity of the sub-set of entities of the second type.
US11556728B2
Systems, methods, and techniques to efficiently and effectively verifying and calibrating a machine learning model. The method can include training a machine learning model by at least processing training data with the machine learning model. The method can further include manipulating a first data set of the training data and applying the manipulated first data set to the machine learning model to thereby determine a first matching rate. In addition, the method can include applying the manipulated first data set to a rule engine to thereby determine a second matching rate and determining a difference between the first matching rate and the second matching rate. The method can further include determining whether the difference is within a predefined threshold range and providing an error indication if the determined difference is outside of the predefined threshold range.
US11556727B1
The invention is a system allowing an individual user to display a readable unique QR code, which code can be read by the mobile devices of customers, whose devices will thereby be connected to an online user profile.
US11556726B2
Provided is a dynamic label for a product. Data that is generated at different nodes in the supply chain can be linked to a unique identifier associated with the product. At a particular node, the dynamic label may be added to the product, container, or package. The dynamic label may include a Near Field Communication (“NFC”) tag with a value that can be read using a user device. The dynamic label may be connected to the unique identifier. When the product reaches a consumer, the consumer may use a device to read the dynamic label, and pass the value from the dynamic label to a host. The host may identify the connection between the dynamic label and the unique identifier, and may provide the data, that is generated by different nodes in the supply chain and that is associated with the unique identifier, to the user device.
US11556724B1
A nervous system emulator engine includes working computational models of the vertebrate nervous system to generate lifelike animal behavior in a robot. These models include functions representing several anatomical features of the vertebrate nervous system, such as spinal cord, brainstem, basal ganglia, thalamus and cortex. The emulator engine includes a hierarchy of controllers in which controllers at higher levels accomplish goals by continuously specifying desired goals for lower-level controllers. The lowest levels of the hierarchy reflect spinal cord circuits that control muscle tension and length. Moving up the hierarchy into the brainstem and midbrain/cortex, progressively more abstract perceptual variables are controlled. The nervous system emulator engine may be used to build a robot that generates the majority of animal behavior, including human behavior. The nervous system emulator engine may also be used to build working models of nervous system functions for clinical experimentation.
US11556723B2
A method for compressing a neural network model, includes: obtaining a set of training samples including a plurality of pairs of training samples, each pair of the training samples including source data and target data corresponding to the source data; training an original teacher model by using the source data as an input and using the target data as verification data; training intermediate teacher models based on the set of training samples and the original teacher model, one or more intermediate teacher models forming a set of teacher models; training multiple candidate student models based on the set of training samples, the original teacher model, and the set of teacher models, the multiple candidate student models forming a set of student models; and selecting a candidate student model of the multiple candidate student models as a target student model according to training results of the multiple candidate student models.
US11556713B2
The present disclosure is directed to an agent automation framework that is capable of extracting meaning from user utterances and suitably responding using a search-based natural language understanding (NLU) framework. The NLU framework includes a meaning extraction subsystem capable of detecting multiple alternative meaning representations for a given natural language utterance. Furthermore, the NLU framework includes a meaning search subsystem that enables elastic confidence thresholds (e.g., elastic beam-width meaning searches), forced diversity, and cognitive construction grammar (CCG)-based predictive scoring functions to provide an efficient and effective meaning search. As such, the disclosed meaning extraction subsystem and meaning search subsystem improve the performance, the domain specificity, the inference quality, and/or the efficiency of the NLU framework.
US11556712B2
Methods and systems for natural language processing include pretraining a machine learning model that is based on a bidirectional encoder representations from transformers model, using a span selection training data set that associates a masked word with a passage. A natural language processing task is performed using the span selection pretrained machine learning model.
US11556710B2
A computer system processes a group of inputs. A group of entities that is input for processing is intercepted. The intercepted group is expanded into individual entities. Each of the individual entities is processed to produce results for each individual entity. The results for each individual entity are intercepted and merged to produce results for the group of entities. Embodiments of the present invention further include a method and program product for processing a group of inputs in substantially the same manner described above.
US11556709B2
A dataset comprising text-based messages can be accessed. Tokens for words and punctuation marks contained in the text-based messages can be generated. Each token corresponds to one word or one punctuation mark. A vector representation for each of a plurality of the tokens can be generated using natural language processing. A sequence of tokens corresponding to the text-based message can be generated for each of a plurality of the text-based messages in the dataset. Ones of the tokens that represent punctuation marks can be identified. An artificial neural network can be trained to predict use of the punctuation marks in sentence structures. The training uses the generated sequence of tokens and the vector representations for the tokens, in the sequence of tokens, that represent the punctuation marks.
US11556706B2
An apparatus generates an index including positions of morphemes included in a target text data and semantic attributes between the morphemes corresponding to the positions. The apparatus gives information including positions of morphemes included in an input query and semantic attributes between the morphemes corresponding to the positions to the query, and executes a retrieval on the target text data, based on the information given to the query and the index.
US11556697B2
Text is intelligently annotated by first creating a topic map summarizing topics of interest of the user. A data structure is created. The topic map is used to create two linked user dictionaries, a topic dictionary reflecting topic names and a traversal dictionary reflecting the knowledge structure of a topic. Actions may be linked with topic types. When the text to be annotated is being read, the topic data structure of the topics found in the text are automatically instantiated using the dictionaries and any actions previously linked to topic types. Instantiated topic data structures are automatically attached to the text being annotated. A user GUI may be created to allow the user to access and interact with the text annotations.
US11556693B1
A system and method are disclosed for providing an enhanced email client having interactive content capabilities. The system includes a recipient email server for receiving emails from a sender email server and for receiving dynamic interactive content from a third party content service provider when it is determined that the email includes capabilities for displaying interactive content. The method includes steps of sanitizing a received email at a user's computing system, checking the sanitized email to determine if it contains interactive content, and retrieving the interactive content in the sanitized email without requiring the user to click out to a separate window or browser instance.
US11556691B2
Disclosed are methods for designing semiconductor devices, conductive layer patterns, and interconnection layer patterns including the operations of analyzing an initial semiconductor design layout to identify excessive open spaces between adjacent conductive elements or lines within an interconnection layer pattern, selecting or generating a dummy pattern to fill a portion of the open space, and generating a modified semiconductor design layout that incorporates the dummy pattern into first interconnection layer pattern to reduce the open space.
US11556669B2
A permutation algorithm using modular arithmetic is applied to the cells of one or more specific fields of a database or other file type. This permutation reorders the cells of the specific field(s) without altering content of any individual cell, thereby hiding relationships between cells of the permuted field(s) and the other information in the associated records. The permutation algorithm may use modular addition and modular subtraction, in either order. Different permutation algorithms may use varying numbers of parameters. To locate a specific cell in a permuted field, the parameter(s) from the permutation, an identification of the specific record associated with the cell, and an identification of the specific permuted field are applied in a modular arithmetic operation. A specific record with which a specific cell in a permuted field is associated may be obtained by an inverse modular arithmetic operation.
US11556663B2
An information processing apparatus includes an access controller that performs control for enabling a content to be accessed on a second terminal in a case where an icon storing the content is presented and the content is opened in a first terminal.
US11556646B2
A method for managing memory within a computing system. The method includes one or more computer processors identifying a range of physical memory addresses that store a first data. The method further includes determining whether a second data is stored within the range of physical memory addresses that stores the first data. The method further includes responding to determining that the second data is stored within the range of physical memory addresses that store the first data, by determining whether a process accessing the second data is identified as associated with a side-channel attack. The method further includes responding to determining that the process accessing the second data is associated with the side-channel attack, by initiating a response associated with the process accessing the second data.
US11556644B1
In an embodiment, a computer-implemented method includes receiving, from a pre-processor, an output file; where the output file is created by the pre-processor in response to input of an electronic file to the pre-processor; where the electronic file is an attachment to a message that is in-transit to a recipient computer on a network; where the output file contains features that are created by the pre-processor analyzing one or more sub-features of the electronic file; receiving, from a machine learning-based classifier, malware classification data that indicates whether the electronic file does or does not contain malware; where the malware classification data is output by the machine learning-based classifier in response to the machine learning-based classifier determining that the features are or are not indicators of obfuscation; where data used to create the machine learning-based classifier includes output files previously created by the pre-processor; in response to the malware classification data matching a criterion, causing the network to modify, delay, or block transmission of the electronic file to the recipient computer.
US11556640B1
An automated system and method for analyzing a set of extracted strings from a binary is disclosed including processing the binary with a string-extraction logic that can locate strings within the binary and output an extracted string set for use in cybersecurity analysis. The logic retrieves a set of training data comprising a plurality of previously analyzed extracted string sets where each element of the previously analyzed extracted string set comprises at least one extracted string and a corresponding previously determined threat prediction score. A prediction model based upon the training data is generated and the extracted string set is processed by the prediction model to determine a threat prediction score for each string. Ranking of the located strings is based upon the determined threat prediction score, and an output of a ranked string list is generated.
US11556631B2
In some embodiments, an electronic device presents a weak password warning in a password management user interface that includes information about the user account with which the password is associated. In some embodiments, an electronic device presents a weak password warning in a login user interface.
US11556630B2
Privately determining whether a password satisfies a constraint without having to divulge the password itself to a third party that evaluates the constraint, and without the third party even being aware of the result of the evaluation. After the user selects a password, private communication (e.g., private information retrieval) is used to determine whether the selected password satisfies password constraints. For instance, the password might be encrypted (e.g., homomorphically), and then the encrypted password and a function definition (e.g., a homomorphic function definition) is then provided to the third party. The third party then performs the function and returns an already encrypted result. The third party generated the encrypted result directly, without having access to the result in the clear. Upon receiving the encrypted result, the user's computing system may then decrypt the result, to find out whether the password satisfies the constraints, and thus is sufficiently safe.
US11556629B2
An authentication method involves comparing a 2D description of an authentication device, referred to as a subsequent description, with an original 2D description by choosing, from several previously established original 2D descriptions, a 2D description established from a point of view similar to the one used to establish the subsequent 2D description. Advantageously, the optical characteristics of the authentication device vary so little when it is viewed from neighboring points of view that the device can be recognized from most of the points of view, and the original 2D descriptions have been established from neighboring points of view, which form a substantially continuous domain. In an improved version, a three-dimensional description of the authentication device, referred to as a 3D description, is reconstructed from several original 2D descriptions, which makes it possible to predict the appearance thereof from a plurality of different points of view.
US11556611B2
A web browser plugin or other software can be used to integrate visualization of analytical and/or debugging information related to a web page that is being viewed. Particular elements on the web page that are instrumented for tracking can be visually augmented, allowing a developer to see where and how certain aspects of web page functionality are being tracked and/or implemented. Certain information relating to the web page may be surfaced via a graphical area that is displayed concurrently with the web page, e.g., within the web browser that is being used to view the web page. The graphical area can also include selectable elements that can be used to launch additional queries into back-end services related to the web page. The present techniques allow for not only better and more convenient visualization of web page related data, but can speed up development time, reducing both computing and developer resources.
US11556605B2
Embodiments of the present disclosure provide a search method, a device, and a storage medium. The method includes: identifying, by an AR technology, a target object to be searched, and acquiring search information of the target object, transmitting a search request to a server according to the search information, receiving a search result of the target object returned by the server. The method provided in the embodiments can quickly obtain an accurate search result and improves user experience.
US11556596B2
An electronic device obtains a plurality of collections of media content items, each collection of media content items being associated with text generated by one or more users of the media-providing service. The electronic device determines a coincidence metric for a first descriptor and a first media content item, the coincidence metric corresponding to a likelihood that the first descriptor appears in the text associated with a respective collection of media content items that includes the first media content item. Based on the coincidence metric, the electronic device generates a new collection of media content items for a first user. The new collection of media content items corresponds to the first descriptor and includes the first media content item.
US11556595B2
A data processing server may receive a set of data objects for frequent pattern (FP) analysis. The set of data objects may be analyzed using an attribute diversity technique. For the set of data attributes of the set of data objects, the server may arrange the attributes in one or more dimensions. The server may initialize a set of centroids on data points and identify mean values of nearby data points. Based on an iteration of the mean value calculation, the server may identify a set of attributes corresponding to final mean values as being groups of similarly frequent attributes. These groups of similarly frequent attributes may be analyzed using an FP analysis procedure to identify frequent patterns of data attributes.
US11556591B2
Annotations are customized for a tenant-specific search within a public corpus. In a non-limiting embodiment of the invention, a cartridge file is received by a semantic search application. The cartridge file includes a new attribute definition that is not available in an index of the semantic search application. The new attribute definition is incorporated within the index based on an approximation of one or more existing attributes in the index. One or more documents are retrieved from the public corpus based on a concept search using the incorporated new attribute definition and the one or more documents are annotated based on the incorporated new attribute definition. The annotated one or more documents are stored in a tenant-specific dataset separate from the public corpus.
US11556589B1
A storage node of a database replica group may distribute different portions of data in local storage and external storage, where local storage and external storage are organized using different types of index structures. Responsive to receiving an access request for a database, a storage node may determine that an item of the database to be accessed by the request does not reside within a first portion of the database stored locally at the storage node. Responsive to this determination, the storage node may obtain from an external storage service a second portion of the database, the second portion including a plurality of items including the item, and the second portion organized according to a structure different from the first portion. The storage node may then store the plurality of obtained items in the first portion and process the request using the first portion of the database.
US11556578B2
Apparatus for generating a putative ontology from a data structure associated with a data store, the apparatus including an electronic processing device that generates a putative ontology by determining at least one concept table in the data structure, determining at least one validated attribute within the at least one concept table, determining at least one selected attribute value from the at least one validated attribute and generating at least one ontology class using the at least one attribute value.
US11556574B2
Unstructured text is identified as larger than a threshold size. Named-entity recognition analysis is executed on the unstructured text. One or more anchor entities of the unstructured text are determined that each occur more than a threshold amount of times within the unstructured text. Two or more instances of the one or more anchor entities that are separated by at least a threshold amount of text of the unstructured text are identified. The unstructured text is partitioned into at least three sections. The unstructured text is partitioned at respective natural language demarcation points associated with each of the two or more instances such that each of the at least three sections is smaller than the threshold size. Separate coreference analyses are performed in parallel on each of the at least three sections.
US11556573B2
Enhanced techniques and circuitry are presented herein for providing responses to questions from among digital documentation sources spanning various documentation formats, versions, and types. One example includes a method comprising receiving an indication of a question directed to subject having a documentation corpus, determining a set of passages of the documentation corpus related to the question, ranking the set of passages according to relevance to the question, forming semantic clusters comprising sentences extracted from ranked ones of the set of passages according to sentence similarity, and providing a response to the question based at least on a selected semantic cluster.
US11556569B2
A method, system, and computer program product for visualizing a machine learning model are provided. A confusion matrix and model performance metric data are received from a classification model. For each data point in the confusion matrix, a corresponding pixel is generated. The pixels are grouped into clusters. Each cluster represents a label in the confusion matrix. A centroid is generated for each cluster. Using the model performance metric data, a misclassification indicator arrow is generated for each misclassified data point. The misclassification indicator arrow indicates both the predicted class and the actual class. The clusters, the centroids, and the misclassification indicator arrow are displayed as a graphical visualization of the machine learning model.
US11556567B2
This disclosure relates to methods, non-transitory computer readable media, and systems that generate and visualize bias scores within segment-generation-user interfaces prior to executing proposed actions with regard to target segments. For example, the disclosed systems can generate a bias score indicating a measure of bias for a characteristic within a segment of users selected for a proposed action and visualize the bias score and corresponding characteristic in a segment-generation-user interface. In some implementations, the disclosed systems can further integrate detecting and visualizing bias as a bias score with selectable options for a segmentation-bias system to generate and modify segments of users to reduce detected bias.
US11556561B2
Replicas are selected in a large distributed network, and the roles for these replicas are identified. In one example, a leader is selected from among candidate computing dusters. To make this selection, an activity monitor predicts or monitors the workload of one or more clients. Different activities of the workload are given corresponding weights. The delay in performing requested activities, modified by these weights is found, and the candidate leader with the lowest weighted delay is selected as the leader.
US11556557B2
Techniques are provided for unifying filter operators in exchange, transform, load (ETL) plans. Such a technique includes a method that may include receiving, by a computer system, an ETL plan including a split operator and a plurality of filter operators. The may include identifying, by the computer system, that the plurality of filter operators are configured to act on data output by the split operator in the ETL plan. The method may include generating, by the computer system, a unified filter operator using the plurality of filter operators. The method may include generating, by the computer system, an updated ETL plan comprising the unified filter operator providing filtered data to the split operator. The method may also include storing the updated ETL plan in a data store.
US11556554B2
A distributed transaction in which appropriate patterns are combined without modifying implementation of a management system even when a service characteristic of a participating system changes. A management system receives input of a distributed transaction flow defining respective call sequential numbers of participating systems and service characteristic information representing respective service characteristics of the participating systems. The management system specifies an applied pattern for each of the participating systems based on pattern information including information for each pattern that represents a constraint condition of a service characteristic of a participating system as a call target. The applied pattern is a pattern satisfying the constraint condition corresponding to the service characteristic of the participating system. The management system generates a pattern-applied call program for each of the participating systems, and generates a distributed transaction program based on the pattern-applied call programs and a call sequence of the participating systems.
US11556550B2
The method of no fail searching may include receiving a set of keywords from an input set of search fields within a GUI, retrieving a set of search results based on the set of keywords from the input set of search fields, organizing the set of search results according to a set of content types, ranking each search field according to the set of content types, removing the lowest ranked search field from the set of keywords to create a broadened set of search fields when at least one content type has zero results, repeating the retrieving, organizing, ranking, and removing steps until either each content type contains a threshold amount of search results or all search fields have been removed, wherein the broadened set of search fields is used as the input set of search fields in subsequent retrieving steps.
US11556549B2
A method and server for ranking a plurality of documents are disclosed. The method includes determining, by the server, for each document from the plurality of documents a proximity value between a respective document vector and an other document vector. A given proximity value for a respective document being indicative of a similarity between (i) the respective document and (ii) at least one other one from the plurality of documents. The method also comprises using, by the server, the proximity values of the plurality of documents for ranking the plurality of documents.
US11556541B2
A method including obtaining resource overheads according to feature information of a received query request; according to the resource overheads and a compute node resource, dynamically adjusting a compute node in a resource pool; and querying, by using the compute node, data corresponding to the query request. A compute node in a resource pool may be dynamically adjusted, so that the compute node in the resource pool may process all the received query requests, and therefore, the processing efficiency and a resource utilization rate of the compute node are more effectively improved, such that the compute node may more efficiently perform parallel processing on the multiple query requests, and the utilization rates of a CPU resource, a memory resource and a network bandwidth resource are increased, thus achieving better effect from the perspectives of overall computing resource and user query load and improving the usage experience of a user.
US11556535B2
A database system comprised of a decoupled compute layer and storage layer is implemented to store, build, and maintain a canonical dataset, a temporary buffer, and an edits dataset. The canonical dataset is a set of batch updated data. The data is appended in chunks to the canonical dataset such that the canonical dataset becomes a historical dataset over time. The buffer is a write ahead log that contains the most recent chunks of data and provides atomicity and durability for the database system. The edits dataset is the set of data that contains edits such as cell mutations, row appends and/or row deletions. The database system enables users to make cell or row-level edits to tables and observe those edits in analytical systems or downstream builds with minimal latency.
US11556530B2
In accordance with one disclosed method, a computing system may receive, via a first version of an application presenting an interface in a first language, a first query entered in a second language different from the first language. The computing system may search resources accessible to a second version of the application to identify at least a first resource corresponding to the first query, the second version of the application being in the second language. Based at least in part on a result of the searching, an indication of the first resource may be returned to the interface.
US11556529B2
Top frequency worksheet filtering including sending a first request comprising a first search term; receiving, in response to the first request, a first plurality of distinct values having a greatest frequency in a data set and responsive to the first search term, wherein the first plurality of distinct values comprises a number of distinct values less than or equal to a size threshold; presenting the first plurality of distinct values; receiving a selection of a first value from the first plurality of distinct values; and filtering, based on the selected first value, a worksheet comprising a presentation of the data set.
US11556513B2
A computer implemented method may include: storing key-value pairs in an index in persistent storage, where indirect nodes of the index include pointers, where each pointer identifies an index portion and includes a generation identifier for the identified index portion, where the index comprises a plurality of snapshots associated with a plurality of generations; receiving a request to read data of a particular snapshot of the index, wherein the particular snapshot is associated with a particular generation of the plurality of generations; in response to the request, performing a traversal starting from a particular root node associated with the particular generation; and providing the requested data based on the traversal.
US11556505B2
A method, apparatus, and system for policy driven data placement and information lifecycle management in a database management system are provided. A user or database application can specify declarative policies that define the movement and transformation of stored database objects. The policies are associated with a database object and may also be inherited. A policy defines, for a database object, an archiving action to be taken, a scope, and a condition before the archiving action is triggered. Archiving actions may include compression, data movement, table clustering, and other actions to place the database object into an appropriate storage tier for a lifecycle phase of the database object. Conditions based on access statistics can be specified at the row level and may use segment or block level heatmaps. Policy evaluation occurs periodically in the background, with actions queued as tasks for a task scheduler.