A mounting device comprises: a mounting head having multiple pickup members configured to pick up components; a mounting control section configured to cause a second component to be picked up later when a first component, held by the mounting head at a predetermined height, and the second component, held by the mounting head at a lowered position lower than the predetermined height, are picked up with the mounting head; the mounting control section being configured to cause the second component to be released earlier when the mounting head, having picked up the first component and the second component, releases a component.
It is an object of the present invention to provide a production system and a control method for the production system that can suppress erroneous mounting when a tape feeder is shared and used even when latest tape feeder information is not shared among multiple production lines in a production system having multiple production lines. Information that matches the tape feeder database stored by the line management device is stored in the tape feeder. When the tape feeder is mounted on the mounting machine, the information stored in the tape feeder is read, and when it is determined that the information does not match the tape feeder database, mounting of the electronic component supplied from the tape feeder is stopped.
An electronic device including a shielding member for performing an electromagnetic interference (EMI) shielding function is provided. The electronic device includes a printed circuit board including a first area in which first electronic components having a first frequency as a driving frequency are mounted, and a second area in which second electronic components having a second frequency as a driving frequency are mounted, a shielding film disposed to cover the first area and the second area of the printed circuit board and attached to a first ground portion of the printed circuit board, and at least one conductive member formed to extend in a direction perpendicular to an extending direction of the printed circuit board. The at least one conductive member includes a first end that contacts the shielding film, and a second end that contacts a second ground portion of the printed circuit board, the second end being disposed between the first area and the second area of the printed circuit board.
A heat dissipation base includes a fixing plate and a metal heat conduction block. The fixing plate includes a plurality of heat pipe partitions and a plurality of heat pipe fixing openings, and the heat pipe fixing openings are formed between the heat pipe partitions. The metal heat conduction block is fixed to the fixing plate, and the fixing plate further includes a plurality of supporting portions to support shear surfaces at two ends of the heat conduction block.
An immersion liquid cooling tank assembly includes a generally elliptical tank, at least one condenser including a plurality of condenser tubes, at least one cooling fan adjacent to the condenser, a manifold system coupled to the at least one condenser to assist in distributing liquid flow to and from the plurality of condenser tubes, and a top cover disposed over the generally elliptical tank. The top cover includes an air baffle.
A wiring board includes a resin insulating layer having a component mounting surface, first connection pads formed on the component mounting surface of the resin insulating layer, second connection pads formed on the component mounting surface of the resin insulating layer such that the second connection pads are surrounding the first connection pads, and a protruding part including a metal material and formed on the component mounting surface of the resin insulating layer such that a portion of the protruding part is embedded in the resin insulating layer and that the protruding part is positioned between the first connection pads and the second connection pads and surrounding the first connection pads.
A manufacturing method of an embedded component package structure includes the following steps: providing a carrier and forming a semi-cured first dielectric layer on the carrier, the semi-cured first dielectric layer having a first surface; providing a component on the semi-cured first dielectric layer, and respectively providing heat energies from a top and a bottom of the component to cure the semi-cured first dielectric layer; forming a second dielectric layer on the first dielectric layer to cover the component; and forming a patterned circuit layer on the second dielectric layer, the patterned circuit layer being electrically connected to the component.
A printed circuit board includes a plurality of layers including attachment layers and routing layers; and columns of via patterns formed in the plurality of layers, wherein via patterns in adjacent columns are offset in a direction of the columns, each of the via patterns comprising: first and second signal vias forming a differential signal pair, the first and second signal vias extending through at least the attachment layers; and at least one conductive shadow via located between the first and second signal vias of the differential pair. In some embodiments, at least one conductive shadow via is electrically connected to a conductive surface film.
A transmission line board includes an insulating substrate including a first principal surface, first and second signal lines, first and second signal electrodes, which are provided at the insulating substrate. The first signal electrode is connected to the first signal line, and is connected by capacitive coupling to a different circuit board. The second signal electrode is connected to the second signal line, and is connected to the different circuit board via a conductive binder. The first signal line is provided to transmit a signal in a first frequency band, and the second signal line is provided to transmit a signal in a second frequency band lower than the first frequency band.
A lighting apparatus includes a LED module, a light source plate, a heat sink, an antenna, a driver and a light housing. The light source plate is used for holding the LED module. The heat sink has a bottom plate and a lateral wall. The light source plate is placed on the bottom plate. The antenna is disposed on the lateral wall. The driver is used for generating a driving current to the LED module. The driver has a wireless circuit. The wireless circuit is electrically connected to the antenna for transmitting a wireless signal. The light housing is used for holding the heat sink so that the LED module emits light toward a light opening of the light housing.
An apparatus and a method capable of effectively providing services in a mobile communication system, and a data processing method of a data reception apparatus are provided. The apparatus and method includes obtaining, by a first lower packet data convergence protocol (PDCP) layer and a second lower PDCP layer, a plurality of PDCP packet data units (PDUs) based on data received from a first base station (BS) and a second BS, parallel deciphering, by the first and second lower PDCP layers, the plurality of PDCP PDUs, transmitting, from the first and second lower PDCP layers to an upper PDCP layer, the plurality of deciphered PDCP PDUs, and reordering, by the upper PDCP layer, the plurality of deciphered PDCP PDUs.
Systems, methods, apparatuses, and computer program products for faster radio frequency (RF) activation are provided. One method may include transmitting by a network node, or receiving by a user equipment, a connection release message for the user equipment, wherein the connection release message comprises an indication for the user equipment to start measuring secondary cells after connection release. The method may then include during or immediately after connection setup or connection resume, receiving by the network node or transmitting by the user equipment, an indication of availability of measurements of the secondary cells.
Certain aspects of the present disclosure provide a method of wireless communications, including: receiving, at a first user equipment from a network, a sidelink discontinuous reception (DRX) configuration; configuring a sidelink DRX cycle at the first user equipment based on the sidelink DRX configuration; receiving, at the first user equipment from the network, data for a second user equipment; and sending, from the first user equipment to the second user equipment on a sidelink in accordance with the sidelink DRX cycle, the data for the second user equipment.
Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. Disclosed are a method and a device for supporting the connection of a terminal operating in an RRC inactivation mode.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a relay user equipment (UE) may detect, on a sidelink, a sidelink transmission that carries a transport block (TB) to be forwarded to a base station. The relay UE may detect, on an access link, an uplink transmission that carries the TB. The relay UE may generate a message that includes the TB to be forwarded to the base station, wherein the message includes data associated with the TB that is obtained from one or more of the sidelink transmission or the uplink transmission. The relay UE may transmit the message to the base station via the access link. Numerous other aspects are described.
In example implementations, methods for selecting a network connection for paired endpoint devices and an apparatus for performing the same is provided. The method includes establishing a connection to a mobile endpoint device. A first quality score associated with a wireless connection of the mobile endpoint device is calculated based on a parameter associated with the wireless connection between the mobile endpoint device and a wireless network. A network selection is made based on a comparison of the first quality score and a second quality score. The second quality score is associated with a connection between the computer and a communication network.
Embodiments of this application provide a contention window management method applied to an unlicensed band. The method includes sending, by a sending device, one or more data packets to one or more receiving devices in one reference time unit or a plurality of reference time units, where the one or more data packets occupy a first bandwidth. The method further includes receiving, by the sending device from the one or more receiving devices, a hybrid automatic repeat request HARQ or HARQs for the one or more data packets. The sending device determines a contention window (CW) size of a second bandwidth with reference to the HARQ or HARQs. The CW update based on HARQ feedback improves communication efficiency.
The present application provides a method for determining a random access resource by a terminal in a wireless communication system, the method comprising: receiving, from a base station, configuration information corresponding to a synchronization signal block (SSB) including a SSB index, a random access preamble index and a random access channel mask index; determining a random access resource based on the SSB index and the random access channel mask index; determining a random access preamble based on the random access preamble index; and transmitting, to the base station, the random access preamble on the random access resource.
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify a bandwidth part (BWP) to switch to after identifying consistent uplink listen-before-talk (LBT) failures on a first BWP based on parameters indicated by a base station. For example, the base station may transmit a switching parameter to the UE that the UE then uses to switch to a second BWP based on identifying the consistent uplink LBT failures on the first BWP. Subsequently, after selecting the second BWP, the UE may attempt to use the second BWP for uplink transmissions (e.g., after performing a random access procedure). Additionally, the UE may indicate the consistent uplink LBT failures to a base station associated with the failed BWP based on a type of cell that is using that failed BWP.
A scheduling node transmits, to a radio node configured for sub-subframe operation, a semi-persistent scheduling (SPS) configuration message configuring the radio node for sub-subframe-based SPS. The SPS configuration message comprises an identifier of the radio node and indicates a pattern of sub-subframes in which a resource allocation for the radio node repeats. The radio node receives the SPS configuration message and configures the radio node for sub-subframe-based SPS according to the SPS configuration message.
A method in a wireless device is disclosed. The wireless device receives an uplink grant from a network node, the uplink grant scheduling one or more uplink transmissions by the wireless device. The wireless device selects an ON/OFF time mask to use for transmitting the one or more uplink transmissions. The wireless device determines, based on the received uplink grant, an allowed placement of a transient period of the selected ON/OFF time mask and a duration of the transient period to use for the one or more uplink transmissions.
In some aspects, multi-slot transport block (TB) configurations for communicating data between wireless devices, such as between a base station and a user equipment (UE), in a wireless communication system are described. Some examples of multi-slot configurations enable the communication of large payloads. For example, an application of a wireless device may jointly process data from a large file or other large set of packets. In such examples, the wireless device transmitting the large file may utilize a multi-slot TB including multiple TB segments corresponding to respective slots of a transmission. Similarly, a wireless device receiving the large file may utilize the multi-slot TB configuration for receiving the data.
An apparatus (e.g., a user equipment (UE)) maps a plurality of mutually orthogonal sequences to each of a plurality of physical resource blocks (PRBs) within an interlace. The apparatus then performs a physical uplink control channel (PUCCH) transmission in a New Radio unlicensed spectrum (NR-U). The apparatus also receives an assignment of a set of sequences for each PRB of the plurality of PRBs from a wireless network. In response, the apparatus performs an uplink control information (UCI) transmission via the PUCCH in the NR-U.
The present disclosure relates to a resource allocation procedure, performed between a user equipment and radio base station. The UE is configured with at least one numerology scheme, each associated with parameters partitioning time-frequency radio resources into resource scheduling units differently. The UE is configured with logical channels each of which is associated with at least one numerology scheme. A receiver of the UE receives from the radio base station an uplink scheduling assignment, which indicates uplink radio resources usable by the UE. A processor of the UE determines for which numerology scheme the received uplink scheduling assignment is intended based on the received uplink scheduling assignment. The processor performs a logical channel prioritization procedure by allocating the assigned uplink radio resources to the configured logical channels and by prioritizing those logical channels that are associated with the numerology scheme for which the uplink scheduling assignment is intended.
This application discloses a method for determining transmission direction performed at a terminal and an associated computer-readable storage medium. The method includes: obtaining, by the terminal, first configuration signaling, wherein the first configuration signaling indicates that one or more symbols in a slot are used to transmit data in a first transmission direction; obtaining, by the terminal, second configuration signaling, wherein the second configuration signaling indicates that at least one of the one or more symbols in the slot is used to transmit data in a second transmission direction; determining, by the terminal, transmitting data on the one or more symbols in the first transmission direction, and not transmitting data on the at least one of the one or more symbols in the second transmission direction, wherein the first configuration signaling is cell-specific radio resource control (RRC) signaling.
The present invention is designed so that it is possible to communicate adequately depending on user terminal-specific capabilities, in a system where wide frequency bands are supported. A user terminal has a receiving section that receives band information, which indicates a prospective downlink (DL) band, which is a band where a DL signal might be allocated, and/or a prospective uplink (UL) band, which is a band where a UL signal might be allocated, and a control section that configures the DL band candidate and/or the UL band candidate in a user terminal-specific manner based on the band information.
A control apparatus configured to allow a communication device supporting a first frequency setting to enter a system providing a communications facility based on a second frequency setting, wherein the first frequency setting provides only a partial support for communications in the system is disclosed. The control apparatus may be co-operative with a second control apparatus. The second control apparatus is configured to determine based on frequency setting information received from the system if it is possible to transmit to the system based on the first frequency setting supported by the communication device.
A communication device is a communication device connected to a mobility network which is a network mounted in a mobility and which is used by a plurality of electronic control devices for communication. The communication device includes: a holding unit which holds range information indicating a transferable path range determined for a message on the mobility network; a receiving unit which receives the message on the mobility network; and a determining unit which determines validity of the received message by using the range information.
Aspects described herein relate to determining symbols over which to transmit repetitions for certain types of communications. A resource grant can include information for transmitting a number of repetitions over a collection of resources, such as a starting symbol over which to transmit communications, a number of symbols over which to transmit communications, and/or a nominal number of repetitions to transmit. Where time division multiplexing (TDM) communications are configured, a slot format indicator (SFI) can be semi-statically or dynamically configured and can indicate a communication direction of symbols within one or more slots as being uplink, downlink, or flexible. Thus, mapping uplink communications to the symbols may be based on additional considerations.
According to an embodiment of the present disclosure, provided is a method by which a first apparatus performs sidelink communication. The method comprises the steps of: receiving, from a base station, information about an S-SSB transmission resource; determining, on the basis of the information about the S-SSB transmission resource, a plurality of first slots within a first S-SSB period having an S-SSB period length, associated with a plurality of first S-SSBs; transmitting, to a second apparatus, the plurality of first S-SSBs on the plurality of first slots, wherein a slot interval between the plurality of first slots may be the same within the first S-SSB period.
A terminal is disclosed including a receiver that receives downlink control information including a field that indicates a frequency domain resource assigned to a downlink shared channel; and a processor that, when the terminal is in a connected state and information regarding an initial downlink bandwidth part (BWP) for a cell is provided via a higher layer, determines a bandwidth to use in a determination of a number of bits in the field based on a specified information included in the information regarding the initial downlink bandwidth part (BWP). In other aspects, a radio communication method, a base station, and a system are also disclosed.
This application provides an enhanced physical downlink control channel transmission method and apparatus. The method includes: in a physical resource block set, separately arranging first resource groups in each physical resource block pair (PRB) pair, where the first resource groups are enhanced resource element groups (eREGs) or REGs, and the physical resource block set includes at least one of the physical resource block pairs; numbering second resource groups according to a correspondence between the first resource groups and the second resource groups in the physical resource block set, where the second resource groups are control channel element eCCE groups or control channel candidates; determining numbers of the second resource groups for transmitting an E-PDCCH; and mapping, according to the determined numbers, the E-PDCCH to the corresponding first resource groups for transmission. The technical solution of this application resolves an E-PDCCH transmission problem.
A terminal is disclosed including a receiver that receives information comprising a first indicator regarding a search space set categorization and a second indicator regarding a search space set index, the first indicator and the second indicator corresponding to each of one or more search space sets; and a processor that controls a monitoring of downlink control channel candidates allocated to each of the search space sets based on the search space set categorization and the search space set index. In other aspects, a radio communication method and a base station are also disclosed.
The present disclosure discloses a method for transmitting downlink feedback information, a base station, and a terminal device, so as to ensure that the base station correctly receives the downlink feedback information sent by the terminal device, thereby effectively improving a transmission success rate of the downlink feedback information. In embodiments of the present disclosure, the method includes: sending, by the base station, indication information to the terminal device, where the indication information is used to indicate a target time-frequency resource location, the target time-frequency resource location is a time-frequency resource location at which the terminal device sends the downlink feedback information, and the downlink feedback information is used to feed back a reception status of downlink data that should be received by the terminal device; and receiving, by the base station, the downlink feedback information sent by the terminal device.
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. The present invention relates to a method and device for managing transmission beams of a terminal in a 5G system.
The disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The disclosure pertains to selection of resources in a wireless communication system. A method of operating a User Equipment (UE) is provided. The method includes acquiring configuration information of a plurality of sidelink resource pools and transmitting a sidelink signal to another UE using one resource pool among the plurality of sidelink resource pools. The plurality of sidelink resource pools may be configured within an equal Bandwidth Part (BWP).
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a configuration for a shared physical downlink shared channel (PDSCH). The UE may receive a first communication via the shared PDSCH and a first bearer based at least in part on the configuration, the first communication being one of a unicast communication or a multicast/broadcast communication. The UE may receive a second communication via the shared PDSCH and the first bearer or a second bearer based at least in part on the configuration, the second communication being the other of the unicast communication or the multicast/broadcast communication. Numerous other aspects are provided.
A positioning control method includes: determining a position of a positioning object; determining, based on the position of the positioning object, at least one target positioning beacon whose distance to the positioning object satisfies a predetermined condition; and sending a prompt message to the target positioning beacon, wherein the prompt message is intended to instruct a positioning beacon to switch a broadcast frequency from a first frequency to a second frequency which is greater than the first frequency.
Techniques described herein register an endpoint device, such as a utility meter, with multiple headend systems. A system described herein includes a utility meter, which measures consumption of a resource, and a Network Management System (NMS) headend system, which manages a network. The utility meter joins the network and obtains an Internet Protocol (IP) address of the NMS headend system. The utility meter transmits a network registration request to the NMS headend system using the IP address of the NMS headend system and receives, from the NMS headend system, network-related settings of the network. The utility meter obtains an IP address of a second headend system configured to provide a service over the network. Further, the utility meter receives, from the second headend system, configuration settings for using the service of the second headend system and, as such, configures the radio with the network-related settings and the configuration settings.
Various embodiments relate to a next generation wireless communication system for supporting a higher data transfer rate and the like beyond 4th generation (4G) wireless communication systems. Provided according to various embodiments are a method for transmitting/receiving a signal in a wireless communication system and a device supporting same, and various other embodiments may also be provided.
Disclosed in the present invention are a method, network apparatus, terminal apparatus, and computer storage medium for indicating a position of a synchronization signal block. The method comprises: determining a transmission position of a synchronization signal block of at least one cell of a first type; and sending to a terminal apparatus, by means of signaling, the transmission position of the synchronization signal block of the at least one cell of the first type, wherein the terminal apparatus is covered by a cell of a second type managed by the network apparatus.
Various schemes pertaining to encoding and transmit power control for downsized trigger-based (TB) physical-layer protocol data unit (PPDU) transmissions in next-generation WLAN systems are described. A station (STA) receives a trigger frame indicating an allocated resource unit (RU) of a first size. The STA performs channel sensing responsive to receiving the trigger frame. In response to detecting at least one subchannel being busy from the channel sensing, the STA performs a downsized trigger-based (TB) transmission with a downsized RU or multi-RU (MRU) of a second size smaller than the first size by utilizing downsized RU or MRU allocation information while maintaining a value of each of one or more parameters unchanged in an encoding process to perform the downsized TB transmission.
Provided is a terminal which can suitably transmit an uplink signal. In a terminal (100), a PC parameter control unit (104) sets a first power control parameter corresponding to a first service, when a prescribed condition relating to a control channel used for transmission of uplink signal allocation is met, and sets a second power control parameter corresponding to a second service, when the prescribed condition is not met. A transmission unit (109) transmits the uplink signal by using transmission power calculated by using the first power control parameter or the second power control parameter.
A user equipment power-saving method includes: determining a second signaling on the basis of a first signaling, wherein the second signaling is a radio resource control (RRC) connection request signaling and carries a signaling element that characterizes a cause value for requesting to establish an RRC connection as a discontinuous reception (DRX) cycle update; and sending the second signaling.
Aspects of the disclosure relate to a user equipment (UE) for wireless communication. The UE wakes to monitor for a wakeup signal (WUS) having a maximum WUS duration and configured to indicate an upcoming transmission of a paging signal corresponding to the WUS. The UE detects a reference signal tone energy from tones carrying reference signals, detects a WUS tone energy from tones designated for carrying the WUS, and determines whether the WUS is present or absent based on the WUS tone energy and the reference signal tone energy. The UE then transitions to a sleep state prior to an end of the maximum WUS duration when the WUS is determined to be absent. Alternatively, the UE remains awake when the WUS is determined to be present and receives the paging signal corresponding to the WUS. Other aspects, features, and embodiments are also claimed and described.
Provided is a wireless communication system in which a first wireless device and a second wireless device intermittently perform wireless communication, in which the first wireless device repeatedly transmits an activation signal for activating the second wireless device at a first cycle until receiving a response signal from the second wireless device, the second wireless device repeatedly executes detection processing of the activation signal at a second cycle that is longer than the first cycle, receives, when a part of the activation signal is detected in the detection processing, the activation signal, transmits, when the activation signal is addressed to the second wireless device itself, the response signal to the first wireless device, the first wireless device transmits, when the response signal is received, data to the second wireless device, and the second wireless device receives, after transmitting the response signal, the data from the first wireless device.
A method and apparatus for a user equipment (UE) operating based on a DRX (Discontinuous Reception) configuration are disclosed. According to these, the UE receives a message including configuration or reconfiguration of DRX; and monitors a PDCCH (Physical Downlink Control Channel) during an active time according to the configuration or reconfiguration of DRX. Here, the active time includes a time period during a PDCCH indicating a new transmission has not been received after receiving the message including configuration or reconfiguration of DRX.
Aspects of the subject disclosure may include, for example, detecting a transit speed of a device, resulting in a detected transit speed; responsive to the detected transit speed satisfying a first threshold, including information in a message related to a handover request between a first access point of a network and a second access point of the network, the information being indicative of an amount of time that the device has been in a Discontinuous Reception (DRX) mode; and sending, to the first access point with which the device communicates and is transitioning away from, the message including the information that is indicative of the amount of time that the device has been in the DRX mode. Other embodiments are disclosed.
A method performed by a User Equipment (UE) for managing a failure in a registration for accessing a network slice, and the UE including processing circuitry configured to perform the method, are provided. The method includes sending a registration request message to a first wireless network while the UE is in a tracking area of a registration area, the registration request message including a Single Network Slice Selection Assistance Information (S-NSSAI) corresponding to the network slice, receiving a registration reject message from the first wireless network indicating that the network slice is unavailable, storing a Tracking Area Identifier (TAI) of the tracking area to a rejected list based on the TAI of the tracking area being included the registration reject message, and establishing a connection with a second wireless network in response to the receiving.
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for advertising operating channels that are being operated in an unlicensed frequency band. One or more access points (APs) may transmit discovery information on a dedicated discovery channel for the unlicensed frequency band. The discovery information may indicate at least one operating channel that is being used by an AP for providing wireless access. The discovery information also may include other information useful for a station (STA) to discover APs, operating channels, and operating parameters. The STA may monitor the dedicated discovery channel to obtain the discovery information without conducting an active scanning or passive scanning procedure.
A transmission control method includes sending or receiving, by a first device, first data to or from a second device through a first communication connection, detecting, by the first device when sending or receiving the first data to or from the second device through the first communication connection, that an error has occurred on the first communication connection, and sending, by the first device, error information of the first communication connection to the second device through a second communication connection, where the second communication connection is different from the first communication connection, and the error information indicates that the error has occurred on the first communication connection.
The disclosure relates to a method and apparatus for reporting a radio link failure (RLF) in a mobile communication system. According to an embodiment of the disclosure, a method, performed by a user equipment, of reporting an RLF includes detecting a first RLF during use of a first radio access technology (RAT), accessing a base station by using a second RAT different from the first RAT, and transmitting a report on the first RLF to the base station by using the second RAT.
A communication device for handling mobility from a long-term evolution (LTE) network to a fifth generation (5G) network comprises a storage device storing instructions of transmitting a first LTE Non-Access Stratum (NAS) message to the LTE network; receiving a second LTE NAS message in response to the first LTE NAS message, from the LTE network; and transmitting a message to the 5G network, after determining to communicate with the 5G network instead of the LTE network, wherein the message comprises a slice information, and the slice information is comprised in the first LTE NAS message or in the second LTE NAS message.
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The embodiments in the present disclosure allow to transfer remaining data between different base stations in a dual-registration interworking process, which provides terminal mobility between 4G and 5G networks without a data loss. Further, it provides the terminal mobility with no data loss without changing 5G and 4G base station implementation through addition of a simple function of new equipment, such as SMF and UPF. Further, it supports different QoS and forwarding path units in the 5G/4G networks without changing 5G and 4G base station functions. Further, it exempts additional function implementation costs for re-ordering in a terminal and a network through in-order delivery of packets to the terminal without changing the packet order during 4G-5G network movement.
System, device, and method of cellular congestion management without cell awareness. A system defines applications as important or non-important. The system measures and monitors parameters related to cellular traffic, and remotely generates an estimate that a first User Equipment (UE) is experiencing cellular traffic congestion. A Deep Packet Inspection (DPI) Engine determines that the first UE is utilizing a first communication flow associated with an Important Application, and is also utilizing a second communication flow associated with a Non-Important Application. Filtering pass-through bitrate limits are enforced, selectively and remotely, on communication flows of the first UE, by enforcing a reduced bitrate limit on the second communication flow that is associated with a Non-Important Application, and by not enforcing a reduced bitrate limit on the first communication flow that is associated with an Important Application.
Methods, systems, and devices for wireless communications are described. A communications device may receive a downlink control message that supports indicating multiple modes for reporting hybrid automatic repeat request feedback, including a first mode for reporting hybrid automatic repeat request feedback and channel information according to a bundled configuration and a second mode for reporting hybrid automatic repeat request feedback according to a standalone configuration. The communications device may use the downlink control message to determine a mode for transmitting hybrid automatic repeat request feedback. The communications device may also transmit either bundled hybrid automatic repeat request feedback and channel information or standalone hybrid automatic repeat request according to the determined mode.
Embodiments described herein provide a service to enable a user to track a variety of even when those devices are not connected to the internet by either Wi-Fi or cellular. One embodiment provides techniques to enable a pairing registration for a wireless accessory device that enables a server-mediated pairing process to be performed between the wireless accessory device and a companion device.
Systems, methods, and software for authorizing an application in User Equipment (UE) for direct discovery. In one embodiment, an authorization mechanism receives information (e.g., application ID) for a discovery request sent by an application in a UE. In response to the discovery request, the authorization mechanism challenges the UE for information regarding security parameters that are mapped to the application ID. Based on the information provided by the UE, the authorization mechanism determines whether the application is authorized for direct discovery.
An abnormal traffic analysis apparatus includes receiving means for receiving traffic from a device, analysis means for analyzing whether or not traffic received from the device is abnormal traffic, analysis result recording means for recording a result of analysis performed by the analysis means, and device management means for managing movement of the device between edges. If it is determined by the device management means that a device that is a target of analysis performed by the analysis means moves to an edge, the receiving means creates information for continuing analysis of traffic received from the device and transmits the information to an apparatus for analyzing traffic that is included in the edge to which the device moves.
Provided are an information transmission method, a network device and a terminal device. The method comprises: a first network device obtains indication information, the indication information being used for indicating integrity protection (IP) check failure of data on a data radio bearer (DRB); the first network device sends the indication information to a second network device. In embodiments of the present application, by means of the indication information, the second network device can update a secret key of the terminal device during the IP check failure of data on the DRB, or the second network device can release RRC connection of the DRB. In this way, the potential safety hazard is eliminated, the communication security is ensured, and therefore, the success rate of data transmission is improved.
A security platform architecture is described herein. The security platform architecture includes multiple layers and utilizes a combination of encryption and other security features to generate a secure environment.
Disclosed is a mobile edge computing system that provides localized emergency responses and warning exclusively to UEs within a venue or area, and provides location-specific warning within the venue or area. The system includes a component that aggregates the S1-mme interface between the MME and a plurality of baseband units and provides read and write access to the S1-mme interface. The disclosed mobile edge computing system can issue cell-specific public warning system (PWS) messages that are customized for and transmitted exclusively to each individual cell within the venue.
A system and method that pre-configure a telecommunication path between two users across a network. A server communicates an Application Programming Interface (API) to a website of an entity which, when accessed by a first user at a remote terminal, loads the API into the user terminal, captures data representative of the interaction of the first user with the website in real time, and communicates the data across the network to the server. The server compares the data with stored attributes of second users to identify a matching second user. The data is analyzed and used to predict a successful outcome between the two users. The server selects a network address of the matched second user, and, upon initiation of a telecommunication with the entity by the first user, routes the telecommunication to the network address and communicates the data to a second terminal of the matched second user.
Systems, methods, and instrumentalities are disclosed for processing a multi-level transmission sent on a common set of resources using superposition coding, comprising determining a first group radio network temporary identifier (GRNTI), wherein the GRNTI is associated with a broadcast transmission to a plurality of wireless transmit/receive units (WTRUs), determining a second GRNTI, wherein the second GRNTI is associated with a transmission to a subset of the plurality of WTRUs that received the first GRNTI, receiving the multi-level transmission, wherein the multi-level transmission comprises a first level message and a second level message, decoding the first level message from the multi-level transmission using the first GRNTI and preconfigured control information, and decoding the second level message from the multi-level transmission using the second GRNTI.
Systems and methods for accurately and securely assembling, storing, and leveraging travel data are provided. A method may include detecting a travel event of a user. The method may include recording the travel event in a travel map that is stored in a database. The travel map may be a temporal- and spatial-based record of one or more travel events of the user. The travel map may be stored as a blockchain ledger. The method may include tokenizing sensitive information associated with the user in the database, and calculating a hazard vector. The method may include updating, based at least in part on the hazard vector, a status index associated with the user, and providing the user and a system administrator access to the travel map and the status index. Access may be provided via an online portal configured to be viewed via an application running on a mobile device.
A system and method for selecting alternate global positioning system coordinates is provided. The system generally comprises a geolocation device, processor operably connected to the geolocation device, and non-transitory computer-readable medium having instructions stored thereon. The instructions instruct the system to select alternate GPS coordinates based off geospatial data received by the processor as well as parameters of the system that may limit the alternate GPS coordinates in which the system may select. The parameters may be selected within a user interface of the system.
Systems and methods for tracking velocity information. One system includes an application execution server providing an application layer. The application execution server is configured to receive a request including metadata. The application execution server is also configured to generate and transmit a response to the request. The application execution server is also configured to enrich the metadata by structuring the metadata for further processing by a data processing layer, where the further processing includes determining velocity information associated with the metadata, and by supplementing the metadata with available historical velocity information. The application execution server is also configured to transmit the enriched metadata for further processing by the data processing layer.
The invention provides a solution to accessing for a geographical location information-based service in a server of a machine type communication based communication system, where firstly a server broadcasts or multicasts a content request message, the content request message comprising information on requested content and information on a target geographical location; then the server receives a response message from at least one user equipment, the response message indicating that the at least one user equipment possesses the requested content and the at least one user equipment being located within the target geographical location; and finally the server acquires the requested content from the at least one user equipment.
The vehicle control system includes a first position measuring unit measuring a position of a mobile terminal by performing first position measuring processing, a second position measuring unit measuring a position of the mobile terminal by performing second position measuring processing having less power consumption in a vehicle by wireless communication than that of the first position measuring processing, and a position measurement control unit handling, as monitoring areas, a first area outside the vehicle and a second area outside the first area and, if the position of the mobile terminal is within the second area, continuing measurement of a position of the mobile terminal by the second position measuring unit, and, after the position of the mobile terminal comes into the first area, switching to measurement of a position of the mobile terminal by the first position measuring unit.
One embodiment provides a computer-implemented method that includes acquiring, via at least one microphone, sound pressure data at one or more discrete frequencies obtained from a frequency response of a loudspeaker in a room. The sound pressure data is input into an artificial intelligence (AI) model that analyses and processes information, and that incorporates a relationship between the frequency response and at least one of an energy average (EA) in a listening area or a total sound power (TSP) produced by the loudspeaker. The AI model automatically estimates, without user interaction, the at least one of the EA in the listening area or the TSP produced by the loudspeaker.
A display apparatus includes: a display panel configured to display an image; a housing module including a roller configured to have the display panel wound or unwound in the housing module; a rolling module including a structure connected to an upper portion of the display panel, and configured to wind or unwind the display panel according to a folding or unfolding of the structure; a plurality of beams on one surface of display panel that extends in a first direction, and arranged in a second direction vertical to the first direction; and a vibration generating device in a portion of each of the plurality of beams, wherein the vibration generating device includes a plurality of sound generating modules configured to vibrate the display panel when the display panel is unwound from the roller and the structure is unfolded.
Provided is a speaker apparatus including a first speaker having a first surface communicating with an interior and a second surface not communicating with the interior; a second speaker having a first surface communicating with an exterior and a second surface not communicating with the exterior; and a cabinet having boundary surfaces that form an enclosed space. The second surface of the first speaker and the second surface of the second speaker are arranged on the boundary surfaces and are facing the enclosed space.
Headphone playback devices can include a cable assembly including a plurality of conductors extending between a first earpiece and a second earpiece. The cable assembly includes a jacket, a power conductor disposed within the jacket and coupled between a power source in the first earpiece and a wireless transceiver in the second earpiece. The cable assembly further includes a microphone conductor at least partially disposed within the jacket and coupled to a microphone in one of the earpieces. A shield is at least partially disposed between the power conductor and the microphone conductor to reduce electromagnetic interference between the two.
A compact electronic device has a touch sensor and/or a microphone that are concealed within a housing at least partially wrapped by an acoustically porous cover. In some implementations, the touch sensor includes a sensing portion and a contact portion extending from the sensing portion. While the sensing portion is placed in proximity to an interior surface of the housing to detect a touch on the housing, the contact portion is bent to electrically couple the sensing portion to a circuit board via two distinct electrical paths. In some implementations, an exterior surface of the housing includes a sealing area surrounding an aperture on the housing, and the acoustically porous cover is affixed to the sealing area via an adhesive. The adhesive covers the sealing area and permeates a thickness of the acoustically porous cover, thereby enabling formation of a controlled sound path to access the microphone via the aperture.
An optical network includes top networking ports coupled to a packet switch, first media converters, second media converters, and bottom networking ports. The first media converters are coupled to top networking ports, each of the first media converters including a first ASIC transceiver that has a circuit switch function. The second media converters are coupled to the first media converter via optical cables to receive the optical signals. Each of the second media converters includes a second ASIC transceiver that has a circuit switch function. The bottom networking ports are coupled to the second media converters. The first ASIC transceiver and the second ASIC transceiver are configured to transmit a signal from one of the top networking ports to any one of the bottom networking ports, and transmit a signal from one of the bottom networking ports to any one of the top networking ports.
Techniques are described for expanding and/or improving the Advanced Television Systems Committee (ATSC) 3.0 television protocol in robustly delivering the next generation broadcast television services. In a boundary region between first and second broadcast stations in which a receiver can pick up signals from both stations, a primary tuner presents a demanded service while a secondary tuner scans for duplicate transmissions of the service and tunes to it if found. When the primary tuner loses signal, it tunes to the frequency of the secondary tuner and acquires any missing NRT data recorded from the secondary tuner prior to the handover.
Systems and methods are described for adapting a second user input device to resemble a first user input device while preserving new functionalities not available in the first user input device. The systems and methods may identify, based on identifiers of the first and second user input devices, a first and second set of device functionalities provided by the devices. The systems and methods may compare the sets of device functionalities to determine a set of common device functionalities and, in response, modify the display of an input of the second user input device to correspond to visual attributes of an input of the first user input device.
Provided is a system and method for publishing a disparate live media output stream that complies with distribution format regulations. One or more processors in the system generate a preview based on a low-latency protocol for a plurality of live input streams, and generate an updated schedule based on one or more events identified in the preview in real-time. The updated schedule includes one or more transitions between the plurality of live input streams and pre-encoded media assets. A disparate live media output stream manifest is generated based on manipulation of manifests of the plurality of live input streams and pre-encoded media assets in accordance with the updated schedule. The generated disparate live media output stream manifest is delayed to allow decisions based on the preview, and includes programming content and non-programming content available to the one or more processors for immediate consumption, and complies with distribution format regulations.
A method is provided for displaying an immersive video content according to eye movement of a viewer includes the steps of detecting, using an eye tracking device, a field of view of at least one eye of the viewer, transmitting eye tracking coordinates from the detected field of view to an eye tracking processor, identifying a region on a video display corresponding to the transmitted eye tracking processor, adapting the immersive video content from a video storage device at a first resolution for a first portion of the immersive video content and a second resolution for a second portion of the immersive video content, the first resolution being higher than the second resolution, displaying the first portion of the immersive video content on the video display within a zone, and displaying the second portion of the immersive video content on the video display outside of the zone.
Virtual Reality (VR) processing devices and methods are provided for transmitting user feedback information comprising at least one of user position information and user orientation information, receiving encoded audio-video (A/V) data, which is generated based on the transmitted user feedback information, separating the A/V data into video data and audio data corresponding to a portion of a next frame of a sequence of frames of the video data to be displayed, decoding the portion of a next frame of the video data and the corresponding audio data, providing the audio data for aural presentation and controlling the portion of the next frame of the video data to be displayed in synchronization with the corresponding audio data.
In some embodiments, a method receives an supplemental content placement and a context associated with a request for supplemental content to be displayed for the supplemental content placement. A first value is generated based on the context using a prediction network for a platform. The method determines probabilities for a plurality of types of request actions based on the context. Then, a threshold for the supplemental content placement is calculated based on the first value and the probabilities for the plurality of types of request actions. The method submits the threshold to a platform in a request for the platform to submit a second value for the supplemental content placement.
One or more frames sampled from a media item of an event that is concurrently being streamed to one or more users of a content delivery platform are received. The one or more frames are analyzed to identify one or more candidate event clocks within the one or more frames. Whether a candidate event clock of the one or more candidate event clocks satisfies one or more conditions for each of the one or more frames is determined. Responsive to determining that the candidate event clock of the one or more candidate event clocks satisfies the one or more conditions, the candidate event clock is identified as an actual event clock used to time the event and mapping data that maps the actual event clock to a timestamp associated with a respective frame of the one or more frames of the media item is generated.
Apparatus and methods for content fragmentation, distribution, protection, and re-constitution within a content distribution network. In one embodiment, the apparatus and methods enable distribution of content fragments to edge nodes (which may include user or subscriber CPE), thereby enabling edge networks or membership groups to be established wherein content can be shared solely at the edge. In one variant, high data bandwidth, symmetric uplink/downlink, low latency PHY links (e.g., 5G NR-compliant wireless interfaces) between the edge nodes participating in the edge networks or membership groups are used such that particular quality of service/experience performance requirements can be met. Distribution of the fragments also advantageously enhances redundancy and security.
A thermostat and system and method for use of the same are disclosed. In one embodiment, multiple wireless transceivers are located within a housing, which also interconnectively includes a processor and memory. To improve convenience, the thermostat may establish a pairing with a proximate wireless-enabled interactive programmable device having a display. Virtual remote control functionality for various amenities may then be provided. To improve safety, the thermostat may be incorporated into a geolocation and safety network.
A method, comprises monitoring a encoding process of a source video file performed by an encoder; obtaining an encoding decision parameter used to encode a picture of the source video file during the encoding process; comparing the encoding decision parameter to a threshold; based on the step of comparing, identifying the picture as a candidate picture for a visual defect or coding error; and storing a timestamp of the candidate picture.
Video coding tools can be controlled by including syntax in a video bitstream that makes better use of video decoding resources. An encoder inserts syntax into a video bitstream to enable a decoder to parse the bitstream and easily control which tools combinations are enabled, which combinations are not permitted, and which tools are activated for various components in a multiple component bitstream, leading to potential parallelization of bitstream decoding.
A method for video processing is provided to include performing a conversion between a current video block of a video region of a video and a coded representation of the video, wherein the conversion uses a coding mode in which the current video block is constructed based on a first domain and a second domain and/or chroma residue is scaled in a luma-dependent manner, and wherein a parameter set in the coded representation comprises parameter information for the coding mode.
Aspects of the disclosure provide methods, apparatuses, and non-transitory computer-readable storage mediums for video encoding/decoding. An apparatus includes processing circuitry that decodes prediction information for a current block in a current picture that is a part of a coded video sequence. The prediction information includes an adaptive color transform (ACT) flag indicating whether ACT is enabled for the current block. The processing circuitry determines whether a transform unit (TU) split is performed on the current block based on a maximum transform size that is determined according to whether the ACT flag indicates the ACT is enabled for the current block. The processing circuitry determines a type of the TU split in response to the TU split being determined to be performed on the current block. The processing circuitry performs the TU split on the current block based on the determined type of the TU split.
A method of video decoding for a decoder is provided. In the method, prediction information of a block of a coded region in a video is coded from a coded video bitstream. The prediction information includes high level signaling information. A determination is made as to whether a prediction mode of the block is an intra block copy (IBC) mode based on a value of the high level signaling information and constraint information. The value of the high level signaling information is indicative of a maximum number of motion vector prediction candidates in a motion vector prediction candidate list for the IBC mode. The block is thus decoded based on whether the prediction mode of the block is determined as the IBC mode.
A method of decoding JVET video that includes receiving a bitstream indicating how a coding tree unit was partitioned into coding units, and parsing said bitstream to generate at least one predictor based on an intra prediction mode signaled in the bitstream, the intra prediction mode selected from a plurality of intra prediction modes for calculating a prediction pixel P[x,y] at coordinate x,y for the coding unit. A number of intra prediction modes available for coding the coding unit are reduced by replacing two or more non-weighted intra prediction modes by a weighted intra prediction mode.
An image decoding method and apparatus according to an embodiment may extract, from a bitstream, a quantization coefficient generated through core transformation, secondary transformation, and quantization; generate an inverse-quantization coefficient by performing inverse quantization on the quantization coefficient; generate a secondary inverse-transformation coefficient by performing secondary inverse-transformation on a low frequency component of the inverse-quantization coefficient, the secondary inverse-transformation corresponding to the secondary transformation; and perform core inverse-transformation on the secondary inverse-transformation coefficient, the core inverse-transformation corresponding to the core transformation.
An encoder (400), a decoder (450), and methods (20, 30) for partitioning a picture from a sequence of video pictures into a layout having a plurality of flexible tiles or segments is disclosed. Each tile or segment (T) comprises a single rectangular or square region. The encoder generates (22) a partition structure and encodes (28) the tiles according to the partition structure. The encoder also generates a bitstream (12) comprising a plurality of coded segments and information indicating the partition structure used to partition the picture into the plurality of flexible tiles or segments, and sends (29) the bitstream to the decoder. Upon receipt, the decoder uses the coded segments and information in the bitstream to decode (38) the plurality of coded segments.
A method of video processing includes determining a classification of samples of a block in a video picture of a video according to a rule, wherein the video picture is divided into multiple regions, and wherein the rule disallows use of neighboring samples of a current sample across one or more boundaries of the multiple regions for the classification. The one or more boundaries of the multiple regions comprises a virtual boundary for an adaptive loop filtering (ALF) process. The method also includes performing a conversion between the block and a bitstream representation of the video by selectively applying the ALF process according to the classification.
A method of video processing includes performing a conversion between a video comprising a picture that includes multiple sub-pictures and a coded representation of the video using a coding mode according to a rule. The rule specifies that certain stored information about a previous sub-picture is reset prior to processing each next sub-picture of the multiple sub-pictures.
According to the disclosure of this document, in subblock-based temporal motion vector prediction (sbTMVP), a subblock position for deriving a motion vector in units of a subblock can be efficiently calculated, and through this, video/image coding efficiency can be improved and hardware implementation can be simplified.
An electronic device according to the present invention includes: a processor; and a memory storing a program which, when executed by the processor, causes the electronic device to: perform control to change a display region of an image in accordance with an orientation change of the electronic device or in accordance with accepting a user operation and display the display region of the image on a screen; and determine a clipping region of the image to be clipped from the image based on a position of the display region of the image, wherein the image includes the display region and the clipping region and the clipping region is wider than the display region.
The invention relates to a long-range optical device having at least one sight channel and having an image capturing channel, wherein the image capturing channel comprises a camera module for electronically capturing images, and wherein in the sight channel, a first beam path is formed by a first objective, a first focusing lens, an erecting system and a first eyepiece, and wherein in the image capturing channel, a second beam path is formed by a second objective, a second focusing lens and a second eyepiece, and wherein the first focusing lens and the second focusing lens are displaceable together by means of a first focusing unit, and wherein in the first beam path of the sight channel, a reference image plane is determined by a reticle or by an image reproduced by projection optics, and that the first eyepiece of the sight channel is displaceable by means of a second focusing unit for focusing on the reference image plane.
A light projection system includes a microelectromechanical (MEMS) mirror configured to operate in response to a mirror drive signal and to generate a mirror sense signal as a result of the operation. A mirror driver is configured to generate the mirror drive signal in response to a drive control signal. A zero cross detector is configured to detect zero crosses of the mirror sense signal. A controller is configured to generate the drive control signal as a function of the detected zero crosses of the mirror sense signal.
Methods and arrangements in a client node and a server node support a decision on decoding and playout of a certain content in the client node. The methods and arrangements relate to the determining, conveying and obtaining of information related to the characteristics (level) required for decoding and playing out the certain media content at a non-regular playout rate. The method and arrangement in the client node further relate to determining, based on the obtained information, which playout rate(s) is/are supported by the client node in regard of level. The methods and arrangements enable the client node to refrain from attempting to decode and play out of the content at a non-regular rate requiring a level which is not supported by the client node.
An image processing apparatus includes a first acquisition unit that acquires a first pixel signal output from a first pixel, a second acquisition unit that acquires a second pixel signal output from a second pixel having a size smaller than that of the first pixel, a temperature detection unit that detects temperature; a composition gain determination unit that determines a composition gain corresponding to the detected temperature, and a composition unit that composes the first pixel signal and the second pixel signal multiplied by the composition gain.
A vehicular vision system includes first and second cameras disposed at a vehicle and having respective overlapping fields of view that include a road surface of a road along which the vehicle is traveling. Image data captured by the cameras is provided to an image processor and is processed to determine relative movement of a road feature present in the captured image data. The determined movement of the road feature relative to the vehicle in first image data captured by the first camera is compared to the determined movement of the road feature relative to the vehicle in second image data captured by the second camera, and at least a rotational offset of the second camera at the vehicle relative to the first camera at the vehicle is determined and the image data are remapped to at least partially accommodate misalignment of the second camera relative to the first camera.
The position detecting device of the present invention is a device for detecting the position of a movable detection target within a predetermined movable range. The position detecting device comprises: a first magnet (13A) and a second magnet (13B) which are arranged so as to move integrally with the movement of the detection target; a first magnetic detecting circuit (20A) that detects the magnetic field of the first magnet (13A) and a second magnetic detecting circuit (20B) that detects the magnetic field of the second magnet (13B), which are arranged at positions outside the movable range; and a differential amplifier (8) that amplifies the difference between the detection signals of the magnetic field output from the first magnetic detecting circuit (20A) and the second magnetic detecting circuit (20B), and that outputs the amplified difference of the signal as a position detecting signal of the detection target.
Systems, apparatuses and methods may provide for technology that detects an unidentified individual at a first location along a trajectory in a scene based on a video feed of the scene, wherein the video feed is to be associated with a stationary camera, and selects a non-stationary camera from a plurality of non-stationary cameras based on the trajectory and one or more settings of the selected non-stationary camera. The technology may also automatically instruct the selected non-stationary camera to adjust at least one of the one or more settings, capture a face of the individual at a second location along the trajectory, and identify the unidentified individual based on the captured face of the unidentified individual.
A camera head unit including an image sensor configured to generate an image signal, a main unit configured to perform a signal process to the image signal, and first and second cables are included. Further, a determining section configured to determine whether a connection state is in a first connection state in which the camera head unit and the main unit are connected with each other via a first cable without a second cable or a second connection state in which the camera head unit and the main unit are connected with each other via the first cable and the second cable, and a transmission section configured to transmit the image signal between the camera head unit and the main unit at least via the first cable according to a determination result determined by the determining section are included.
Techniques in connection with a light field camera array are disclosed, involving generating a temperature data for an imaging camera included in an imaging camera array for a first time, obtaining an image data from the imaging camera, generating temperature-based correction parameters corresponding to the temperature data based on at least a stored temperature calibration data; and producing corrected image data by applying a geometric distortion correction and/or color correction indicated by the temperature-based correction parameters to the image data.
An image capturing apparatus according to the present disclosure includes first protrusion portions which are formed in a circumferential shape centered on a rotation axis of a lens barrel on at least one of an inside of an exterior case and an outside of the lens barrel, and in a cross section including a tilt axis, a protrusion amount of the first protrusion portions is determined in such a manner that a clearance between the exterior case and the lens barrel is smaller than a clearance between an inner circumferential surface of the dome member and an outer circumferential surface where an outermost lens of the lens barrel is formed.
An imaging apparatus with reduced flare includes an imaging structure including a solid state imaging element (1) and a transparent substrate (2) disposed on the imaging element. The imaging apparatus includes a circuit substrate (7) including a circuit, a spacer (10) including at least one fixing portion (11) that guides the imaging structure to a desired position on the circuit substrate (7) when the imaging structure is mounted on the circuit substrate, and a light absorbing material (13) disposed on at least one side surface of the imaging structure such that that light absorbing material (13) is between the imaging structure and the at least one fixing portion.
An information processing apparatus, an information processing method, and a storage medium that execute density characteristics acquisition processing at an appropriate timing are provided.
An information processing apparatus includes multiple network interfaces, multiple storage areas for saving data, an obtaining unit, and a presenting unit. The multiple network interfaces are connected to corresponding networks. For each of the multiple storage areas, a network interface permitted as an output path of the saved data is defined. The obtaining unit obtains network information indicating a network available to a group to which each user belongs. The presenting unit presents to a user a list of storage areas selectable as a data storage destination. The presenting unit presents a list of storage areas for which a network interface connected to a network available to the group to which the user belongs, which is indicated by the network information, is defined as the output path.
A server is configured to provide data communications services to a plurality of endpoint devices. Geolocation information identifying a first geographic location of the particular endpoint device is received at the server and from an application running on an endpoint device. A second geographic location for an IP address is compared to the first geographic location. In response to a mismatch between the compared geographic locations, a location database is modified to include an entry specifying that the particular endpoint device is located at the first geographic location. For an outgoing telephone call from the endpoint device, the modified entry is used to select a telephone carrier. The outgoing telephone call is routed using the selected telephone carrier.
Methods for optimizing the routing of customer communications include receiving a customer communication; identifying a customer associated with the customer communication; accessing a profile of the identified customer to determine customer data; receiving customer metric scores for a plurality of customer metrics; identifying available agents; accessing a profile of each available agent to determine agent data; predicting interaction outcome metric values for a plurality of customer metrics based on the customer data and the agent data; calculating, in real-time, an aggregate agent-customer pairing score for each available agent; selecting a responding agent from the available agents with the highest aggregate agent-customer pairing score; and providing a routing recommendation to a communication distributor to route the customer communication to the responding agent with the highest aggregate agent-customer pairing score.
A system for providing integrated contact information with search results, comprising a plurality of contact centers, each comprising at least a plurality of contact agents; a callback cloud, comprising at least a plurality of contact agents; a queue manager, comprising at least a software components operating and stored on a computing device; wherein the contact agents receive and respond to customer interactions; further wherein the queue manager monitors contact agent availability; further wherein the queue manager receives interaction requests; and further wherein the queue manager provides queue information to interaction requestors.
Implementations for providing communication services using a virtual environment are described. An audio communication session may be established between a first user device and a second user device. The second user device may answer the audio communication session using a virtual environment. The virtual environment may be updated to display virtual features associated with the communication session.
A centralized and robust threat assessment tool is disclosed to perform comprehensive analysis of previously-stored and subsequent communication data, activity data, and other relevant information relating to inmates within a controlled environment facility. As part of the analysis, the system detects certain keywords and key interactions with the dataset in order to identify particular criminal proclivities of the inmate. Based on the identified proclivities, the system assigns threat scores to inmate that represents a relative likelihood that the inmate will carry out or be drawn to certain threats and/or criminal activities. This analysis provides a predictive tool for assessing an inmate's ability to rehabilitate. Based on the analysis, remedial measures can be taken in order to correct an inmate's trajectory within the controlled environment and increase the likelihood of successful rehabilitation, as well as to prevent potential criminal acts.
Disclosed are an apparatus and control method for recommending an application based on a recognized situation of a user of an electronic device by executing an artificial intelligence (AI) algorithm and/or machine learning algorithm in a 5G environment connected for the Internet of Things and a driving method thereof. The apparatus control method according to an embodiment of the present disclosure includes applying context information including at least one of environmental information collected through a sensor of the electronic device or a network, or usage information generated by the use of the electronic device to a machine learning based first learning model in response to a user input, and displaying, on a display, a first shortcut related to an application determined on the basis of a result of applying the context information to the first learning model and displaying, on the display, a second shortcut related to a preset application.
A communication apparatus searches for a device using a first wireless communication, instructs, using the first wireless communication, a device selected from a list based the result of the search to operate in an access point mode, obtains, using the first wireless communication, connection information from the device operating in the access point mode, establishes a second wireless connection with the device based on the obtained connection information.
A method includes, at a computer system with a display, a housing, and an attachment mechanism, detecting attachment of an accessory to the computer system, where the accessory, while attached, has a predetermined orientation relative to the attachment mechanism, and in response to detecting the attachment of the accessory to the computer system in accordance with a determination that the accessory is a first accessory with first physical dimensions, displaying, on the display, a first visual indication that the accessory has been attached to the computer system, wherein the first visual indication indicates at least one property of the first physical dimensions, and in accordance with a determination that the accessory is a second accessory with second physical dimensions that are different from the first physical dimensions, displaying, on the display a second visual indication that the accessory has been attached to the computer system, wherein the second visual indication indicates at least one property of the second physical dimensions and the second visual indication is different from the first visual indication.
A computing system can be configured to input model input that includes context data into a machine-learned model and receive model output that describes one or more semantic entities referenced by the context data. The computing system can be configured to provide data descriptive of the semantic entity or entities to the computer application(s) and receive application output(s) respectively from the computing application(s) in response to providing the data descriptive of semantic entity or entities to the computer application(s). The application output(s) received from each computer application can describe available action(s) of the corresponding computer application with respect to the semantic entity or entities. The computing system can be configured to provide at least one indicator to a user that describes the available action(s) of the corresponding computer applications with respect to the semantic entity or entities.
The present disclosure relates to a method for transferring data, in which a peripheral device and a central device are wirelessly connected in accordance with the Bluetooth Low Energy (BLE) standard and a data packet is transferred within a transfer window of a Bluetooth Low Energy data channel between the peripheral device and the central device.
Methods, systems, and apparatuses, among other things, as described herein may provide for hyperlocal edge cache. A method includes intercepting a request for a resource/entity associated with an application; determining that the request can be served from the cache, wherein the cache is connected with a base station and only serves devices directly connected with the base station; and responding to fulfill the request for the resource associated with the application.
A system and method are provided for provisioning code snippets for programming a content delivery network. The method includes receiving a first client code snippet from a first client. The first client code snippet includes identity information of origin servers, standard responses for network requests, and configuration parameters to configure programmable content delivery nodes to respond to the one or more network requests. The method also includes publishing the first client code snippet to a snippet library, and indexing the first client code snippet in the snippet library. The method also includes receiving, from a second client, a request for a second client code snippet. The method also includes selecting a subset of client code snippets stored in the snippet library. The method also includes rendering identification information for the subset of client code snippets, and outputting a selected client code snippet from the subset of client code snippets.
A method includes extracting data pertaining to a plurality of user actions in connection with one or more changes to one or more of a plurality of applications, and training one or more machine learning models with the extracted data. The one more machine learning models are used to predict whether a user should receive a given notification in connection with a given change to a given application of the plurality of applications. In response to predicting that the user should receive the given notification, content of the given notification is determined. The method further includes generating the given notification for the user, and transmitting the given notification to the user.
A first terminal device may obtain address information by using a communication device different from the first terminal device, the address information being for sending information to a second terminal device different from both the first terminal device and the communication device; send connection information to the communication device, the connection information being for the communication device to connect to a network; and after the connection information has been sent to the communication device, send notification information with the obtained address information as a destination, the notification information indicating that the connection information has been sent to the communication device.
Systems and methods to automatically update status of projects within a collaboration environment are described herein. Exemplary implementations may: manage environment state information maintaining a collaboration environment; determine status information for the individual projects; manage information defining project-level graphical user interfaces; update the individual project-level graphical user interfaces to reflect status information of the individual projects in the collaboration environment; and/or perform other operations.
A recording system may use the information stored in a list to determine whether to receive and/or respond to messages transmitted by notice systems. The source of the information for the list includes a server and/or the recording system itself. A server that provides the list may use data provided by an agency to determine a relationship between a people, recording devices and notice systems. The associations between people, recording devices and notice devices may be used to determine what information is in the list. A recording device that forms the list may receive messages from any notice system, detect the session identifier, store the session identifiers from received messages, and receive and/or respond to messages in accordance with the list formed by the recording system.
A method for optimizing device-to-device communication protocol selection in an edge computing environment is provided. The method includes: receiving a request for a service from a user device, wherein the computing system is one of plural edge computing devices in an edge computing environment; determining computational tasks performed in providing the service; selecting, using a machine learning model, a set of the edge computing devices to perform the computational tasks and communication protocols for the set of the edge computing devices to use while performing the computational tasks, wherein the machine learning model is configured to select the set of the edge computing devices and the communication protocols based on minimizing a time to perform the computational tasks; and sending instructions to perform the computational tasks, thereby causing the set of the edge computing devices to perform the service in response to the request from the user device.
The present disclosure is directed generally to systems and methods for providing load balancing as a service. A load balancer executing on a device intermediary to a server and a plurality of clients can receive a request from an agent executing on the server. The request can be to initiate establishment of a transport layer connection. The load balancer can accept the request to establish the transport layer connection with the server. The load balancer can receive a request to access the server from a client of the plurality of clients. The load balancer can forward the request to the server via the transport layer connection established between the load balancer and the server responsive to the request of the server.
The invention relates to a computer-implemented system for security monitoring of Member accounts in a cloud environment. The Member accounts are provided as instances of cloud services in one or more monitored clouds by one or more cloud service providers. The system is programmed to automatically deploy software agents to the Member accounts. The software agents are configured to monitor activities in the Member accounts and to push security and operations data to a SIEM platform. The security and operations data may comprise alerts and activity logs for the Member accounts, public internet protocol (IP) addresses used by the Member accounts, and identifying information for individuals and information technology (IT) assets associated with the Member accounts. The system includes a user interface to define customized alerts based on the security and operations data, and the system generates and sends the customized alerts to a system administrator or security analyst.
The present disclosure provides a method and an apparatus for processing data. The method includes: establishing a data connection between a local service and a Web client, receiving data that the Web client transmits to the local service through the data connection; and storing the received data to the designated local storage space.
Disclosed herein is a system configured to implement a service worker capable of serving multiple single page applications (SPAs) that are hosted in the same uniform resource locator (URL) space (e.g., a domain within which the SPAs are hosted). Accordingly, the defined scope of the service worker is no longer bound by only one SPA, but rather by a root directory of a web site that hosts multiple SPAs. Since the service worker described herein serves multiple SPAs, the service worker implements an approach to ensure that a correct application controller corresponding to the SPA that hosts a URL is invoked. To do this, the service worker is configured to leverage a router and a routing table to associate a URL included in a request from a browser with the correct application controller corresponding to the SPA that hosts the URL for which the request is sent.
According to some aspects, methods and systems may include receiving, by computing device from one or more client devices, a plurality of requests for one or more content items formatted in a first format and determining whether to multicast the one or more content items based on a data structure configured with one or more conditions associated with multicasting content. The methods and systems may also include transmitting, to the one or more client devices, the one more content items via one or more multicast streams if the requests meet a first condition of the one or more conditions. The methods and systems may also include formatting the one or more content items in a second format prior to the transmitting if network resources fail to meet a second condition of the one or more conditions.
Media, methods, and systems are disclosed for progressively instantiating workspaces for a group-based communication system. A request is received to load group-based communication system workspaces and begin receiving real-time events. The workspaces are classified into a plurality of priority and dormant workspaces. The priority workspaces are instantiated, and real-time events associated with the priority workspaces are transmitted to a group-based communication system. Real-time events are detected that trigger instantiation of dormant workspaces, and associated dormant workspaces added to the set of priority workspaces.
A chat room-based file sharing device includes: a memory; and a processor electrically connected to the memory, wherein the processor receives file sharing request information including information about a target shared file and a shared file recipient, creates a file sharing chat room associated with the target shared file, that is specified by the file sharing request information, and, when the file sharing chat room is rendered on a terminal of the shared file recipient, provides a file object corresponding to the target shared file through the file sharing chat room, wherein the file sharer and the shared file recipient share the target shared file through the file sharing chat room by participating as chat participants in the file sharing chat room.
A computer-implemented method for sharing conference content is provided. The method comprises receiving a share input from a first device corresponding to a participant of a conference session, determining content for sharing using communication information associated with the participant, determining that the content is available through a second device and sharing the content using the second device.
Systems and methods of the present disclosure are directed to providing remote control capabilities in information technology infrastructure. In particular, systems and methods of the present disclosure can provide remotely control capabilities to facilitate the management, configuration, or maintenance of information technology infrastructure.
Systems and methods described herein provide for building policies using namespaces. A device may receive a request to access a resource in a computing environment. The request may include one or more attributes. The device may identify a set of namespaces having domain-specific policy grammar to generate domain-specific policies. The device may determine a namespace from the identified set of namespaces which corresponds to the one or more attributes of the request. The device may generate, using domain-specific policy grammar of the determined namespace, a domain-specific policy to apply to the request.
A client application manages a resolver configuration and sends DNS requests to a threat protection service when a mobile device operating the client application is operating off-network. The client application detects network conditions and automatically configures an appropriate system-wide DNS resolution setting. DNS requests from the client identify the customer and the device to threat protection (TP) service resolvers without introducing a publicly-visible customer or device identifier. The TP system applies the correct policy to DNS requests coming from off-network clients. In particular, the TP resolver recognizes the customer for requests coming from such clients and applies the customer's policy. The resolver is also configured to log the customer and the device associated with requests from the TP off-net client. Request logs from the TP resolver are provided to a cloud security intelligence platform for threat intelligence analytics and customer visible reporting.
Embodiments disclosed describe a security awareness system may adaptively learn the best design of a simulated phishing campaign to get a user to perform the requested actions, such as clicking a hyperlink or opening a file. In some implementations, the system may adapt an ongoing campaign based on user's responses to messages in the campaign, along with the system's learned awareness. The learning process implemented by the security awareness system can be trained by observing the behavior of other users in the same company, other users in the same industry, other users that share similar attributes, all other users of the system, or users that have user attributes that match criteria set by the system, or that match attributes of a subset of other users in the system.
A method and system for characterizing application layer flood denial-of-service (DDoS) attacks carried by advanced application layer flood attack tools. The method comprises receiving an indication on an on-going DDoS attack directed toward a protected entity; analyzing requests received during the on-going DDoS attack to determine a plurality of different attributes of the received requests; generating a dynamic applicative multi-paraphrase signature by clustering at least one value of the plurality of different attributes, wherein the multi-paraphrase signature characterizes requests with different attributes as generated by an advanced application layer flood attack tool executing the on-going DDoS attack; and characterizing each incoming request based on the multi-paraphrase signature, wherein the characterization provides an indication for each incoming request whether a request is generated by the attack tool.
Aspects of the present disclosure involve systems and methods computing devices to access a public network posing as a user to the network to detect one or more malware programs available for downloading through the network. More particularly, a malware detection control system utilizes a browser executed on a computing device to access a public network, such as the Internet. Through the browser, sites or nodes of the public network are accessed by the control system with the interactions with the sites of the public network designed to mimic or approximate a human user of the browser. More particularly, the control system may apply the one or more personality profiles to the browser of the computing device to access and interact with the nodes of the public network. Further, the control system may monitor the information retrieved from the network sites to detect the presence of malware within the nodes.
A non-transitory storage medium having stored thereon logic wherein the logic is executable by one or more processors to perform operations is disclosed. The operations may include parsing an object, detecting one or more features of a predefined feature set, evaluating each feature-condition pairing of a virtual feature using the one or more values observed of each of the one or more detected features, determining whether results of the evaluation of one or more feature-condition pairings satisfies terms of the virtual feature, and responsive to determining the results of the evaluation satisfy the virtual feature, performing one or more of a static analysis to determine whether the object is associated with anomalous characteristics or a dynamic analysis on the object to determine whether the object is associated with anomalous behaviors.
A method for predicting one or more events includes generating, for features of each of at least two feature types, an intermediate representation using a representation learning model for the at least two feature types. The intermediate representations of the at least two feature types are analyzed using a neural network and at least one neural network model so as to provide a joint representation for predicting certain events. One or more actions to be taken can be determined based on the one or more events predicted by the joint representation.
A network malicious behavior detection method, including: checking each piece of network packet to determine whether a protocol payload contained therein matches an element in a predetermined protocol payload set, marking each piece of the network packet as a suspicious network packet if the check result is true, and transferring each piece of the network packet to a target device if the check result is false; and performing a malicious behavior checking process on at least one piece of the suspicious network packet, blocking the transfer of at least one piece of the suspicious network packet to the target device if the check result is true, and enabling the transfer of at least one piece of the suspicious network packet to the target device if the check result is false.
An ensemble of detection techniques are used to identify code that presents intermediate levels of threat. For example, an ensemble of machine learning techniques may be used to evaluate suspiciousness based on binaries, file paths, behaviors, reputations, and so forth, and code may be sorted into safe, unsafe, intermediate, or any similar categories. By filtering and prioritizing intermediate threats with these tools, human threat intervention can advantageously be directed toward code samples and associated contexts most appropriate for non-automated responses.
In a device including a processor and a memory, the memory includes executable instructions that, when executed by the processor, cause the processor to control the device to perform functions of receiving an access control setting for granting access to an access-controlled resource and a dynamic tag characterizing a member group subject to the access control setting; accessing a data source storing member data including an attribute associated with each member, the attribute including a parameter related to a time or time period. The dynamic tag is mapped to the member data based on (1) the parameter of the attribute and (2) a time or time period associated with the dynamic tag, to identify mapped members forming the member group, wherein the mapped members identified based on a same dynamic tag vary depending on the time or time period associated with the dynamic tag, to identify the member group.
Methods of secure resource authorization for external identities using remote principal objects are performed by systems and devices. An external entity creates a user group and defines entitlements to an owning entity's secure resource as a set of permissions for the group. An immutable access template with the permissions and an access policy for the secure resource are provided to the owning entity for approval. On approval, a remote principal object is created in the owner directory according to the permissions and access policy. A remote principal that is a group member requests access via an interface to the owner domain using external domain credentials. The identity of the remote principal is verified against the remote principal object by a token service. Verification causes generation and issuance of a token, with the enumerated entitlements, to the remote principal interface affecting a redirect for access to the secure resource.
An identity management server can be used to provide identity-based authentication and access control mechanism for devices trying to connect to a network or other devices on the network. The identity management server may authenticate a user associated with a device based on the past behavior information of the user received from another device associated with the user. The identity management server may generate a trust score based on multiple attributes associated with the user and the device, and authenticate the user if the trust score is within an acceptable limit. The identity management server may also generate access permissions for the device, which can be used by a network device to grant or deny access to the network.
A system supports asset transfers among blockchains of differing distributed ledger technologies using interop circuitry. The interop circuitry may receive asset permissions from origin and target participant circuitry. The asset permissions may support transfer of an asset from an origin blockchain to a target blockchain. The interop circuitry, acting on behalf of the origin and target participant circuitry, locks an asset on the origin blockchain. Then the interop circuitry creates the asset on the target blockchain. The locking of the asset on the origin blockchain may prevent a double-expend opportunity, where the asset can be redeemed on the origin blockchain and on the target blockchain.
A shared terminal includes: circuitry to control a display to display an image to a plurality of users, the plurality of users sharing a use of the shared terminal, and obtain, from a first privately-owned terminal owned by a first user of the plurality of users, first terminal identification information for identifying the first privately-owned terminal; a transmitter to transmit, to a terminal management server, an authentication request for authenticating the first privately-owned terminal to allow login of the first user into the shared terminal, the authentication request including the first terminal identification information of the first privately-owned terminal; and a receiver to receive an authentication result indicating whether the first privately-owned terminal is authenticated to allow login of the first user, from the terminal management server. When the authentication result indicates that the first privately-owned terminal is a legitimate terminal and login of the first user is successful, the circuitry controls the display to display a screen for allowing the plurality of users including the first user to draw an image. When the authentication result indicates that the first privately-owned terminal is not a legitimate terminal and login of the first user fails, the circuitry controls the display to display a screen with an error message.
Methods, systems, apparatuses, and computer program products are provided for automatically determining a home realm. An authentication request receiver interface may receive a request to access a resource and a device identifier from a client device. An authenticator may be enacted in response to receiving the request to access the resource that includes a home realm discoverer and an authentication user interface (UI) provider. The home realm discoverer may determine, based at least on the device identifier, the home realm from a plurality of realms. The authentication UI provider may provide, to the client device, an authentication UI via which a flat-name username can be submitted. Based at least on a flat-name user name and the determined home realm, access to the resource may be granted. In this manner, a user may input a flat-name username during sign-in, rather than inputting a realm or an entire e-mail address.
A network protocol provides mutual authentication of network-connected devices that are parties to a communication channel in environments where the amount of memory and processing power available to the network-connected devices is constrained. When a new device is added to a network, the device contacts a registration service and provides authentication information that proves the authenticity of the device. After verifying the authenticity of the device, the registration service generates a token that can be used to by the device to authenticate with other network entities, and provides the token to the device. The registration service publishes the token using a directory service. When the device connects to another network entity, the device provides the token to the other network entity, and the other network entity authenticates the device by verifying the token using the directory service.
A VPN servers request is transmitted from a user device to a central server. A first VPN server is received from the central server at the user device. Responsive to the user device failing to establish a first encrypted tunnel with the first VPN server, a request for another VPN server is transmitted from the user device to the central server. A second VPN server is received from the central server. A second encrypted tunnel is established with the second VPN server. An encrypted communication is obtained by encrypting a communication directed to a network server. The encrypted communication is transmitted from the user device to the VPN second server.
The disclosure is directed to a method and system including a first node that stores a first multipoint mesh VPN database including a plurality of underlay addresses in an underlay network for a plurality of nodes, respectively, and a plurality of VPN addresses in a multipoint mesh VPN for the plurality of nodes, respectively. The first node also receives a second multipoint mesh VPN database from a second node, the second multipoint mesh VPN database including underlay and VPN addresses for the third node. The first node further receives a third multipoint mesh VPN database from the third node, the third multipoint mesh VPN database including underlay and VPN addresses for the second node. The first node additionally compares the databases to determine if underlay addresses and VPN addresses are missing from the first multipoint mesh VPN database.
Systems and techniques are provided for obscured routing. A computing device may send stacks of identifiers to neighbor computing devices in a network. Each stack of identifiers may include a unique identifier for the neighbor computing device to which it is sent. The computing device may send a notification identifying a destination computing device to the neighbor computing devices. The computing device may receive stacks of identifiers from the neighbor computing devices. The received stacks of identifiers may include completed routes to the destination computing device. Each completed route may be specified by unique identifiers added to the stack of identifiers by computing devices in the network. A unique identifier in each stack of identifiers may not be resolvable to an address by the computing device. The computing device may send a message a neighbor computing device based on a unique identifier in a chosen stack of identifiers.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for creating and managing custom timelines. One of the methods includes receiving, from a user using a user account of a social messaging platform, input to a user interface displaying a message timeline of a social messaging platform, the user input requesting that the platform save a first message from the message timeline and, in response, saving the message to a custom timeline of the user account, wherein saving the message to the custom timeline includes associating with the custom timeline an identifier that identifies the first message; monitoring engagements by one or more other accounts with the first message with respect to one or more notification criteria; and in response to determining that the monitored engagements satisfy a trigger condition, providing a notification to the user account associated with the first message through the custom timeline.
Providing a mobile device with web-based access to data objects is disclosed. Authentication information is sent from a mobile device to a relay server. The relay server executes a connection application to establish a connection to a web access server. The authentication information is provided to the web access server associated with a data store hosting a data object. Upon authentication, the data object is provided to the relay server from the data store. The data object is then provided to the mobile device.
Techniques for messaging bot controls based on machine-learning user intent detection are described. In one embodiment, an apparatus may comprise a message queue monitoring component operative to monitor a messaging interaction, the messaging interaction exchanged via a messaging system, the messaging interaction involving at least one client device; an interaction processing component operative to determine a user intent for the messaging interaction; and a bot management component operative to determine a messaging bot options configuration for the client device based on the user intent; and send the messaging bot options configuration to the client device. Other embodiments are described and claimed.
The present invention relates to a data transmission system including a data exchange unit; wherein, to transmit a data frame, it passes successively at least through an interface module that is configured to receive said data frame from outside the transmission system; an analysis and filtering module responsible for processing said data frame which is received from the interface module before encapsulation; and an encapsulation module responsible for encapsulating said data frame processed by the analysis and filtering module, wherein two successive modules through which said data frame passes are connected to one another by an interconnection device each including a temporary memory for storing said frame and the read and write accesses to said memory being frequency-independent.
A network where FC and Ethernet storage traffic share the underlying network. The network extends FC SAN storage specific attributes to Ethernet storage devices. The network is preferably formed of FC switches, so each edge switch acts as an FCoE FCF, with internal communications done using FC. IP packets are encapsulated in FC packets for transport. Preferably, either each outward facing switch port can be configured as an Ethernet or FC port, so devices can be connected as desired. FCoE devices connected to the network are in particular virtual LANs (VLANs). The name server database is extended to include VLAN information for the device and the zoning database has automatic FCOE_VLAN zones added to provide a mechanism for enhanced soft and hard zoning. Zoning is performed with the conventional zoning restrictions enhanced by including the factor that any FCoE devices must be in the same VLAN.
Methods, systems, and devices for filtering network traffic from automated scanner are described. A device (e.g., an application server) may receive an activity message associated with an interaction with an electronic communication message and identify, from the activity message, at least a source identifier of the activity message and one or more attributes associated with the electronic communication message. The device may then add the activity message to a mapping of source identifiers and attributes associated with previously received activity messages and classify the activity message as being associated with an automated scanner based on a comparison of the received activity message to the mapping over a previous time window. Upon classifying the activity message, the device may transmit a classification result to an external server.
Methods, apparatus and articles of manufacture for advertising network layer reachability information specifying a quality of service for an identified network flow are disclosed. Example methods disclosed herein to specify quality of service for network flows include receiving network layer reachability information including a first quality of service class specified for a first network flow, the network layer reachability information having been advertised by a first network element that is to receive the first network flow. Such example methods can also include updating an incoming packet determined to belong to the first network flow to indicate that the incoming packet belongs to the first quality of service class, the incoming packet being received from a second network element. Such example methods can further include, after updating the incoming packet, routing the incoming packet towards the first network element.
In general, this disclosure describes a programmable network platform for dynamically programming a cloud exchange to provide a layer three (L3) routing instance as a service to customers of the cloud exchange. In one example, a cloud exchange comprises an L3 network located within a data center and configured with an L3 routing instance for an enterprise; and for the L3 routing instance, respective first and second attachment circuits for first and second cloud service provider networks co-located within the data center, wherein the L3 routing instance stores a route to a subnet of the second cloud service provider network to cause the L3 routing instance to forward packets, received from the first cloud service provider network via the first attachment circuit, to the second cloud service provider network via the second attachment circuit.
In one embodiment, a controller for a network receives, via a user interface, a downgrade policy for the network that specifies an objective for path downgrades in the network. The controller identifies traffic of an application conveyed by an edge router in the network via a particular path in the network and using a first type of link. The controller predicts an effect of downgrading the particular path from using the first type of link to using a second type of link to convey the traffic of the application. The controller causes the edge router to convey the traffic of the application via the second type of link, when the effect predicted by the controller satisfies the objective specified by the downgrade policy.
A method for managing traffic in a computerized system that may include routers and at least one edge device, the method may include performing traffic management operations for controlling traffic related to the routers while executing a first traffic management operations by the at least one edge device, and executing second traffic management operations by the routers.
As described herein, a router signals a source device to establish a new stateful communication session with a destination device by changing a network path used by traffic associated with the session. In one example, a router forwards traffic of a first stateful routing session established by the source device along a first path. In response to determining that that the first path should not be used, the router forwards a packet of the first session along a second path. The destination device recognizes the change in path, which causes the destination device to reject the packet, which in turn causes the source device to establish a second stateful routing session. The router forwards subsequent traffic of the second stateful routing session along the second path.
Various approaches for allocating resources to an application having multiple application components, with at least one executing one or more functions, in a serverless service architecture include identifying multiple routing paths, each routing path being associated with a same function service provided by one or more containers or serverless execution entities; determining traffic information on each routing path and/or a cost, a response time and/or a capacity associated with the container or serverless execution entity on each routing path; selecting one of the routing paths and its associated container or serverless execution entity; and causing a computational user of the application to access the container or serverless execution entity on the selected routing path and executing the function(s) thereon.
The subject matter described herein includes methods, systems, and computer readable media for proactive network testing. One method for proactive network testing includes receiving, by a test controller and via a network tap, at least one metric associated with live network traffic; determining, by the test controller and using the at least one metric and a threshold value associated with the at least one metric, that a network test is to be performed; configuring, by the test controller, a first test agent to execute the network test; and executing, by the first test agent, the network test.
Disclosed herein are a system, non-transitory computer readable medium, and method for monitoring and replaying packets. A network tap forwards packets from a first network to a second network. At least one node in the first network has the same IP address as a node in the second network. The packets are replayed in the second network.
A device may receive CNF data identifying a CNF to be deployed in a network. The device may perform multiple levels of validation associated with deploying the CNF. The device may determine, based on performing the multiple levels of validation, whether one or more issues are associated with deploying the CNF in the network. The one or more issues may include one or more of: a connectivity issue, a package issue, a network functions virtualization orchestrator (NFVO) issue, or a network functions virtualization infrastructure (NFVI) issue. The device may perform one or more actions based on determining whether the one or more issues are associated with the deploying the CNF in the network.
An information wallet system includes an information wallet account associated with a user of the system, and a server having a memory and a processor. The processor is configured to receive user information from a user computing device, wherein the user information is related to a user of the information wallet account, determine, based on the user information, one or more user settings preferences related to a second computing device, receive an information request, wherein the information request includes a request to send the one or more user settings preferences to the second computing device, and to send the one or more user settings preferences to the second computing device, wherein the one or more user settings preferences are useable by the second computing device to adjust one or more settings of the second computing device.
A computer-implemented method includes receiving a request to provision a set of storage volumes for a server cluster, wherein the request includes an identifier for the server cluster and generating a provisioning work ticket for each storage volume in the set of storage volumes, each provisioning work ticket including the identifier for the server cluster. The provisioning work tickets are provided to a message broker. Multiple volume provisioning instances are executed such that at least two of the volume provisioning instances operate in parallel with each other and such that each volume provisioning instance receives a respective provisioning work ticket from the message broker and attempts to provision a respective storage volume of the set of storage volumes for the server cluster in response to receiving the volume provisioning work ticket.
A component tracking system includes a plurality of devices that each include a device component monitoring subsystem that monitors for and records the addition and/or removal of device components to/from that device. A device component manager system that is coupled to each of the plurality of devices identifies, via a recording by a first device monitoring subsystem in a first device included in the plurality of devices, the removal of a first device component from the first device. The device component manager system then determines, via a recording by a second device component monitoring subsystem in a second device included in the plurality of devices, that the first device component has been added to the second device within a time period and, in response, the device component manager device prevents a removed first device component alarm.
Examples disclosed herein relate to a method comprising receiving a data packet originating from a first device and intended for a second device, wherein the first device and the first access device belong to a first branch of a Wide Area Network (WAN) using a MPLS overlay and the second device belongs to a second branch of the WAN. The method includes encapsulating the data packet in VXLAN including a VXLAN label identifying a role type and transmitting the data packet to a first core device. The method includes determining an MPLS label corresponding to the role type and transmitting the data packet over the MPLS overlay to a second core device belonging to the second branch of the WAN. The method includes translating the MPLS label into the VXLAN label and transmitting the data packet including the VXLAN label to a second access device for an enforcement action.
Systems and methods are provided herein for supporting Spanning Tree Protocol (STP) in networks that use Ethernet Virtual Private Network (EVPN) All-Active (A-A) multihoming. This may be accomplished by a network administrator defining a super root group comprising a plurality of network devices, wherein each network device provides A-A multihoming to a multihomed device. All network devices in the super root group use a common bridge ID when generating BPDU messages for STP. All network devices in the super root group will send BPDU messages comprising the common bridge ID to the multihomed device. Because the BPDU messages comprise a common bridge ID, the multihomed device treats the network devices in the super root group as a single local bridge, thus STP is enabled without causing STP flapping.
Systems and methods for indoor tracking via Wi-Fi fingerprinting and electromagnetic fingerprinting are provided and can include a gateway receiver device measuring a RSSI value of a signal transmitted by a Wi-Fi transmitter device, the gateway receiver device measuring an EMF value of an interference in an electromagnetic field created by the gateway receiver device that is caused by the Wi-Fi transmitter device, the gateway receiver device determining whether the RSSI value matches any of a plurality of Wi-Fi fingerprints associated with a monitored region and whether the EMF value matches any of a plurality of electromagnetic fingerprints associated with the monitored region, and responsive thereto, the gateway receiver device identifying that a location of the Wi-Fi transmitter device is within the monitored region.
Techniques are described herein for automated assistants that proactively provide content to participant(s) of multi-participant message exchange threads (e.g., group chats, audio and/or video calls in which oral messages are transcribed for analysis, etc.) based on signals such as individual participant profiles associated with participant(s). In various implementations, automated assistant(s) that may not be explicitly invoked may analyze content of a message exchange thread involving multiple human participants and/or document(s) associated with the message exchange thread. Based on the analyzing, the automated assistant(s) may identify topic(s) pertinent to the message exchange thread. Based on individual participant profiles associated with the participants, the automated assistant(s) may identify shared interest(s) of the participants. The automated assistant(s) may then select new content based both on the pertinent topic(s) and the shared interest(s) of the participants and proactively provide the new content to one or more of the participants.
A conferencing system may include a data input port and an ingest system to receive signals through the data input port from a separate conference data source. The ingest system may include a notification subsystem to: identify an error state with respect to the signals received through the data input port; and output a human interface device (HID) notification to a conferencing application, wherein the HID notification includes the identified error state.
A method and apparatus for generating a dynamic security certificate. The method creates an entropic element from user input, receives metadata from user input and generates a dynamic security certificate using the entropic element and the metadata. The dynamic security certificate is then trusted through user input.
A system and method for efficiently managing an executable environment involving multiple code-sign certificate chains. The system and method include receiving, by one or more processors and from a client device, a request for information to verify an authorization of a code bundle, the code bundle associated with a first signed code segment and a second signed code segment. The system and method include generating, by one or more processors, a list of certificates associated with the code bundle. The system and method include transmitting, by the one or more processors and to the client device, a message comprising the list of certificates, the message causing the client device to verify the code bundle based on the list of certificates.
A host processing device instructs a plurality of data processing (DP) accelerators to configure themselves for secure communications. The host device generates an adjacency table of each of the plurality of DP accelerators. Then the host device then establishes a session key communication with each DP accelerator and sends the DP accelerator a list of other DP accelerators that the DP accelerator is to establish a session key with, for secure communications between the DP accelerators. The DP accelerator establishes a different session key for each pair of the plurality of DP accelerators. When all DP accelerators have established a session key for communication with other DP accelerators, according to the respective list of other DP accelerators sent by the host device, then the host device can assign work tasks for performance by a plurality of DP accelerators, each communicating over a separately secured communication channel.
Disclosed is a data sharing method, including: building a trust alliance block chain, the trust alliance block chain comprising a main chain and at least one slave chain; each slave chain corresponding to a domain; and each domain comprising a leader node; establishing a virtual slave chain on the trust alliance block chain; designating, by the leader node in each domain, a node as a federated learning node; assigning, by the leader node in each domain, a virtual identity to the federated learning node to join the federated learning node to the virtual slave chain; and performing, by each federated learning node, a joint training on a local federated learning model using data generated in its own domain to establish a public federated learning model, through which data are shared among the domains. The present disclosure further provides a data sharing system, an electronic device and a storage medium.
A method of performing ordered statistics between at least two parties is disclosed which includes identifying a first dataset (xA) by a first node (A), identifying a second dataset (xB) by a second node (B), wherein xB is unknown to A and xA is unknown to B, and wherein A is in communication with B, and wherein A and B are in communication with a server (S), A and B each additively splitting each member of their respective datasets into corresponding shares, sharing the corresponding shares with one another, arranging the corresponding shares according to a mutually agreed predetermined order into corresponding ordered shares, shuffling the ordered shares into shuffled shares, re-splitting the shuffled shares into re-split shuffled shares, and performing an ordered statistical operation on the re-split shuffled shares, wherein the steps of shuffle and re-split is based on additions, subtractions but not multiplication and division.
A method of multi-sensor data fusion includes determining a plurality of first data sets using a plurality of sensors, each of the first data sets being associated with a respective one of a plurality of sensor coordinate systems, and each of the sensor coordinate systems being defined in dependence of a respective one of a plurality of mounting positions for the sensors; transforming the first data sets into a plurality of second data sets using a transformation rule, each of the second data sets being associated with a unified coordinate system, the unified coordinate system being defined in dependence of at least one predetermined reference point; and determining at least one fused data set by fusing the second data sets.
Provided are a signal transmitting method and apparatus, a storage medium and an electronic apparatus for random-access signal transmissions. The method includes determining resources for a random-access signal in a region that comprises 36 subcarriers and six symbol groups. The six symbol groups are assigned indices 0, 1, 2, 3, 4, and 5, and a subcarrier index occupied by a symbol group is determined based on determining a first subcarrier index occupied by a neighboring symbol group, and determining the subcarrier index based on the first subcarrier index and an offset value. The method also includes transmitting the random-access signal using the determined resources.
A subchannel detection system for a wireless communication device is disclosed. The system includes an input interface arranged to receive digital data over a predetermined baseband having a plurality of subchannels a plurality of frequency translators arranged to shift the spectrum of the digital data within a subchannel to the center of the baseband, a plurality of low-pass filters arranged to filter frequencies in the middle of the baseband within a subchannel bandwidth, a plurality of correlators arranged to receive a filtered digital signal and correlate the received signal to a subchannel size, and a processing module arranged to receive data from the plurality of correlators and detect one or more active subchannels. The plurality of frequency translators shift the spectrum of all subchannels in the digital data to the center of the baseband; the shifted spectra are filtered by the plurality of low-pass filters and correlated to individual subchannels.
A method for determining a resource for a reference signal includes: determining, according to positions of N channel resource units used by a physical channel, R channel resource units from the N channel resource units, where both R and N are integers and 0≤R
A method and apparatus are disclosed from the perspective of a network. In one embodiment, the method includes the network configuring a DL (Downlink) BWP (Bandwidth Part) and an UL (Uplink) BWP in a first serving cell to a UE (User Equipment). The method also includes the network configuring a paired spectrum operation in the first serving cell to the UE. The method further includes the network transmitting a first DCI (Downlink Control Information) to the UE, wherein the first DCI comprises a slot format combination indicating one or more slot format values for the DL BWP and one or more slot format values for the UL BWP. In addition, the method includes the network prevents from setting an amount of slot format values in the slot format combination in the first DCI to be not divided by a first number, wherein the first number is associated with an absolute value of a difference of a first SCS (Subcarrier Spacing) configuration and a second SCS configuration.
Wireless communications systems and methods related to performing subband-based random access and/or subband-based scheduling request in a network are provided. A first wireless communication device receives a communication configuration indicating one or more subbands for transmitting a signal including at least one of a random access preamble sequence or a scheduling request. The first wireless communication device performs a clear channel assessment (CCA) on each subband of the one or more subbands. The first wireless communication device transmits the signal using at least one subband of the one or more subbands based on a result of the CCA.
According to certain embodiments, a method in a wireless device (110) includes transmitting a protocol data unit (PDU) or segment of a PDU on a first link and transmitting the PDU or the segment of the PDU on a second link. One or more retransmissions of the PDU or the segment of the PDU are scheduled on the second link. A positive acknowledgment is received from a receiver. The positive acknowledgement indicates a successful receipt of the PDU or the segment of the PDU on the first link. In response to receiving the positive acknowledgement, the one or more retransmissions of the PDU or the segment of the PDU on the second link are cancelled.
A method and apparatus for combining UL data with a feedback of DL data in a wireless communication system is provided. A wireless device receives, from a network, information informing whether an application level uplink (UL) data, subsequent to a downlink (DL) data, is expected or not. A wireless device initiates random access procedure. A wireless device receives, from the network, the DL data in the random access procedure. A wireless device transmits a UL signaling including both the application level UL data and a feedback of the DL data based on the information informing that the application level UL data subsequent the DL data is expected.
Aspects described herein relate to bi-direction preemption indication transmissions. In one example, a node such as an integrated access and backhaul (IAB) node may determine that a set of one or more resources are preempted for use for both an uplink transmission and a downlink transmission, and transmit, to a user equipment (UE), the bi-direction preemption indication indicating that the set of one or more resources are preempted for use for both of the uplink transmission and the downlink transmission. In another example, a UE may receive a bi-direction preemption indication indicating that a set of one or more resources are preempted for use for both an uplink transmission and a downlink transmission, and perform rate matching for both of the uplink transmission and downlink transmission based on the set of one or more resources indicated by the bi-direction preemption indication.
A coherent optical modem includes an optical interface; and circuitry connected to the optical interface and configured to detect a first timing reference point in a transmit Digital Signal Processor (DSP) frame in a transmit direction from a first node to a second node, and detect a second timing reference point in a receive DSP frame in a receive direction from the second node to the first node, wherein the first timing reference point and the second timing reference point are determined based on a pattern in any DSP frame field including i) padding area, ii) a reserved area, and iii) a DSP Multi-Frame Alignment Signal (MFAS) area. The pattern can be input in select DSP frames for a time period that is greater than a time period for each DSP frame.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a transmitter device may transmit, using a frequency-domain beam sweeping configuration, a wideband signal, wherein a pointing direction of a first beam conveying the wideband signal changes continuously with respect to a frequency domain, and wherein each resource element of the wideband signal has a different pointing direction. The transmitter device may receive a report associated with a set of measurements of the wideband signal performed by a receiver device. The transmitter device may communicate using a second beam that has a beam direction determined based at least in part on the received report. Numerous other aspects are described.
Optical systems, receivers, devices, and methods including a free space beam combining and polarization splitting prism to receive local oscillator light and optical signals in substantially parallel input paths that are in the same plane and output two orthogonally polarized beams in substantially parallel output paths that are substantially perpendicular to the plane of the input paths. Light in one of the incoming paths is reflected toward a combining surface that combines the local oscillator light and the optical signal. The combined beam then encounters a polarization splitting surface that splits the combined beam into two orthogonally polarized beams. One of the polarized beam may be reflected 90 degrees in plane and then both orthogonally polarized beams are reflected 90 degrees of out of plane to output each orthogonally polarized beam into substantially parallel optical output paths.
An optical transceiver module includes an optical transceiver and a controller. The optical transceiver has a ring filter configured to transmit optical signals from or receive optical signals for the optical transceiver module. The controller is configured to: detect a carrier frequency at the optical transceiver; detect a data signal frequency of data at the optical transceiver; determine a bit error rate of the data; and in response to determining that the bit error rate of the data is greater than a threshold, periodically vary a central wavelength of the ring filter at a frequency at least three orders slower than the data signal frequency.
Optical communication systems and their method of operation are disclosed. In some embodiments, one or more images of one or more optical transmitters may be collected with an imaging device during relative motion between the imaging device and the one or more optical transmitters. The one or more optical transmitters may transmit bit stream segments as a pattern of sequential modulation cycles. The relative motion between the imaging device and the one or more optical transmitters may be sufficiently fast and an image integration time of the imaging device may be sufficiently long such that one or more bit stream segments transmitted by the one or more optical transmitters may be captured as one or more data traces in the images for subsequent decoding.
A MIMO basestation for a cellular communications system comprises a remote indoor processing facility coupled to an outdoor RF tower via optical fibers. The remote indoor processing facility includes a bank of RF modulators to modulate signal streams; a remote MIMO transmitting processor that includes a remote digital beam-forming network to transform the modulated signal streams into transmit beam signals; a pre-processor to perform a wavefront multiplexing transform on the transmit beam signals to generate wavefront multiplexed beam signals, each of the wavefront multiplexed beam signals being a linear combination of the transmit beam signals; and RF-to-optical drivers to perform optical modulating functions on the wavefront multiplexed beam signals to generate optical waveform streams.
Aspects of the disclosure relate to a method for wireless communication at a user equipment (UE). In some aspects, the UE receives, from a base station, configuration information for performing beam pair selection measurements with respect to a subset of candidate beams at the UE. The beam pair selection measurements may include at least self-interference measurements at the UE between one or more transmit (Tx) beams and one or more receive (Rx) beams in the subset of candidate beams. The configuration information indicates measurement gaps between the self-interference measurements. The UE performs the beam pair selection measurements based on the configuration information and selects at least one pair of Tx/Rx beams based on the performed beam pair selection measurements. The UE transmits a report including the selected at least one pair of Tx/Rx beams to the base station.
A radio network element includes at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the radio network element to: configure a quasi-co-location-type information entry included in a transmission configuration indication state (S604) for a downlink transmission beam between the radio network element and a user equipment based on at least one beam report, the at least one beam report including at least one transmission parameter for the downlink transmission beam, and the quasi-colocation-type information entry being indicative of one or more sources of inter-beam-interference on the downlink transmission beam at the user equipment; and transmit the transmission configuration indication state including the quasi-co-location-type information entry to the user equipment (S606).
For example, an EDMG initiator STA of an asymmetric beamforming training may be configured to, during a Beacon Transmission Interval (BTI) in a Beacon Interval (BI), transmit a beacon via a sector of the EDMG initiator STA, the beacon including allocation information to allocate a beamforming training allocation for asymmetric beamforming training of the sector during a Data Transfer Interval (DTI) in the BI after the BTI, the beacon including one or more Receive Training (TRN-R) subfields for the asymmetric beamforming training of the sector; during the beamforming training allocation, to listen on the sector for one or more Sector Sweep (SSW) frames from one or more EDMG responder STAs; and, during the beamforming training allocation, to transmit via the sector a sector acknowledgement (ACK) frame including information based on the one or more SSW frames.
A communication device for providing a channel state information, CSI, feedback in a wireless communication system includes a transceiver to receive a radio signal including downlink reference signals. The processor estimates an explicit CSI, selects a Doppler-delay precoder matrix for a composite Doppler-delay-beam three-stage precoder, calculates and reports to the transmitter a CSI feedback. The communication device selects from one or more codebooks a subset of D delay components and/or a subset of F Doppler-frequency components and uses the selected subset of delay components for each polarization and each spatial beam and/or the selected subset of Doppler-frequency components for each polarization, each spatial beam and each delay, when calculating the Doppler-delay precoder matrix.
A method for assisting the adaptation of a signal from a first node to a second node is provided. The first node communicates with the second node in a wireless communication system over a radio link. The second node has a codebook comprising a set of possible information alternatives for assisting the adaptation of a signal received from the first node. The second node may select an information alternative from the codebook and send it to the first node to assist the first node in adapting the signal. The first node is configured with a number of subsets, each comprising a part of the possible information alternatives. The first node requests that the second node restrict the selection of information alternatives to one of the subsets, and in response, receives an information alternative from the second node that is selected from among the subsets configured according to the configuration request.
Suppressing interference in a frequency hopping signal. The method includes receiving a frequency hopping signal for a signal of interest. The frequency hopping signal includes the signal of interest modulated using frequency hopping and wideband and narrowband interference. Prior to de-hopping the frequency hopping signal, one or more wideband interferences in the frequency hopping signal are identified. The one or more wideband interferences are suppressed to create a wideband interference suppressed signal. Subsequent to suppressing the one or more wideband interferences, the wideband interference suppressed signal is de-hopped to create a de-hopped signal. In the de-hopped signal, one or more narrowband interferences are identified. The one or more narrowband interferences are suppressed to create an interference suppressed signal. The interference suppressed signal is demodulated to create a demodulated signal.
A radio frequency (RF) aperture includes an interface board. An array of electrically conductive tapered projections have bases disposed on a front side of the interface printed circuit board and extend away from the front side of the interface printed circuit board. RF circuitry is disposed at the back side of the interface board and is electrically connected with the electrically conductive tapered projections.
An adaptive support accessory for providing improved handling, positioning, mounting, and adapting of a mobile device is disclosed. The accessory includes a base attachable to a mobile device and a cap rotationally coupled to the base. The base includes an annular base protrusion centered about an axis of rotation. The cap includes an annular cap protrusion centered about the axis of rotation and disposed adjacent to the annular base protrusion. An aperture formed in the center of the accessory and defining an interior perimetric face provides an engagement feature configured for engaging one or more of a user's fingers, a plug, a mount, and a mounting structure. One or more supports attached to the cap may be configured to engage one or more of a user's fingers, a mount, and a mounting structure. One or more detachably attachable plugs provide additional mounting, adapting, and augmenting the accessory.
An apparatus for self-generating power and a wireless switch applying same are provided. The apparatus includes a coil assembly and a permanent magnet assembly. In an initial state, left and right ends of a soft magnetic plate come into contact with a first permanent magnet and a second upper soft magnetic plate respectively to form a first closed magnetic circuit, when the soft magnetic plate is rotated relative to the permanent magnet assembly, the left and the ends of the soft magnetic plate come into contact with a first upper soft magnetic plate and a second permanent magnet respectively to form a second closed magnetic circuit, and a direction of a magnetic line of force passing through the soft magnetic plate in the first closed magnetic circuit is opposite to that of a magnetic line of force passing through the soft magnetic plate in the second closed magnetic circuit.
A system for receiving multipath signals is disclosed. The system includes an equalizer that includes an input for a received data signal, wherein the received data comprises a first multipath component and a second multipath component. The equalizer further includes a channel impulse response estimator coupled to the input configured to determine one or more channel impulse response (CIR) estimates for the first multipath component and the second multipath component. The equalizer further includes a statistical estimation module coupled to the channel impulse response estimator configured to estimate a state of the first multipath component and the second multipath component based on the one or more channel impulse response estimates. The equalizer further includes a detector coupled to the statistical estimation module configured to detect data from the received data signal based on an estimated future state of the first multipath component and the second multipath component.
A transmission circuit includes a data input pin, a serial-to-parallel converter, an interface decoder, a parallel-to-serial converter, and a processor circuit. The serial-to-parallel converter is electrically coupled to the data input pin. The serial-to-parallel converter converts a plurality of data signals received by the first data input pin into a set of parallel data signals. The interface decoder is electrically coupled to the serial-to-parallel converter. The interface decoder decodes the set of parallel data signals to generate a set of decoded data signals for parallel transmission. The parallel-to-serial converter is electrically coupled to the interface decoder. The parallel-to-serial converter converts the set of decoded data signals into a plurality of input data signals for serial transmission. The processor circuit is electrically coupled to the parallel-to-serial converter. The processor circuit receives and processes the plurality of input data signals.
A system and method for providing error control coding for backhaul applications are disclosed. Data is first encoded using Reed-Solomon (RS) coding. The output RS blocks are then turbo coded. The size of the output RS blocks is selected to match the input of the turbo encoder. The bits from the RS blocks may be interleaved to create the input turbo blocks. Cyclic Redundancy Check (CRC) parity bits may be added to the data prior to RS coding.
Systems and methods for lossless compression of tabular numeric data are provided. The system can include one or more data compression servers executing data compression system code to compress the tabular numeric data, a storage database to store the compressed tabular numeric data, and one or more data decompression servers to decompress the tabular numeric data for use. The one or more data compression servers, the storage database, and the one or more data decompression servers can communicate via a communication network. The system can receive the uncompressed tabular numeric data from one or more data generation systems, processes the uncompressed tabular numeric data with the data compression system code, and generate a compressed table of numeric information, which can be stored in the database, or later decompressed by the one or more data decompression servers.
The present invention provides a fractional-N frequency synthesizer comprising a divider controller comprising a multistage noise Shaping (MASH) digital delta-sigma modulator comprising L error feedback modulator (EFM) stages, wherein the jth EFM stage is configured to receive as an input the sum of the error of the preceding EFM stage and a high amplitude dither signal derived from the error of the kth EFM stage, where 1≤j≤k≤L.
An ultra-high resolution capacitive sensor affixed above an imaging member surface measures the thickness of fountain solution on the imaging member surface in real-time during a printing operation. The sensor is considered ultra-high resolution with a resolution high enough to detect nanometer scale thicknesses. The capacitive sensor would initially be zeroed to the imaging member surface. As fluid is added, the capacitive sensor detects the increase and can measure and communicate with the image forming device to adjust fountain solution flow rate to the imaging member surface and correct for any anomalies in thickness. This fountain solution monitoring system may be fully automated. The capacitive sensor may have a resolution (e.g., as low as about 1 nm resolution) of about 0.001% of the distance/gap that the capacitive sensor is mounted away from the imaging member surface.
A method includes detecting a signal on a switching node connected to a power switch, detecting a gate drive voltage of the power switch, during a gate drive process of the power switch, reducing a gate drive current based on a first comparison result obtained from comparing the signal with a first threshold, and during the gate drive process of the power switch, increasing the gate drive current based on a second comparison result obtained from comparing the gate drive voltage with a second threshold.
Common-mode transient immunity circuit and modulation-demodulation circuit, common-mode transient immunity circuit is applied to connecting with modulation circuit or demodulation circuit, comprising first isolation circuit, common-mode bias circuit, reference circuit and comparison circuit. Common-mode bias circuit provides common-mode bias voltage for first isolation circuit; first isolation circuit transmits common-mode bias voltage to comparison circuit; reference circuit provides reference voltage for comparison circuit; comparison circuit compares common-mode bias voltage with reference voltage, when common-mode bias voltage is larger than reference voltage, comparison circuit outputs enable signal to modulation circuit or demodulation circuit, and modulation circuit is driven to stop outputting modulation signal or demodulation circuit is driven to stop receiving modulation signal. According to invention, when common-mode transient occurs, enable signal is output to drive modulation circuit or demodulation circuit to stop working, so that influence of common-mode transient on output signal is avoided.
Disclosed is a transmitting device comprising two galvanically isolated sub-circuits. The first sub-circuit comprises: a carrier signal source for outputting a carrier signal; a digital signal source for outputting binary signal levels; and a logic component for performing an AND operation on two input signals. The second sub-circuit comprises: a signal input; a signal output; and a first RC element, the signal input, the signal output and the RC element being connected in parallel to one another with respect to a second reference potential. A first isolating capacitor is connected between the first logic output and the signal input for galvanic isolation. A second isolating capacitor is connected between the first reference potential and the second reference potential for galvanic isolation.
In described examples of a ramp circuit, a first terminal of a capacitor is coupled to a ramp terminal and a second capacitor terminal is coupled to a return terminal. A charge source has an input terminal coupled to a supply terminal and a charge output terminal. A resistor has a first terminal coupled to the return terminal. A first switch is coupled between the ramp terminal and a second terminal of the resistor. A second switch is coupled between the charge output terminal and the ramp terminal.
A resonator circuit device. The present invention provides for improved resonator shapes using egg-shaped, partial egg-shaped, and asymmetrical partial egg-shaped resonator structures. These resonator shapes are configured to give less spurious mode/noise below the resonant frequency (Fs) than rectangular, circular, and elliptical resonator shapes. These improved resonator shapes also provide filter layout flexibility, which allows for more compact resonator devices compared to resonator devices using conventionally shaped resonators.
A distributed power amplifier includes radio frequency (RF) input and output terminals. A first field effect transistor (FET) is coupled at a first gate terminal to the RF input terminal and at a first drain terminal to the RF output terminal. The first FET has a first periphery and a first source terminal electrically connected to ground potential. A second FET has a second periphery smaller than the first periphery. The second FET has a second gate terminal electrically coupled to the first gate terminal through a first inductor, a second drain terminal electrically coupled to the first drain terminal through a second inductor, and a second source terminal electrically connected to the ground potential. A drain voltage terminal, which excludes a resistive element, is electrically coupled to a drain bias network through which a drain bias voltage is applied to the first drain terminal and the second drain terminal.
A power limiting system and method for a low noise amplifier of a front end interface of a radio frequency communication device. A voltage regulator provides a source voltage to the low noise amplifier having a nominal voltage level that optimizes linearity of the low noise amplifier while a power level of a radio frequency input signal provided to an input of the low noise amplifier does not exceed a predetermined power level threshold. Detection circuitry detects when the power level of a radio frequency input signal exceeds the predetermined power level threshold and provides an adjust signal indicative thereof to the voltage regulator to reduce the source voltage below the nominal voltage level.
A power amplifier circuit includes an input-stage power amplifier configured to receive a radio-frequency input signal, an output-stage power amplifier configured to output an amplified radio-frequency output signal, and an intermediate-stage power amplifier disposed between the input-stage power amplifier and the output-stage power amplifier. The intermediate-stage power amplifier includes a first transistor, a second transistor, and a capacitor having a first end connected to an emitter of the first transistor and a second end connected to a collector of the second transistor. The intermediate-stage power amplifier receives a signal at a base of the second transistor thereof and outputs an amplified signal from a collector of the first transistor thereof.
In one embodiment, stable and controlled circuit element biasing is provided in a circuit comprising a voltage source operable to output a first voltage, a reference voltage source operable to output a reference voltage, a circuit element biased, during operation, by the first voltage at a first end and by a second voltage at a second end, a voltage controller coupled to the second end of the circuit element, wherein the voltage controller is operable to adjust the second voltage based on a gain output, a gain controller operable to receive the reference voltage as a first input and the second voltage as a second input, wherein the gain controller is operable to generate, at an output of the gain controller, the gain output based on the second voltage and the reference voltage, and a feedback loop that extends from the output of the gain controller, through the voltage controller, and to the second input.
Networks of superharmonic injection-locked (SHIL) electronic oscillators can be used to emulate Ising machines for solving difficult computational problems. The oscillators can be simulated or implemented in hardware (e.g., with LC oscillators) and are coupled to each other with links whose connection strengths are weighted according to the problem being solved. The oscillators' phases may be measured with respect to reference signal(s) from one or more reference oscillators, each of which emits a reference signal but does not receive input from any other oscillator. Sparsely connected networks of SHIL oscillators and reference oscillators can be used as Viterbi decoders that do not suffer from the information bottleneck between logic computational blocks and memory in digital computing systems. Sparsely connected networks of SHIL oscillators and reference oscillators can also be programmed to act as Boolean logic gates that operate in both forward and backward directions, enabling multipliers that can factor numbers.
An inductive switch comprises an inductor that has a primary metallic winding having a boundary configured in shape of a figure eight, such as in two loops, and a plurality of secondary metallic windings arranged within the boundary of the primary metallic winding. The inductive switch includes a plurality of switches, each switch arranged in series with a respective one of the plurality of secondary metallic windings. An equal number of the secondary windings is arranged within each loop. A tunable inductor comprises at least one main metallic loop and at least one secondary metallic loop, wherein the at least one secondary metallic loop comprises a switch that is arranged to configure the at least one secondary metallic loop into at least one shorted metallic loop or at least one closed metallic loop. The at least one shorted loop is floating.
A mounting system for mounting a solar panel assembly to a base assembly includes a panel support bracket, a base bracket and a clamp configured to exert a compressive force to hold the panel support bracket and the base bracket together. The clamp comprises a V-shaped clamp body that includes a pair of legs that are spring-loaded to oppose an approximation of the legs by an external compressive force. The clamp includes a pair of receiver slots, with each of the pair of receiver slots located on a corresponding one of the pair of legs. The pair of receiver slots collectively provides a clearance to admit the panel support bracket and the base bracket when the legs are compressed together.
A method for dissipating power of an automotive electric drive system that includes a traction battery, and an inverter, wherein the inverter includes a DC bus between, and a dissipation circuit between the traction battery and DC bus, wherein the dissipation circuit includes a plurality of resistors connected in series between positive and negative terminals of the DC bus and a dissipation resistor and switch connected in series between the positive and negative terminals, the method includes responsive to a voltage across one of the plurality of resistors being less than a threshold value, deactivating the switch to prevent current flow from the positive terminal to the negative terminal through the dissipation resistor, and responsive to the voltage exceeding the threshold value, activating the switch to permit current flow from the positive terminal to the negative terminal through the dissipation resistor.
The present disclosure provides a feedback control system and method for a bidirectional VCM. The system employs an analog core that is common to both the PWM and linear modes of operation. The analog core includes a feedback mechanism that determines the error in the current flowing through the motor. The feedback mechanism produces an error voltage that corresponds to the current error, and applies the voltage to a control driver. The control driver then controls the motor, based on the error voltage, in either a PWM or linear mode. By sharing a common core, the switching time between modes is improved. Furthermore, the output current error between modes is reduced.
A method is for operating a three-phase cage motor on a multiphase electrical grid via a soft starter, with which one or more grid phases of the grid being respectively switchable by firing thyristors. Apart from a grid-related firing criterion, a rotor-flux-related firing criterion is taken into account.
The system and method described herein provide grid-forming control of a power generating asset having a generator, such as a double-fed generator, connected to a power grid. Accordingly, a stator-frequency error is determined for the generator. The components of the stator frequency error are identified as a damping component corresponding to a tower damping frequency and a stator component. Based on the stator component, a power output requirement for the generator is determined. This power output requirement is combined with the damping power command to develop a consolidated power requirement for the generator. Based on the consolidated power requirement, at least one control command for the generator is determined and an operating state of the generator is altered.
A drive system comprises a DC-DC converter that is arranged to receive an input voltage from a battery having a nominal battery voltage. The DC-DC converter has a first mode of operation in which the DC-DC converter generates a regulated output voltage from the input voltage and supplies the regulated output voltage to a load, and a second mode of operation in which the DC-DC converter is by-passed such that the input voltage from the battery is supplied to the load. A controller is arranged to compare the input voltage to a threshold voltage that is less than the nominal battery voltage. The controller operates the DC-DC converter in the first mode when the input voltage is less than the threshold voltage, and operates the DC-DC converter otherwise.
The subject matter of this specification can be embodied in, among other things, an electric actuator driver that includes a first input port configured to receive an analog electrical servo control signal, a second input port configured to receive a position feedback signal, a first output port, a second output port, and a conversion circuit configured to determine one or more electric motor coil control current levels based on the analog electrical servo control signal and the position feedback signal, provide the one or more electric motor coil control currents based on the determined electric motor coil control current levels at the first output port, determine a feedback signal based on the analog electrical servo control signal, and provide the determined feedback signal at the second output port.
A superconducting magnetic levitation train includes a frame, an arm, a first support member, a Dewar, a permanent magnet track, an iron core, a coil, a DC power supply system, and a second support member. the arm is arranged on a bottom of the frame; the Dewar 4 with bulk superconductors or superconducting magnets inside is arranged on the bottom of the frame 1; a bottom of the first support member and the second support member is fixedly arranged on a ground; the permanent magnet track is arranged on the first support member; the iron core is arranged on the second support member; the coil is sleeved on the iron core; and levitation, guidance and propulsion integrated superconducting magnetic levitation train further comprises a direct current (DC) power supply system to supply power to the coil.
The present invention relates to a modular solar photovoltaic inverter where by reducing the size of the filtering module and reducing the number of components, it reduces the size of the solar inverter compared to the state of the art; and with the configuration of the power modules, it generates channels that allow the passage of air from the cooling module, obtaining a modular photovoltaic solar inverter that improves the dimensions, weight, maintenance, cooling and safety with respect to those known up until now.
Systems and methods for voltage compensation based on load conditions in power converters. For example, a system controller for regulating a power converter includes a first controller terminal; a second controller terminal; and a compensation current generator. The compensation current generator is configured to receive an input signal through the first controller terminal. The input signal indicates a first current flowing through a primary winding of a power converter. The compensation current generator is configured to receive a demagnetization signal related to a demagnetization period of the power converter and associated with an auxiliary winding of the power converter. The compensation current generator is configured to generate a compensation current based at least in part on the input signal and the demagnetization signal. The compensation current generator is connected to a resistor. The resistor is configured to generate a compensation voltage based at least in part on the compensation current.
Provided are a switching regulator and a power management unit including the switching regulator. A switching regulator configured to transform an input voltage and generate an output voltage includes a first regulating circuit configured to regulate the input voltage and to generate a first voltage based on a first switching signal set having a first duty ratio, and a second regulating circuit configured to regulate the first voltage and to generate the output voltage based on a second switching signal set having a second duty ratio. The switching regulator determines a voltage gain based on the first duty ratio and the second duty ratio, the voltage gain corresponding to a ratio of the output voltage to the input voltage.
A switch-mode power supply circuit includes a low-side switching transistor, a high-side switching transistor, a low-side current sensing circuit, and a gate driver circuit. The low-side current sensing circuit is coupled to the low-side switching transistor and is configured to sense a current flowing through the low-side switching transistor. The gate driver circuit is coupled to the low-side current sensing circuit and the high-side switching transistor. The gate driver circuit is configured to generate a signal having a first drive strength to switch the high-side switching transistor based on current flowing through the low-side switching transistor being less than a threshold current, and to generate a signal having a second drive strength to switch the high-side switching transistor based on current flowing through the low-side switching transistor being greater than the threshold current. The first drive strength is greater than the second drive strength.
An apparatus includes first and second pluralities of switches, a controller for controlling these switches, gate-drivers for driving switches from the first plurality of switches, and first and second terminals configured for coupling to corresponding first and second external circuits at corresponding first and second voltages. During operation, the controller causes the first plurality of switches to transition between states. These transitions result in the second voltage being maintained at a value that is a multiple of the first voltage. The controller also causes the second plurality of switches to transition between states. These transitions resulting in capacitors being coupled or decoupled from the second voltage. The gate drivers derive, from the capacitors, charge for causing a voltage that enables switches from the first plurality of switches to be driven.
A load abnormality detecting circuit for an inverter to detect abnormality of a load during an operation of the inverter which has a switching element and a phase synchronizing loop controlling an output frequency to be a resonance frequency of the load, the load abnormality detecting circuit includes a phase shift detection part that detects a phase shift between an output voltage and an output current which are applied from the inverter to the load and sends an abnormal load signal based on the detected phase shift. The switching element including a self-arc-extinguishing element and a reflux diode connected in reversely parallel to the self-arc-extinguishing element. The phase shift detection part detects advance and delay of a phase of the output current with respect to the output voltage.
A method relating to control of a system including a single-phase three-level quasi-Z type source inverter connected to an LC filter which is in turn connected to a load, the inverter including first and second bridge arms, each including a plurality of switches, the method including the steps of (a) for each of a plurality of consecutive sampling periods (i) determining the duration of a shoot-through period for the next sampling period during which the inverter is in shoot-through mode; (ii) choosing a configuration of the switches for the next sampling period (iii) at the end of the sampling period setting the switches in the chosen configuration for the next sampling period; and (b) at a time during the next sampling period and for the duration of the shoot-through period setting the switches such that the inverter is in shoot-through mode.
A voltage balancing circuit for use in a power converter is described. In one example, a power converter includes series-connected switching transistors for power conversion, and a voltage balancing control loop. The voltage balancing control loop includes a measurement circuit electrically coupled to a transistor in the pair of series-connected switching transistors. The measurement circuit is electrically coupled to measure a body voltage reference of the transistor. The voltage balancing control loop also includes a balancing circuit configured to generate a balancing pulse signal for adjusting a voltage across the transistor using the body voltage reference, and a circuit configured to combine the balancing pulse signal with a gate drive pulse signal for the transistor, to form a balanced gate drive pulse signal for the transistor. The balanced gate drive pulse signal helps to equalize the body diode voltages of the series-connected switching transistors, particularly during “off” periods.
A power converter with a negative current detection mechanism is provided. A negative current detecting circuit includes a first operational amplifier, a first transistor and a second transistor. A non-inverting input terminal of the first operational amplifier is connected to a second terminal of a sense resistor. An inverting input terminal of the first operational amplifier is connected to a first terminal of a first capacitor. Control terminals of the first and second transistors are connected to an output terminal of the first operational amplifier. A first terminal of the first transistor is connected to the second terminal of the sense resistor. A second terminal of the first transistor is grounded. A first terminal of the second transistor is connected to the inverting input terminal of the first operational amplifier and the first terminal of the first transistor. A second terminal of the second transistor is grounded.
Circuits and methods encompassing a power converter that can be started and operated in a reversed unidirectional manner or in a bidirectional manner while providing sufficient voltage for an associated auxiliary circuit and start-up without added external circuitry for a voltage booster and/or a pre-charge circuit—that is, with zero external components or a reduced number of external components. Embodiments include an auxiliary circuit configured to selectively couple the greater of a first or a second voltage from a power converter to provide power to the auxiliary circuit. Embodiments include an auxiliary circuit configured to select a subcircuit coupled to the greater of a first or a second voltage from a power converter to provide an output for the auxiliary circuit. Embodiments include a charge pump including a gate driver configured to be selectively coupled to one of a first voltage node or second voltage node of the charge pump.
An induction motor includes a stator and a rotor. The stator is configured to generate a rotating magnetic field. The rotor is disposed inside the stator, separated from the stator by an air gap, and is configured to rotate around an axis in response to the rotating magnetic field. The rotor includes a rotor core, multiple end rings, and multiple collars. The end rings are attached at opposite ends of the rotor core. Each end ring has one of multiple regions disposed outside the air gap. Each region has an outer surface. The collars are attached in a prestressed condition around the outer surface of each region. The prestressed condition is configured to maintain a compressive stress in the end rings at a maximum-designed rotational speed of the rotor.
An actuator includes a first damper member and a second damper member that couple a movable body and an immovable body and each include a gel member in a tubular form. The gel member has a first end face and a second end face that are different from each other in cross-sectional shape. The first damper member and the second damper member are oppositely oriented in the axial direction, and are opposite from each other in position of the first end face and the second end face. Consequently, the characteristic variance due to the difference in the direction, in which the movable body moves, is reduced or removed in the actuator as a whole, even if each single damper member is involved with such characteristic variance.
A stator module for driving a rotor of an electrical planar-drive system comprises a power module, a stator assembly arranged on a top surface of the power module, and a connector. The power module is embodied to provide drive currents for driving the rotor. The stator assembly comprises coil conductors electrically connected to the power module via the connector for charging with the drive currents. The power module and the stator assembly each have a plate-shaped embodiment. The power module is mechanically fastened to the stator assembly by the connector. The stator assembly comprises a contact structure with contact holes arranged side by side, and the power module comprises a connecting arrangement with further contact holes arranged side by side. The connector comprises contact pins arranged side by side to engage in the further contact holes of the connecting arrangement, and in the contact holes of the contact structure.
Provided is a rotor 10 capable of avoiding an increase in cost due to use of a high-performance winding machine and an increase in cost due to molding of the entire rotor 10 with an insulator, and a rotating machine including the rotor 10. The rotor 10 includes a rotor core 11 that rotates around a rotary axis A. The rotor core 11 includes a plurality of unit through holes 11a that individually accommodate each of a plurality of winding units 12. Each of the plurality of winding units 12 includes an iron core, a field winding wound around the iron core, and an insulating sealing resin that seals the iron core and the field winding, and is accommodated in the unit through hole 11a in a posture extending in a direction of the rotary axis A.
A stator assembly, an electrical motor having the stator assembly, a wind power generator set and a method for cooling a stator assembly are provided. The stator assembly includes a stator support and a stator core mounted on the stator support, wherein the stator support includes a support enclosure plate, a first axial air flow channel is formed between the support enclosure plate of the stator support and a radial side surface of the stator core, and the first axial air flow channel is used for receiving a first cold air flow, so that the cold air flow can flow in the axial direction. The stator assembly can introduce a cold air flow from the other side, opposite an air gap, of a stator during the operation of an electrical motor, so that two radial sides of the stator can be cooled at the same time.
An in-wheel motor for a vehicle includes: a stator with a connector attaching the stator to the vehicle, the connector including a shaft, an end plate of a larger diameter than the shaft, and a coolant passage through the end plate, the stator further including a hollow stator body with cylindrical outer surface and mounted to the connector. Cooling channels for circulating liquid coolant extend along the hollow stator body and are in fluid connection with the coolant supply duct, the cooling channels having an inlet for supply of liquid coolant to the plurality of channels and an outlet for discharging liquid coolant from the plurality of channels; wherein, at a side opposite from the connector member, the hollow stator body has an open end with a diameter larger than the diameter of the shaft. Also disclosed is a cooling jacket for such an in-wheel motor.
A backup power supply is provided. The backup power supply provides batteries electrically coupled to a power cord for receiving power for charging the batteries and a power outlet for transmitting power for powering electrical equipment coupled to the power outlet. An inverter generator is operatively associated with the power cord, the batteries, and the power outlet in such a way that when the power cord experiences an electrical short the batteries switch from a reserve mode receiving power to a backup mode for transmitting power to the power outlet. The invertor generator is also adapted to sense reception of power through the power cord so as to switch from the backup mode to the reserve mode. Visible and audible indicators are provided for indicating the switching between the reserve mode and the backup mode.
A method for controlling an electrical consumer is provided. The electrical consumer is coupled to an electricity supply grid using a frequency converter. The electricity supply grid has a line voltage and is characterized by a nominal line voltage. The electricity supply grid is monitored for a grid fault in which the line voltage deviates from the nominal line voltage by at least a first differential voltage. When the grid fault occurs, the electrical consumer remains coupled to the electricity supply grid, and a power consumption of the electrical consumer is changed on the basis of the deviation of the line voltage from the nominal line voltage.
A supply charging device includes a supply power connector having a housing with a mating end and a flange configured to be mounted to a panel. The housing includes power contact channels extending through a base receiving power contacts. The housing includes a guide member engaging a guide feature of a mobile device to locate a receiver power connector relative to the supply power connector. The supply charging device includes a retaining plate securing the housing to the panel. The supply charging device includes a mounting spring extending from the housing and received in the panel cutout. The mounting spring engages the panel to allow the supply power connector to float relative to the panel within the panel cutout for aligning the mating end of the supply power connector with the receiver power connector.
A car charger interface, adapted for connection with a car charger socket, is connected to an electronic device or portable charger unit and movable between an extended condition for use and a retracted condition for storage. The interface has a generally flat shape when not in use and can be unfolded to a shape adapted for complementary connection with the car charger socket for use. The interface comprises a first portion and a second portion movable relative to one another between folded and unfolded conditions. The second portion may comprise wings pivotally connected along the first portion for pivoting to an unfolded position projecting from the first portion to form a generally X-shaped adapter body. Alternately, the second portion may be positioned at the longitudinal end of the first portion and connected thereto via a pivot point at the central longitudinal axis thereof for pivotal movement.
Methods and apparatuses are provided for controlling power transmission in a power transmitter. Voltage information including a minimum voltage, a maximum voltage, and a first voltage, is received from each of a plurality of power receivers. Power is transmitted to the plurality of power receivers based on the voltage information. A respective report about a power reception condition is received from each of the plurality of power receivers while transmitting the power. Each respective report includes a measured voltage at a corresponding power receiver of the plurality of power receivers. A power receiver is selected from among the plurality of power receivers based on the received reports. An amount of the power is adjusted by reducing a difference between a first voltage of the selected power receiver and a measured voltage of the selected power receiver.
Systems and methods are described for managing charging and discharging of battery packs. In one or more aspects, a system and method are provided to minimize overcharging of battery cells of specific battery chemistries while still enabling fast charging cycles. In other aspects, a buck converter may be used to reduce a voltage of power used to charge the cells. In further aspects, a fast overcurrent protection circuit is described to address situations involving internal short circuits of a battery cell or battery pack. In yet further aspects, a bypass circuit is provided in series-connected battery packs to improve the charging of undercharged battery packs while also increasing the efficiency of the overall charging process. In other aspects, a circuit is provided that permits a controller to determine a configuration of battery packs. In yet further aspects, a system may determine a discharge current for a collection of battery packs based on each battery pack's state of health (SOH) and forward that determination to an external device.
The present disclosure provides a rechargeable battery for an induction garbage bin, comprising a steel shell, a battery core, an output structural component and an intermediate connection structural component, the battery core being provided in the steel shell, wherein, a lower end of a USB fixing structural part of the intermediate connection structural component is fittingly sleeved on an open end of the steel shell; a positive end of the battery core is connected with a positive tab connection point (B+) on a PCB substrate, a negative end of the battery core is connected with a negative tab connection point (B−) on the PCB substrate; the output structural component is fittingly clamped and sleeved on a USB metal part of the intermediate connection structural component; and a positive clamp output end (O+) of the electronic component is in close contact with a metal languet of a positive cap of the output structural component. The rechargeable battery for an induction garbage bin according to the present disclosure is convenient to fabricate, safe and reliable, and has a high energy utilization rate.
An electrical panel adapter for an enclosure that is formed of at least one panel includes a main unit having a front portion and a rear portion. The rear portion is positioned inside the enclosure and includes a first plurality of electrical connections adapted to connect to electrical wires and/or equipment located inside the enclosure. The front portion extends through an aperture in the at least one panel and includes a second plurality of electrical connections adapted to connect to one or more electrical devices located outside the enclosure for measurement of both voltage and current inside the enclosure. The second plurality of electrical connections are electrically coupled to the first plurality of electrical connections. The electrical panel adapter enables electrical devices outside the enclosure to be electrically coupled to the electrical wires and/or equipment inside the enclosure without requiring the enclosure to be opened.
There is provided a method of improving an electrical link box. The method includes steps of opening the electrical link box to provide access to a space within the electrical link box; inserting an electrical link box safety improving container into the space in the electrical link box; and closing the electrical link box; wherein the electrical link box safety improving container contains a filling material for mitigating blasts in the electrical link box. A safer electrical link box may be provided using the method.
A semiconductor laser device includes a laser section and a modulator section. The laser section has: a first mesa stripe which is formed on a semiconductor substrate; semi-insulative burying layers which are placed to abut on both side surfaces of the first mesa stripe and are formed on the semiconductor substrate; n-type burying layers formed on respective surfaces of the semi-insulative burying layers; and a p-type cladding layer which covers surfaces of the n-type burying layers and the first mesa stripe. The modulator section has: a second mesa stripe which is formed on the semiconductor substrate; semi-insulative burying layers which are placed to abut on both side surfaces of the second mesa stripe and are formed on the semiconductor substrate; and a p-type cladding layer which covers surfaces of the semi-insulative burying layers and the second mesa stripe.
A laser device (100), being configured for generating laser pulses by Ken lens based mode locking, comprises a laser resonator (10) with a plurality of resonator mirrors (11.1, 11.2, 11.3) spanning a resonator beam path (12), a solid state gain medium (20) being arranged in the laser resonator (10), a Kerr medium device (30) being arranged with a distance from the gain medium (20) in the laser resonator (10), wherein the Kerr medium device (30) includes at least one Ken medium being arranged in a focal range of the resonator beam path and being configured for forming the laser pulses by the nonlinear Kerr effect, and a loss-modulation device (31, 32) having a modulator medium, which is capable of modulating a power loss of the laser pulses generated in the laser resonator (10), wherein the Kerr medium device (30) includes the modulator medium of the loss-modulation device (31, 32) as the at least one Kerr medium having an optical non-linearity being adapted for both of creating the Kerr lens based mode-locking in the laser resonator and modulating the power loss in the laser resonator. Furthermore, a method of generating laser pulses by Kerr lens based mode locking is described, wherein a loss-modulation device (31, 32) is used for both of introducing a Ken effect in the laser resonator (10) and modulating the power loss.
A laser projector steers a pulsed laser beam to form a pattern of stationary dots on an object, the pulsed laser beam having a periodicity determined based at least in part on a maximum allowable spacing of the dots and on a maximum angular velocity at which the beam can be steered, wherein a pulse width of the laser beam and a pulse peak power of the laser beam are based at least in part on the determined periodicity and on laser safety requirements.
A rotary connector device includes a rotation body and a fixed body that engage with each other in a relatively rotatable manner, in an interior thereof, a housing space having a cylindrical shape, and a flat cable housed in the housing space in a wound manner, wherein the rotation body includes: a rotating-side ring plate having an annular shape and an inner-circumferential cylindrical portion having a cylindrical shape; the fixed body includes: a stationary-side ring plate having an annular shape and an outer-circumferential cylindrical portion; the flat cable has a first end coupled to a stationary-side connector; the fixed body includes an insertion portion from the housing space toward an outer side of the fixed body along a rotation axis direction of the rotation body that relatively rotates; and the stationary-side connector is disposed on a main surface of the stationary-side ring plate on an outer side thereof.
A power control device is contained within a housing and has an electric current sensor configured to measure current passing through an electric outlet during a time period, a proximity sensor configured to detect a distance of an object relative to the electric outlet during the time period, a relay switch that can open or close to stop or conduct current through a circuit in the electric outlet in response to a command, and a wireless network interface in communication with the electric current sensor and the proximity sensor, the wireless network interface configured to transmit and receive data from the current sensor and the proximity sensor, to transmit commands to the relay switch, transmit the data to a computing device, and receive commands from the computing device.
A cable card assembly for an electrical connector includes a circuit card having upper and lower surfaces and extending between a cable end and a mating end with mating conductors at the mating end and cable conductors at the cable end. Cables are terminated to the circuit card that include signal conductors, ground shields surrounding the corresponding signal conductors, and drain wires electrically connected to the corresponding ground shields. The signal conductors are terminated to corresponding cable conductors. The cable card assembly includes a ground block separate and discrete from the circuit card and coupled to the circuit card. The ground block includes drain wire channels receiving corresponding drain wires. The ground block is electrically conductive to electrically connect the drain wires.
A connector housing includes a housing body, a sealing member interposed between an outer circumferential surface of the housing body and an inner circumferential surface of a mating housing body to seal a space between the outer circumferential surface and the inner circumferential surface, a restriction wall portion standing on the outer circumferential surface of the housing body and positioned on a side of the rear opening with respect to a position of the sealing member, and a restriction flexible piece formed on a circumferential wall of the housing body and formed in a cantilever beam shape, the restriction flexible piece being configured such that a projection of a free end thereof is pushed up by a connector terminal so the free end protrudes from the outer circumferential surface, and the free end restricts movement of the sealing member toward the side of the connection side opening.
A floating connector comprises a movable housing, a regulating member and a plurality of contacts. Each of the contacts is made of a single metal plate. Each of the contacts has a fixed portion, a regulated portion, a held portion, an extending portion, a contact portion and a coupling portion. The coupling portion is resiliently deformable. The movable housing is movable within a predetermined range in a plane perpendicular to an up-down direction by the resilient deformation of the coupling portion. The coupling portion has a first portion, a second portion and a bent portion. Each of the first portion and second portion has a principal surface. The principal surface of the first portion faces in a first direction. The principal surface of the second portion faces in a second direction. The first direction and the second direction are different from each other.
A printed circuit board (PCB) includes a first set of pins on a first side of the PCB, a second set of pins on a second side of the PCB, and one or more vias connecting one or more pins from the first set of pins to one or more pins from the second set of pins.
A memory module testing system operating in a vibratory environment can retain a memory module in place in a memory socket using both socket latches and a retainer clip. The retainer clip can attach to a module support tower of the memory socket. The retainer clip can have a flexible multi-spring structure forming a three-axis vibration dampening system that can prevent the socket latches from opening while testing in the test environment. The retainer clip can secure the socket latches using an upper flange and a lower flange to prevent unintended motion of the socket latches. The retainer clip can be secured to the module support towers at the ends of the memory socket using clip arms and clip arm tips to attach to the module support towers.
A deployable membrane structure for an antenna comprises a membrane comprising a plurality of first regions of higher-stiffness material integrally connected via one or more second regions of lower-stiffness material, wherein the one or more second regions are formed from compliant material configured to permit the membrane to be folded into a collapsed configuration and subsequently unfolded into a deployed configuration, and are arranged so as to allow adjacent ones of the plurality of first regions to be folded so as to lie against one another. In some embodiments the membrane is formed of a composite material comprising a plurality of fibres in a compliant matrix, and the plurality of first regions comprise material with a higher fibre density than the one or more second regions. A deployable antenna comprising the deployable membrane structure is also disclosed.
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to embodiments in the present disclosure, an antenna device for dual polarization of a wireless communication system, comprises a print circuit board (PCB); a first feeding line configured to provide a first polarization signal; a second feeding configured to provide a second polarization signal; and a patch antenna comprising a radiating region and cutting regions. Objects corresponding to the cutting regions are disposed to support the radiating region on the PCB.
Aspects of this disclosure relate to methods of radio frequency signal processing. A radio frequency signal is received at an antenna on a first side of a multi-layer substrate and a low noise amplifier is disposed on a second side of the multi-layer substrate such that a ground plane of the multi-layer substrate is positioned between the antenna and the low noise amplifier. The radio frequency signal is provided to and amplified by the low noise amplifier.
A radar apparatus for a motor vehicle including a transceiver device configured to transmit radar radiation and to receive the radar radiation reflected from objects in an environment of the radar apparatus and to generate a measurement signal, and a protection device configured to protect the transceiver device from external influences. The thickness of the protective device is at least in sections less than 10% of a wavelength of the radar radiation passing through the protective device.
The disclosed invention provides a distributed directional aperture (DDA) system that is installed in a vertical lift aircraft that comprises a fuselage and a rotor system including rotary wings rotatably coupled to the fuselage. The DDA system provides capability to receive and/or transmit signals in one or more frequency bands, and provides communications, signals intelligence (SIGNINT), positional sensing, jamming, and offensive cyber on the vertical lift aircraft. The DDA system of the vertical lift aircraft includes a sensor and emitter array subsystem that includes a plurality of sensors and emitters distributed in the rotary wings, a beamformer subsystem that processes the sensor signals and emitter signals, and a telemetry subsystem that conveys signals between the sensor and emitter array subsystem and the beamformer subsystem.
The present invention discloses an antenna module and an electronic device. The antenna module is used in the electronic device. The electronic device includes a first housing. The antenna module includes a first antenna, a second antenna and a third antenna. The first antenna is disposed in the first housing and operates at a first frequency band. The second antenna is disposed in the first housing and operates at a second frequency band. The third antenna is disposed in the first housing and is located between the first antenna and the second antenna, and operates at a third frequency band. The first frequency band partially overlaps with the second frequency band, and the third frequency band does not overlap with the first frequency band and the second frequency band.
An energy storage module, particularly a solid state battery, an energy storage system, a vehicle and a method for measuring an electrical voltage on an energy storage module or on an energy storage system is based on two stacked and series-connected energy storage cells, each have an anode layer and a cathode layer. A contact, which is electrically connected to an anode layer located within the stack of a first energy storage cell and to a cathode layer located within the stack of a second energy storage cell, which is adjacent to the first energy storage cell, leads out of the stack such that at least one contact can be contacted from outside the stack.
The present disclosure relates to the technical field of battery, and discloses an integrated bus bar element for a battery, a battery and a vehicle; wherein the integrated bus bar element comprises a bus bar (20, 20a, 20b), and a plurality of branch bars (28a-28j) for electrical connection to battery cells (10, 10a, 10b) respectively, and the bus bar (20, 20a, 20b) and the branch bars (28a-28j) are made of a single conductor and integrally formed as a single piece. The integrated bus bar element of the present disclosure eliminates the connection points between the bus bar and the branch bars, a step of connecting the bus bar and the branch bars is not required to be implemented during the battery assembly, thus the reliability and assembly convenience of the battery are greatly improved.
A battery enclosure for a vehicle chassis having a base member with raised surface features on the upper surface outlining individual cells, each cell configured to receive at least one battery; a cover member having a plurality of depending surface features on the lower surface which are aligned with the surface features of the base member. The cover member includes a channel formed in the upper surface thereof, aligned with and extending along a length of the depending surface feature disposed on the bottom surface. A lattice support structure is also included which has a plurality of support members extending axially and transversely, wherein the lattice support structure is configured to be at least partially disposed within the channel of the cover member and mounted to the vehicle chassis. The lattice support member providing increased rigidity and a load distribution path for externally applied forces (e.g. crash events) to prevent or inhibit enclosure breakage or puncture.
Battery charging systems having battery charging circuits are described. The battery charging circuit can be located within a battery housing. Alternatively, the battery charging circuit can be located within a charging shoe housing. Also described are power source modules. In addition, various methods of charging and discharging are described.
An electricity storage device member is provided. The electricity storage device member includes a base material mainly composed of a metal and a resin layer stacked on the base material, in which the resin layer contains a crosslinked fluororesin.
A battery array frame according to an exemplary aspect of the present disclosure includes, among other things, a frame body, and a thermal fin including a body embedded in the frame body and a leg that extends outside of the frame body. The thermal fin is flexible between a first position in which the leg is spaced farther from a surface of the frame body and a second position in which the leg is spaced closer to the surface of the frame body.
An apparatus and method, according to an exemplary aspect of the present disclosure includes, among other things, a battery pack having a coolant inlet and a coolant outlet, a coolant source to cool the battery pack, and a proportional valve in communication with the coolant inlet and the coolant outlet, and in communication with the coolant source. A battery control module controls the proportional valve such that a direction of flow is switchable at the coolant inlet and the coolant outlet based on temperatures at the coolant inlet and the coolant outlet to provide bi-directional cooling flow through the battery pack. The battery control module directly connects the coolant outlet to the coolant inlet via the proportional valve to bypass the coolant source in response to a predetermined condition.
A battery module according to an exemplary embodiment of the present invention includes: a housing receiving a plurality of battery cells and including a bottom plate and a lateral plate; and a connection board disposed at one end or both ends of the housing, wherein the connection board is bonded to the lateral plate. The lateral plate may include a plurality of bus bar supporting members, at least some among the plurality of bus bar supporting members having a hooking protrusion protruded upward. The connection board may include a hooking member having a hooking groove opened downward. Thus, the hooking protrusion may be inserted into the hooking groove in a state in which the connection board is bonded to the lateral plate.
In accordance with an embodiment, a method includes receiving, by at least one of a plurality of battery monitoring circuits a frequency synchronization signal and measurement frequency information from a host controller, wherein the at least one of the plurality of battery monitoring circuits is connected to at least one of a plurality of battery blocks; generating, by the at least one of the plurality of battery monitoring circuits, a periodic signal based on a clock signal having a clock frequency, the measurement frequency information, and the frequency synchronization signal; obtaining, by the at least one of the plurality of battery monitoring circuits, at least one measurement value of the at least one of the plurality of battery blocks using the periodic signal; and transmitting, by the at least one of the plurality of battery monitoring circuits, the at least one measurement value to the host controller.
A solid electrolyte composition includes: an inorganic solid electrolyte (A) having ion conductivity of a metal belonging to Group 1 or Group 2 in the periodic table; a binder (B); and a dispersion medium (C), in which the binder (B) includes a first binder (B1) that precipitates by a centrifugal separation process and a second binder (B2) that does not precipitate by the centrifugal separation process, the centrifugal separation process being performed in the dispersion medium (C) under a specific condition, and a content X of the first binder (B1) and a content Y of the second binder (B2) satisfy the following expression, 0.10≤Y/(X+Y)≤0.80.
Batteries according to embodiments of the present technology may include an electrode stack. The electrode stack may include an anode electrode having an anode current collector, and an anode active material disposed on the anode current collector. The anode electrode may define one or more first apertures through the anode electrode. The electrode stack may also include a cathode electrode having a cathode current collector, and a cathode active material disposed on the cathode current collector. The cathode electrode may define one or more second apertures through the cathode electrode.
A flow battery system and methods are provided for eliminating crossover issues of active materials in redox flow batteries. A solid adsorbent with large specific surface area is disposed in an electrolyte of at least one half-cell, in contact with the electrolyte. During a charging process, the active material in a charged state is captured and stored on surfaces of the adsorbent, so that concentrations of the active material in the electrolyte in the charged state is reduced and the crossover is inhibited. During a discharging process, the active material is desorbed from the adsorbent to the electrolyte and pumped into the stack for reaction. The flow battery stack can have a microporous membrane separator. The electrolyte of the flow battery includes zinc iodide as active material and polyethylene glycol (PEG) as an additive.
An anion exchange polymer includes aryl ether linkage free polyarylenes having aromatic/polyaromatic rings in polymer backbone and a tethered alkyl quaternary ammonium hydroxide side groups. This anion exchange polymer may be utilized in an anion exchange process and may be made into a thin anion transfer membrane. An ion transfer membrane may be mechanically reinforced having one or more layers of functional polymer based on a terphenyl backbone with quaternary ammonium functional groups and an inert porous scaffold material for reinforcement. An anion exchange membrane may have multilayers of anion exchange polymers which each containing varying types of backbones, varying degrees of functionalization, or varying functional groups to reduce ammonia crossover through the membrane.
An embodiment fuel cell includes a cell stack including a plurality of unit cells stacked in a first direction, a plate disposed at one of two end portions of the cell stack, the plate including a first terminal unit protruding in a second direction intersecting the first direction, a heating element including a second terminal unit engaged with the first terminal unit of the plate in the second direction, the heating element being disposed between the one of the two end portions of the cell stack and the plate, and an insulation part disposed at at least one of the first terminal unit or the second terminal unit, wherein one of the first terminal unit and the second terminal unit includes a pair of male heater terminals protruding in the second direction, and the other includes a pair of female heater terminals.
Improved contact between interconnect and oxygen electrode material is achieved through a contact point between an electrode or a contact layer and a coated ferritic stainless steel interconnect, where the coating on the metallic interconnect comprises Cu.
Embodiments described herein relate to methods for preparing catalysts and catalyst supports. In one embodiment, transition metal carbide materials, having a nanotube like morphology, are utilized as a support for a precious metal catalyst, such as platinum. Embodiments described herein also relate to proton exchange membrane fuel cells that incorporate the catalysts described herein.
There is provided an improved electrochemical energy storage device. The storage device includes using functionalized boron nitride nanoparticles as electroactive materials in the electrodes.
Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
A method for quantitatively analyzing cohesive failure of an electrode analyzes cohesive failure of an electrode and includes preparing an electrode in which an electrode material mixture layer including an electrode active material, a conductive agent, and a binder is formed on a current collector, measuring shear strength (σ) data according to a cutting depth while cutting the electrode material mixture layer from a surface thereof until reaching the current collector using a surface and interfacial cutting analysis system (SAICAS), obtaining a regression curve of shear strength according to the cutting depth from the shear strength (σ) data, and determining a cutting depth, at which the shear strength is minimum in the regression curve, as a location of cohesive failure.
Disclosed is an organic light-emitting device including an emission layer that includes a first compound satisfying Conditions 1 to 4 below: ΔEST>ΔEST2+ΔE′TT Condition 1: 0 eV<ΔEST2+ΔE′TT≤1.0 eV Condition 2: 0 eV<ΔE′TT≤0.15 eV Condition 3: ΔEST2>0 eV. Condition 4:
A thermally activated delayed fluorescent molecular material, a synthesizing method therefor, and an electroluminescent device are provided. The thermally activated delayed fluorescent molecular containing an indenobenzoselenoheteroaromatic ring donor is synthesized, so that an electron donating ability of the donor is increased, and an non-radiative transition rate is effectively inhibited, thereby increasing photo-luminescence quantum yield (PLQY) of the molecule; and increasing the twist angle between the electron donor and the electron acceptor. Meanwhile, electron cloud overlapping between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) is reduced, thereby obtaining a smaller ΔEST value. The organic electroluminescent device adopts the thermally activated delayed fluorescent molecular material prepared according to the synthesizing method, and thus has high luminous efficiency and long service life.
Disclosed are a polymer including at least one structural unit with a moiety represented by Chemical Formula 1, an organic thin film including the polymer, a thin film transistor, and an electronic device. In Chemical Formula 1, Ar1 to Ar3, L1, L2, and R1 to R6 are the same as described in the detailed description.
A polyimide luminescent material, a preparation method, and a used thereof are disclosed; the polyimide luminescent material includes a polyimide resin and a rare earth complex distributed in the polyimide resin, wherein the polyimide resin is a condensation polymer of an aromatic diamine containing a bidentate chelate ligand and an aromatic dianhydride, and the rare earth complex and the bidentate chelate ligand are connected by a chemical bond. The luminescent material has enhanced fluorescence intensity, thermal stability, and mechanical properties. The preparation method is simple and easy, and is suitable for industrial production.
In some examples, a device includes a magnetic tunnel junction including a first Weyl semimetal layer, a second Weyl semimetal layer, and a dielectric layer positioned between the first and second Weyl semimetal layers. The magnetic tunnel junction may have a large tunnel magnetoresistance ratio, which may be greater than five hundred percent or even greater than one thousand percent.
A sensor is disclosed which includes a piezoelectric layer, a piezoresistive layer, one or more electrode layers coupled to the piezoelectric layer and to the piezoresistive layer, the piezoelectric layer configured to provide an electrical signal in response to application of a dynamic disturbance, and the piezoresistive layer configured to provide a change in resistivity in response to application of a static disturbance.
A superconducting circuit includes a Josephson junction device including a lower superconducting material layer formed on a substrate and a junction layer formed on the lower superconducting material layer. The superconducting circuit also includes an upper superconducting material layer formed over the junction layer. At least the lower superconducting material layer comprises grains having a size that is larger than a size of the Josephson junction.
A pixel array substrate includes a base, pixel structures, first bonding pads, first wirings, and a first testing element. The pixel structures are disposed on an active area of a first surface of the base. The first bonding pads are disposed on a peripheral region of the first surface. Each of the first wirings is disposed on a corresponding first bonding pad, a first sidewall of the base, and a corresponding second bonding pad. The first testing element is disposed on the active area of the first surface and has a first testing line. The first testing line is electrically connected to at least one of the first bonding pads, and an end of the first testing line is substantially aligned with an edge of the base.
Solid-state lighting devices including light-emitting diodes (LEDs), and more particularly LEDs and packaged LED devices with spacer layer arrangements are disclosed. An LED package may include one or more LED chips on a submount with a light-altering material arranged to redirect light in a desired emission direction with increased efficiency. A spacer layer is arranged in the LED package to cover rough surfaces and any gaps that may be formed between adjacent LED chips. When the light-altering material is applied to the LED package, the spacer layer provides a surface that reduces unintended propagation of the light-altering material toward areas of the LED package that would interfere with desired light emissions, for example over LED chips and between LED chips. In various arrangements, the spacer layer may cover one or more surfaces of a lumiphoric material, one or more LED chip surfaces, and portions of an underlying submount.
A wavelength conversion device includes a wavelength conversion plate, a reflective layer, a driving component and a thermal conductive layer. The wavelength conversion plate includes a lateral edge, at least one surface and a conversion region. The reflective layer is disposed on the surface of the wavelength conversion plate. The driving component is disposed near the lateral edge of the wavelength conversion plate and configured to displace the wavelength conversion plate. The thermal conductive layer is disposed on the surface of the wavelength conversion plate and thermally connected to the conversion region for conducting heat generated by the conversion region during a wavelength conversion. By disposing the thermal conductive layer on the surface of the wavelength conversion plate, the thermal conductive layer is thermally directly connected to the conversion region, so that the heat generated at the conversion region during the wavelength conversion is efficiently dissipated.
Multi-phase polymer films containing quantum dots (QDs) are described herein. The films have domains of primarily hydrophobic polymer and domains of primarily hydrophilic polymer. QDs, being generally more stable within a hydrophobic matrix, are dispersed primarily within the hydrophobic domains of the films. The hydrophilic domains tend to be effective at excluding oxygen.
The display device includes a substrate, a patterned wall, the first, second, third sub-pixels, and an optical layer. The patterned wall is disposed on the substrate and has a plurality of openings. The first sub-pixel is disposed in one of the openings and includes a light-emitting element and a wavelength conversion layer. The second sub-pixel is disposed in one of the openings and includes a light-emitting element and a wavelength conversion layer. The third sub-pixel is disposed in one of the openings and includes a light-emitting element and a wavelength conversion layer, wherein a first distance between a top surface of the light-emitting element and a top surface of the patterned wall is about 10 um to about 100 um. The optical layer is disposed on the patterned wall and in direct contact with at least one of the first sub-pixel, the second sub-pixel, and the third sub-pixel.
An optoelectronic component and a method for manufacturing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a diffractive optical element comprising at least one conversion material and a light source configured to emit primary radiation, wherein the conversion material is encapsulated in the diffractive optical element, and wherein the conversion material is arranged in a beam path of the primary radiation and is configured to convert the primary radiation at least partially into secondary radiation.
A lift-off method includes a relocation substrate joining step of joining a relocation substrate to a surface of an optical device layer of an optical device wafer with a joining member interposed therebetween, thereby forming a composite substrate, a buffer layer breaking step of applying a pulsed laser beam having a wavelength transmittable through an epitaxy substrate and absorbable by a buffer layer to the buffer layer from a reverse side of the epitaxy substrate of the optical device wafer of the composite substrate, thereby breaking the buffer layer, and an optical device layer relocating step of peeling off the epitaxy substrate from the optical device layer, thereby relocating the optical device layer to the relocation substrate. In the buffer layer breaking step, irradiating conditions of the pulsed la-ser beam are changed for respective ring-shaped areas of the buffer layer, and the pulsed laser beam is applied to the optical device wafer under the changed irradiating conditions.
The present invention relates to a polymer composition, to an article comprising the polymer composition, preferably to an article which is a photovoltaic (PV) module comprising at least one layer element (LE) comprising the polymer composition and to a process for producing said article, preferably said photovoltaic (PV) module.
An optical waveguide type photodetector includes a first semiconductor layer of a first conductive type, a multiplication layer of a first conductive type on the first semiconductor layer, an optical waveguide structure, and a photodiode structure. The photodiode structure has a third semiconductor layer of a second conductive type, an optical absorption layer of an intrinsic conductive type or of a second conductive type, and a second semiconductor layer of a second conductive type. The optical waveguide structure includes an optical waveguiding core layer and a cladding layer. An end face of the photodiode structure located in a second region of the first semiconductor layer and an end face of the optical waveguide structure located in a first region of the first semiconductor layer are in contact.
A solar cell including a semiconductor substrate having a first conductivity type an emitter region, having a second conductivity type opposite to the first conductivity type, on a first main surface of the semiconductor substrate an emitter electrode which is in contact with the emitter region a base region having the first conductivity type a base electrode which is in contact with the base region and an insulator film for preventing an electrical short-circuit between the emitter region and the base region, wherein the insulator film is made of a polyimide, and the insulator film has a C6H11O2 detection count number of 100 or less when the insulator film is irradiated with Bi5++ ions with an acceleration voltage of 30 kV and an ion current of 0.2 pA by a TOF-SIMS method. The solar cell can have excellent weather resistance and high photoelectric conversion characteristics.
A transistor comprises a pair of source/drain regions having a channel region there-between. A transistor gate construction is operatively proximate the channel region. The channel region comprises a direction of current flow there-through between the pair of source/drain regions. The channel region comprises at least one of GaP, GaN, and GaAs extending all along the current-flow direction. Each of the source/drain regions comprises at least one of GaP, GaN, and GaAs extending completely through the respective source/drain region orthogonal to the current-flow direction. The at least one of the GaP, the GaN, and the GaAs of the respective source/drain region is directly against the at least one of the GaP, the GaN, and the GaAs of the channel region. Each of the source/drain regions comprises at least one of elemental silicon and metal material extending completely through the respective source/drain region orthogonal to the current-flow direction. Other embodiments are disclosed.
A semiconductor device in a first area includes first non-planar semiconductor structures separated with a first distance, and a first isolation region including a first layer and a second layer that collectively embed a lower portion of each of the first non-planar semiconductor structures. At least one of the first layer or second layer of the first isolation region is in a cured state. The semiconductor device in a second area includes second non-planar semiconductor structures separated with a second distance, and a second isolation region including a first layer and a second layer that collectively embed a lower portion of each of the second non-planar semiconductor structures. At least one of the first or second layer of the second isolation region is in a cured state.
The present disclosure generally to semiconductor devices, and more particularly to semiconductor devices having high-voltage transistors integrated on a semiconductor-on-insulator substrate and methods of forming the same. The present disclosure provides a semiconductor device including a bulk substrate, a semiconductor layer above the bulk substrate, an insulating layer between the semiconductor layer and the bulk substrate, a source region and a drain region on the bulk substrate, a gate dielectric between the source region and the drain region, the gate dielectric having a first portion on the bulk substrate and a second portion on the semiconductor layer, and a gate electrode above the gate dielectric.
Semiconductor devices includes third arms. A channel from the first and second arms extends to a channel of the third arm. When a current from a first voltage is flowing from the first arm to the second arm, a flow of ballistic electrons is generated that flow through the third arm channel from the channel of the first and second arms to the third arm channel. A fin structure located in the third arm channel and includes a gate. The gate is controlled using a second voltage over the fin structure, the fin structure is formed to induce an energy-field structure that shifts by an amount of the second voltage to control an opening of the gate that the flow of ballistic electrons pass through, which in turn changes a depletion width, subjecting the ballistic electrons to diffraction, and then interference.
The disclosure provides a superjunction IGBT (insulated gate bipolar transistor) device, wherein a carrier storage layer of a first conductivity type is provided between a voltage sustaining layer and a base region, and a MISFET (metal-insulator-semiconductor field effect transistor) of a second conductivity type is also integrated in a cell, with at least one gate of the MISFET is connected to the emitter contact thereof. The MISFET is turned off at a low forward conduction voltage, helping to reduce the conduction voltage drop. The MISFET can provide a path for carriers of a second conductivity type and prevent the carrier storage layer from suffering a high electric field when the forward conduction voltage is slightly higher or it is at the forward blocking state, helping to improve the reliability.
Provided is a cadmium zinc telluride (CdZnTe) single crystal including a main surface that has a high mobility lifetime product (μτ product) in a wide range, wherein the main surface has an area of 100 mm2 or more and has 50% or more of regions where the μτ product is 1.0×10−3 cm2/V or more based on the entire main surface, and a method for effectively producing the same.
A semiconductor device includes a silicon carbide semiconductor body. A first shielding region of a first conductivity type is connected to a first contact at a first surface of the silicon carbide semiconductor body. A current spread region of a second conductivity type is connected to a second contact at a second surface of the silicon carbide semiconductor body. A doping concentration profile of the current spread region includes peaks along a vertical direction perpendicular to the first surface. A doping concentration of one peak or one peak-group of the peaks is at least 50% higher than a doping concentration of any other peak of the current spread region. A vertical distance between the one peak or the one peak-group of the current spread region and the first surface is larger than a second vertical distance between the first surface and a maximum doping peak of the first shielding region.
A semiconductor device includes a semiconductor substrate, a transistor section, a diode section, and a boundary section provided between the transistor section and the diode section in the semiconductor substrate. The transistor section has gate trench portions which are provided from an upper surface of the semiconductor substrate to a position deeper than that of an emitter region, and to each of which a gate potential is applied. An upper-surface-side lifetime reduction region is provided on the upper surface side of the semiconductor substrate in the diode section and a partial region of the boundary section, and is not provided in a region that is overlapped with the gate trench portion in the transistor section in a surface parallel to the upper surface of the semiconductor substrate.
Disclosed is a light emitting panel and a display device. The light emitting panel includes a substrate, wherein the substrate comprises a display area, a non-display area and a bending area connecting the display area and the non-display area; a transistor layer, wherein the transistor layer is disposed on the substrate and disposed relative to the display area and the non-display area; an organic layer, wherein the organic layer is disposed on the substrate and disposed relative to the bending area; and a wiring layer, wherein the wiring layer is disposed on the organic layer; wherein a vertical height of the organic layer is greater than a vertical height of the transistor layer.
A light emitting display device includes: a light emitting element; a second transistor connected to a scan line; a first transistor which applies a current to the light emitting element; a capacitor connected to a gate electrode of the first transistor; and a third transistor connected to an output electrode of the first transistor and the gate electrode of the first transistor. Channels of the second transistor, the first transistor, and the third transistor are disposed in a polycrystalline semiconductor layer, and a width of a channel of the third transistor is in a range of about 1 μm to about 2 μm, and a length of the channel of the third transistor is in a range of about 1 μm to about 2.5 μm.
The present disclosure provides a display panel. The display panel may include a first substrate on which a main display area is disposed, at least one second substrate on which an auxiliary display area smaller than the main display area is disposed, and an organic film connecting the first substrate and the second substrate, wherein at least one second substrate includes a plurality of block substrates separated from each other, wherein the plurality of block substrates are connected by the organic film, and wherein each of the plurality of block substrates comprises pixels of the auxiliary display area.
A memory device may be provided. The memory device may include a substrate, wherein the substrate includes a well having a first conductivity type. The memory device may further include a contact element arranged in the well and including a first contact having the first conductivity type; a diode layer arranged in the well and having a second conductivity type opposite to the first conductivity type; and a dummy gate configured to isolate the first contact from the diode layer. The memory device may further include a memory element electrically connected to the diode layer.
A pixel includes a photodiode and first and second transistors, the first and second transistors being coupled in series. One of the first and second transistors is a P channel transistor and the other is an N channel transistor. An electronic device may include one or more of the pixels.
A method of forming a flash memory cell includes the following steps. A first dielectric layer and a floating gate layer are deposited on a substrate sequentially. Three blocking structures having oblique sidewalls broaden from bottom to top penetrating through the first dielectric layer and the floating gate layer are formed. A first part and a second part of the floating gate layer between two adjacent blocking structures are etched respectively, so that a first floating gate having two sharp top corners and oblique sidewalls, and a second floating gate having two sharp top corners and oblique sidewalls, are formed. The three blocking structures are removed. A first isolating layer and a first selective gate covering the first floating gate are formed and a second isolating layer and a second selective gate covering the second floating gate are formed. A flash memory cell formed by said method is also provided.
A method used in forming an electronic component comprising conductive material and ferroelectric material comprises forming a non-ferroelectric metal oxide-comprising insulator material over a substrate. A composite stack comprising at least two different composition non-ferroelectric metal oxides is formed over the substrate. The composite stack has an overall conductivity of at least 1×102 Siemens/cm. The composite stack is used to render the non-ferroelectric metal oxide-comprising insulator material to be ferroelectric. Conductive material is formed over the composite stack and the insulator material. Ferroelectric capacitors and ferroelectric field effect transistors independent of method of manufacture are also disclosed.
Methods and devices including a plurality of memory cells and a first bit line connected to a first column of memory cells of the plurality of memory cells, and a second bit line connected to the first column of cells. The first bit line is shared with a second column of memory cells adjacent to the first column of memory cells. The second bit line is shared with a third column of cells adjacent to the first column of cells opposite the second column of cells.
Memory devices and methods of forming memory devices are described. The memory devices comprise two work-function metal layers, where one work-function layer has a lower work-function than the other work-function layer. The low work-function layer may reduce gate-induced drain leakage current losses. Methods of forming memory devices are also described.
In a method of forming a semiconductor device, an epitaxial layer stack is formed over a substrate. The epitaxial layer stack includes intermediate layers, one or more first nano layers and one or more second nano layers positioned below the one or more first nano layers. Trenches are formed in the epitaxial layer stack to separate the epitaxial layer stack into sub-stacks, the one of more first nano layers into first nano-channels, and the one or more second nano layers into second nano-channels. The intermediate layers are recessed so that one or more first nano-channels of the first nano-channels and one or more second nano-channels of the second nano-channels in each of the sub-stacks protrude from sidewalls of the intermediate layers. Bottom source/drain (S/D) regions are formed in the trenches to connect the second nano-channels. Top S/D regions are formed in the trenches to connect the first nano-channels.
A method of fabricating a semiconductor device includes forming a gate structure, a first edge structure and a second edge structure on a semiconductor strip. The method further includes forming a first source/drain feature between the gate structure and the first edge structure. The method further includes forming a second source/drain feature between the gate structure and the second edge structure, wherein a distance between the gate structure and the first source/drain feature is different from a distance between the gate structure and the second source/drain feature. The method further includes implanting a buried channel in the semiconductor strip, wherein the buried channel is entirely below a top-most surface of the semiconductor strip, a maximum depth of the buried channel is less than a maximum depth of the first source/drain feature, and a dopant concentration of the buried channel is highest under the gate structure.
A device includes a diode that includes a first group III-nitride (III-N) material and a transistor adjacent to the diode, where the transistor includes the first III-N material. The diode includes a second III-N material, a third III-N material between the first III-N material and the second III-N material, a first terminal including a metal in contact with the third III-N material, a second terminal coupled to the first terminal through the first group III-N material. The device further includes a transistor structure, adjacent to the diode structure. The transistor structure includes the first, second, and third III-N materials, a source and drain, a gate electrode and a gate dielectric between the gate electrode and each of the first, second and third III-N materials.
An integrated circuit includes a first, second and third power rail, and a header circuit coupled to a gated circuit. The gated circuit is configured to operate on a first or second voltage. The first and second power rail are on a back-side of a wafer, and extend in a first direction. The header circuit is configured to supply the first voltage to the gated circuit by the first power rail. The second power rail is separated from the first power rail in a second direction. The second power rail is configured to supply the second voltage to the gated circuit. The third power rail is on a front-side of the wafer and includes a first set of conductors extending in the second direction, and separated in the first direction. Each of the first set of conductors is configured to supply a third voltage to the header circuit.
A semiconductor device, having a substrate including an insulating plate and a circuit board provided on a front surface of the insulating plate. The circuit board has a first disposition area and a second disposition area with a gap therebetween, and a groove portion, of which a longitudinal direction is parallel to the gap, formed in the gap. The semiconductor device further includes a first semiconductor chip and a second semiconductor chip located on the circuit board in the first disposition area and the second disposition area, respectively, and a blocking member located in the gap across the groove portion in parallel to the longitudinal direction in a plan view of the semiconductor device.
Integrated circuit (IC) packages employing front side back-end-of-line (FS-BEOL) to back side back-end-of-line (BS-BEOL) stacking for three-dimensional (3D) die stacking. To facilitate providing additional electrical routing paths for die-to-die interconnections between stacked IC dice in the IC package, a BS-BEOL metallization structure of a first die of the stacked dice of the IC package is stacked adjacent to a FS-BEOL metallization structure of a second die of the stacked IC dice. Electrical routing paths for die-to-die interconnections between the stacked IC dice are provided from the BS-BEOL metallization structure of the first die to the FS-BEOL metallization structure of the second die. It may be more feasible to form shorter electrical routing paths in the thinner BS-BEOL metallization structure than in a FS-BEM metallization structure for lower-resistance and/or lower-capacitance die-to-die interconnections for faster and/or compatible performance of semiconductor devices in the IC dice.
A semiconductor device includes a stack of semiconductor dies, stacked in a stepped offset configuration, where the dies have different storage capacities and different sizes. Using dies of different sizes allows dies to be added to the stack without adding to the footprint of the semiconductor device. Using dies of different storage capacity also allows semiconductor devices to be tailored to specific storage capacity needs.
A semiconductor device includes a semiconductor die, an electrical contact arranged on a surface of the semiconductor die, and a metal layer arranged on the electrical contact, wherein the metal layer includes a singulated part of at least one of a metal foil, a metal sheet, a metal leadframe, or a metal plate. When viewed in a direction perpendicular to the surface of the semiconductor die, a footprint of the electrical contact and a footprint of the metal layer are substantially congruent.
Panel level packaging (PLP) with high accuracy and high scalability is disclosed. The PLP includes dies bonded face down onto an alignment carrier configured with die bond regions. Pre-bond and post bond inspection are performed at the carrier level to ensure accurate bonding of the dies to the carrier.
A solder material may include nickel and tin. The nickel may include first and second amounts of particles. A sum of the particle amounts is a total amount of nickel or less. The first amount is between 5 at % and 60 at % of the total amount of nickel. The second amount is between 10 at % and 95 at % of the total amount of nickel. The particles of the first amount have a first size distribution, the particles of the second amount have a second size distribution, 30% to 70% of the first amount have a particle size in a range of about 5 μm around a particle size the highest number of particles have according to the first size distribution, and 30% to 70% of the second amount have a particle size in a range of about 5 μm around a particle size the highest number of particles have according to the second size distribution.
An integrated circuit structure includes a first metallization layer with first and second electrodes, each of which has electrode fingers. A second metallization layer may be included below the first metallization layer and include one or more electrodes with electrode fingers. The integrated circuit structure is configured to exhibit at least partial vertical inductance cancellation when the first electrode and second electrode are energized. The integrated circuit structure can be configured to also exhibit horizontal inductance cancellation between adjacent electrode fingers. Also disclosed is a simulation model that includes a capacitor model that models capacitance between electrode fingers having a finger length and includes at least one resistor-capacitor series circuit in which a resistance of the resistor increases with decreasing finger length for at least some values of the finger length.
A method of manufacturing semiconductor devices, such as integrated circuits includes arranging one or more semiconductor dice on a support surface. Laser direct structuring material is molded onto the support surface having the semiconductor die/dice arranged thereon. Laser beam processing is performed on the laser direct structuring material molded onto the support surface having the semiconductor die/dice arranged thereon to provide electrically conductive formations for the semiconductor die/dice arranged on the support surface. The semiconductor die/dice provided with the electrically-conductive formations are separated from the support surface.
A semiconductor device includes: a first insulating circuit substrate; a first semiconductor chip mounted on a top surface of the first insulating circuit substrate; a printed circuit board arranged over the first insulating circuit substrate; a first external terminal inserted to the printed circuit board and having one end bonded to the top surface of the first insulating circuit substrate; and a first pin inserted to the printed circuit board and having one end bonded to a top surface of the first semiconductor chip, wherein the first insulating circuit substrate and the printed circuit board having warps complimentary to each other.
A semiconductor composite device is provided that includes a voltage regulator, a package board, and a load, and converts an input DC voltage into a different DC voltage to supply the converted DC voltage to the load. The VR includes a semiconductor active element. The package board includes a C layer in which a capacitor is formed, and an L layer in which an inductor is formed. A plurality of through holes penetrate the C layer and the L layer in a direction perpendicular to the mounting face in the package board. The capacitor is connected to the load through the through hole. The inductor is connected to the load through the through hole and to the VR through the through hole.
The present disclosure is directed to systems and methods for providing a dielectric layer on a semiconductor substrate capable of supporting very high density interconnects (i.e., ≥100 IO/mm). The dielectric layer includes a maleimide polymer in which a thiol-terminated functional group crosslinks with an epoxy resin. The resultant dielectric material provides a dielectric constant of less than 3 and a dissipation factor of less than 0.001. Additionally, the thiol functional group forms coordination complexes with noble metals present in the conductive structures, thus by controlling the stoichiometry of epoxy to polyimide, the thiol-polyimide may beneficially provide an adhesion enhancer between the dielectric and noble metal conductive structures.
The present disclosure is directed to a leadframe having a recess in a body of the leadframe to collect glue overflowing from the manufacturing process of coupling a semiconductor die to the leadframe. The recess extends beneath an edge of the semiconductor die so that any tendency of the glue to adhere to the semiconductor die is counteracted by a tendency of the glue to adhere to a wall of the recess and at least partially fill the volume of the recess. In addition, the recess for collecting adhesive may also form a mold lock on an edge of the leadframe, the mold lock providing a more durable connection between the leadframe and an encapsulant during physical and temperature stresses.
In examples, a semiconductor device comprises a semiconductor die, an opaque mold compound housing covering the semiconductor die, a conductive terminal extending from the mold compound housing, and an insulative coat covering the mold compound housing and at least a portion of the conductive terminal.
Provided is a semiconductor device in which the reliability of the gate insulating film in a trench gate is improved. The semiconductor device includes a semiconductor substrate, a plurality of trench gates, and a gate electrode. The semiconductor substrate includes an active region and a wiring region. The trench gates extend from the first active region to the wiring region. The trench gates form parts of transistors in the active region. The gate electrode is provided in the wiring region and is electrically connected to the trench gates. The end portions of the trench gates are located in the wiring region. The gate electrode is provided so as to cover gate contact portions formed at the end portions of the trench gates. The gate electrode is electrically connected to trench gates via the gate contact portions. The plurality of trench gates extend only in one direction.
Semiconductor chips may include a substrate; a protective layer on a first surface of the substrate, through electrodes extending through the substrate and the protective layer, and a Peltier structure including first through structures including first conductivity type impurities, and second through structures including second conductivity type impurities, which may extend through the substrate and the protective layer; pads on the protective layer and connected to the through electrodes, respectively, first connection wires connecting respective first ends of the first through structures to respective first ends of the second through structures, and second connection wires connecting respective second ends of the first through structures to respective second ends of one of the second through structures. The first through structures and the second through structures may be alternately connected to each other in series by the first connection wires and the second connection wires.
Embodiments include an electronic system and methods of forming an electronic system. In an embodiment, the electronic system may include a package substrate and a die coupled to the package substrate. In an embodiment, the electronic system may also include an integrated heat spreader (IHS) that is coupled to the package substrate. In an embodiment the electronic system may further comprise a thermal interface pad between the IHS and the die. In an embodiment the die is thermally coupled to the IHS by a liquid metal thermal interface material (TIM) that contacts the thermal interface pad.
A method for forming a semiconductor structure includes curing a shape memory polymer in a first shape. The shape memory polymer is coupled to a conductive layer. The method further includes folding the shape memory polymer from the first shape into a second shape. The method also includes bonding a semiconductor wafer to the conductive layer while the shape memory polymer is in the second shape. The semiconductor wafer has first and second dies. The semiconductor wafer is then singulated to separate the first die from the second die. The method further includes expanding the shape memory polymer to its first shape and singulating the shape memory polymer to separate the first and second dies.
A method of forming a semiconductor structure is provided. The method includes forming a gate structure over an active region of a substrate, forming an epitaxial layer comprising first dopants of a first conductivity type over portions of the active region on opposite sides of the gate structure, applying a cleaning solution comprising ozone and deionized water to the epitaxial layer, thereby forming an oxide layer on the epitaxial layer, forming a patterned photoresist layer over the oxide layer and the gate structure to expose a portion of the oxide layer, forming a contact region including second dopants of a second conductivity type opposite the first conductivity type in the portion of the epitaxial layer not covered by the patterned photoresist layer, and forming a contact overlying the contact region.
A method for manufacturing an electronic device includes the following: forming an island-shaped peeling layer onto a substrate; stacking a resin layer all over the peeling layer; forming a barrier layer over the resin layer; forming an electronic-circuit layer onto the upper surface of the barrier layer; and peeling off the resin layer from the substrate and the peeling layer.
An integrated circuit device includes a fin-type active region extending on a substrate in a first direction parallel to a top surface of the substrate; a gate structure extending on the fin-type active region and extending in a second direction parallel to the top surface of the substrate and different from the first direction; and source/drain regions in a recess region extending from one side of the gate structure into the fin-type active region, the source/drain regions including an upper semiconductor layer on an inner wall of the recess region, having a first impurity concentration, and including a gap; and a gap-fill semiconductor layer, which fills the gap and has a second impurity concentration that is greater than the first impurity concentration.
The invention provides a contact plug structure. The contact plug structure comprises a substrate and a dielectric layer, and a first contact hole located in the dielectric layer and penetrating into the substrate, the first contact hole has a first through hole portion located in the dielectric layer and a first groove located in the substrate, and the first through hole portion is communicated with the first groove, the maximum width of the first groove is larger than that of the first through hole portion in the direction parallel to the substrate surface. A barrier layer at least partially covering the sidewall of the first groove. A conductive pad layer is located on the bottom surface of the first groove. The conductive core layer is arranged on the conductive pad layer, and the barrier layer wraps the conductive pad layer and the conductive core layer.
A semiconductor structure includes a semiconductor substrate, a metal layer, an interlayer dielectric (ILD) layer. The metal layer is disposed over the semiconductor substrate. The ILD layer is over the semiconductor substrate and laterally surrounding the metal layer, in which the ILD layer has a first portion in contact with a first sidewall of the metal layer and a second portion in contact with a second sidewall of the metal layer opposite to the first sidewall of the metal layer, and a width of the first portion of the ILD layer decreases as a distance from the semiconductor substrate increases.
A semiconductor device package includes a substrate, a partition structure and a polymer film. The partition structure is disposed on the substrate and defines a space for accommodating a semiconductor device. The polymer film is adjacent to a side of the partition structure distal to the substrate. A first side surface of the polymer film substantially aligns with a first side surface of the partition structure.
Embodiments of a plug for use in an electrostatic chuck are provided herein. In some embodiments, a plug for use in an electrostatic chuck includes a polymer sleeve having a central opening; and a core disposed in the central opening of the polymer sleeve, the core having a central protrusion and a peripheral ledge, wherein an outer surface of the core includes a helical channel extending from a lower surface of the core towards the peripheral ledge to at least partially define a gas flow path through the plug, and wherein the peripheral ledge is disposed between an upper surface of the polymer sleeve and the lower surface of the core.
A controller includes an opening degree control section configured to control a valve element opening degree of the valve main body based on a pressure measurement value of the vacuum chamber measured by a vacuum meter, and an estimation section configured to estimate measurement lag information of pressure measurement value with respect to a pressure of the vacuum chamber based on (a) an exhaust expression including a second-order derivative term of the pressure measurement value and indicating a relationship between an effective exhaust speed of a vacuum pumping system for the vacuum chamber and the pressure measurement value and (b) a pressure measurement value measured during a pressure response when the valve element opening degree is step-changed, and the opening degree control section controls the valve element opening degree based on the measurement lag information estimated by the estimation section.
According to one embodiment, a substrate processing device includes a stage configured to mount a substrate, a mold having a first surface facing an upper surface of an outer peripheral edge of the substrate and a second surface facing a side surface of an outer peripheral continuous with the upper surface of the outer peripheral edge, a mold moving mechanism configured to move the mold to bring the first surface close to the upper surface of the outer peripheral edge of the substrate and the second surface close to the side surface of the outer peripheral of the substrate, and a nozzle arranged in the mold, wherein the nozzle ejects resist.
A resin coating applying apparatus includes a housing, a lid, a lid actuator for actuating the lid openably and closably with respect to the housing, a resin supply for supplying a solid resin to a workpiece, a vacuum pump for evacuating a processing space hermetically sealed by the housing and the lid, and an atmospheric vent valve for introducing atmospheric air into the processing space to cool the resin applied to the workpiece. The housing includes a holding table and a holding table actuator for moving the holding table upwardly and downwardly. The lid includes an upper table disposed opposite the holding table and movable relatively closely to the holding table to spread the resin supplied to the workpiece and coat the workpiece with the resin. When the lid is closed, it covers the opening in the housing to create the hermetically sealed processing space.
An apparatus for forming a solder bump on a substrate including a supporter configured to support the substrate to be provided thereon, a housing surrounding the supporter, a cover defining a manufacturing space in combination with the housing and including an edge heating zone along a perimeter thereof, the manufacturing space surrounding the supporter, and an oxide remover supply nozzle configured to supply an oxide remover to the manufacturing space may be provided.
Embodiments are described herein to reshape spacer profiles to improve spacer uniformity and thereby improve etch uniformity during pattern transfer associated with self-aligned multiple-patterning (SAMP) processes. For disclosed embodiments, cores are formed on a material layer for a substrate of a microelectronic workpiece. A spacer material layer is then formed over the cores. Symmetric spacers are then formed adjacent the cores by reshaping the spacer material layer using one or more directional deposition processes to deposit additional spacer material and using one or more etch process steps. For one example embodiment, one or more oblique physical vapor deposition (PVD) processes are used to deposit the additional spacer material for the spacer profile reshaping. This reshaping of the spacer profiles allows for symmetric spacers to be formed thereby improving etch uniformity during subsequent pattern transfer processes.
This disclosure relates to methods of growing crystalline layers on amorphous substrates by way of an ultra-thin seed layer, methods for preparing the seed layer, and compositions comprising both. In an aspect of the invention, the crystalline layers can be thin films. In a preferred embodiment, these thin films can be free-standing.
Provided are a method of polishing a silicon wafer and a method of producing a silicon wafer which can reduce the formation of step-forming microdefects on a silicon wafer. The method includes: a double-side polishing step of performing polishing on front and back surfaces of a silicon wafer; a notch portion polishing step of performing polishing on a beveled portion of a notch portion of the silicon wafer after the double-side polishing step; a peripheral beveled portion polishing step of performing polishing on the beveled portion on the periphery of the silicon wafer other than the beveled portion of the notch portion after the notch portion polishing step; and a finish polishing step of performing finish polishing on the front surface of the silicon wafer after the peripheral beveled portion polishing step. The notch portion polishing step is performed in a state where the front surface is wet with water.
A mass spectrometer provided with an ionization chamber (10) in which ionization is performed on a sample by laser ionization, includes an opening part (12) that is provided on a side wall of the ionization chamber (10), and includes a door (13); a ventilation port (14) provided in a wall of the ionization chamber (10), which is opposite to the opening port (12); and a gas supplier (64), (67) for supplying high-pressure cleaning gas to the ionization chamber (10) through the ventilation port (14). In this configuration, the high-pressure cleaning gas flows into the ionization chamber (10) from the gas supplier (64), (67) while the door (13) is opened, thereby blowing up particles including fragments of bacterial cells, which are piled up on a floor of the ionization chamber (10), and/or sweeping particles floating near the floor, so as to discharge the particles to the outside.
Plasma generators and methods of generating plasma are disclosed. Electrodes in a reaction zone are energized by a high voltage power source that is electrically insulated from the electrodes. A first conductor array, preferably a coil, is electrically coupled to the power source and electrically insulated from the electrodes. A second conductor array, preferably a coaxial coil nested within the first conductor array, is electrically coupled to the electrodes. Electromagnetic induction between the first conductor array and the second conductor array is used to energize the electrodes and generate a plasma in the reaction zone. One or more microwaves are further directed at the plasma to form microwave plasma, either in parallel or in series. Such plasmas are used to reform a hydrocarbon feedstock into low C hydrocarbons, carbon, or hydrogen. Plasma generators combining induction plasma with serial microwave plasmas are further contemplated.
Described herein are architectures, platforms and methods for providing localized high density plasma sources igniting local gasses during a wafer fabrication process to provide global uniformity. Such plasma sources are resonant structures operating at radio frequencies at or higher than microwave values.
A plasma deposition system comprising a wafer platform, a second electrode, a first electrode, a first high voltage pulser, and a second high voltage pulser. In some embodiments, the second electrode may be disposed proximate with the wafer platform. In some embodiments, the second electrode can include a disc shape with a central aperture; a central axis, an aperture diameter, and an outer diameter. In some embodiments, the first electrode may be disposed proximate with the wafer platform and within the central aperture of the second electrode. In some embodiments, the first electrode can include a disc shape, a central axis, and an outer diameter. In some embodiments, the first high voltage pulser can be electrically coupled with the first electrode. In some embodiments, the second high voltage pulser can be electrically coupled with the second electrode.
An electromagnetic system includes a magnetic yoke, a coil mounted in the magnetic yoke, a lower iron core disposed in a lower portion of the coil, a top plate disposed above the coil, an upper iron core having a lower portion disposed in the coil and an upper portion extending through the top plate, an armature disposed above the top plate and fixedly connected to the upper iron core, a magnetic isolation ring disposed between the upper iron core and the top plate, and a plurality of balls each rolling in one of a plurality of first curved grooves of the armature and one of a plurality of second curved grooves of the top plate. The upper iron core moves in a vertical direction. A force applied on the armature by the ball is inclined to a central axis of the upper iron core to drive the armature to rotate.
An intelligent fuseless switch includes a moving contactor, a switch, a base, and a vibration detection module. When the vibration detection module detects that vibration intensity is higher than a preset value, the electromagnetic trip device is triggered by the base to push the moving contactor to open a circuit. The power cannot be introduced into the house. This automatic power-off mode has an active protection effect. After the vibration detection module is installed, if it needs to be repaired, it can be directly replaced without removing the circuit breaker, thereby reducing the difficulty of maintenance greatly.
A push switch and a motor vehicle in which such a push switch is used. The push switch has a push cap, a baseplate, a switch element which is actuatable by the push cap, a first lever, and a second lever. The first lever and the second lever are mounted rotatably on the baseplate by means of bearing blocks and are each connected movably to the push cap at a first lever end. At a second lever end, the first lever and the second lever are connected movably to one another. The first lever and the second lever are designed such that they form mass compensation for the push cap.
A pressure relief valve and an electrolytic capacitor, including: a valve seat, wherein an exhaust passage is formed, an installation groove arranged on the top which communicates with the passage; a blocking cover, movably arranged on the groove between an open and a closed position for opening and closing the passage, a sealing ring arranged between the bottom of the cover and the groove, wherein at least part of the bottom wall forms a guide surface, which extends from the center of the cover radially outward and upward obliquely to the radial edge. The valve can be suitable for the installation of the capacitor to reduce the internal gas pressure therein, maintain the internal gas pressure within a safe range, and at the same time reduce the bulging of the bottom of the capacitor, so that the core package and the bottom are closely attached to achieve effective heat dissipation.
A method of manufacturing a multilayer ceramic electronic component includes preparing a ceramic green sheet, forming an internal electrode pattern by applying a paste for an internal electrode including a conductive powder to the ceramic green sheet, forming a ceramic laminate structure by layering the ceramic green sheet on which the internal electrode pattern is formed, forming a body including a dielectric layer and an internal electrode by sintering the ceramic laminate structure, and forming an external electrode by forming an electrode layer on the body, and forming a conductive resin layer on the electrode layer, and the conductive powder includes a conductive metal and tin (Sn), and a content of tin (Sn) is 1.5 wt % or higher, based on a weight of the conductive metal.
A multilayer ceramic electronic component includes: a ceramic body including an active portion having dielectric layers and first and second internal electrodes and first and second cover portions disposed on opposite surfaces of the active portion in a stacking direction, respectively; wherein when a region of the cover portion in contact with the first or second internal electrode is an inner region of the cover portion and a region of the active portion in contact with the inner region of the cover portion is an outer region of the active portion, 1.00
A drum-type magnetic body includes: a pair of flange parts that are facing each other; and a shaft part connecting the pair of flange parts, wherein an outer periphery of a cross section of the shaft part in a direction orthogonal to an axis of the shaft part has an oval shape constituted by a pair of parallel straight parts and a pair of arc parts connecting end parts of the pair of parallel straight parts, and the flange parts each have an outer principal face running orthogonal to the axis of the shaft part, and the pair of parallel straight parts are running in parallel with a longitudinal direction of the principal face of the flange part.
A coil component comprising a core including a winding core having a shape extending in a constant direction, a first flange disposed at a first end in an extending direction of the winding core, and a second flange disposed at a second end in the extending direction of the winding core; first and second electrodes disposed on the first flange; third and fourth electrodes disposed on the second flange; and a coil including a first wire wound around the winding core and electrically connected to the first and third electrodes, and a second wire electrically connected to the second and fourth electrodes. The first and second flanges each have an inner surface facing the winding core, an outer surface facing toward the side opposite to the inner surface, a lower surface connecting the inner and outer surfaces, and an upper surface facing the side opposite to the lower surface.
A coil component includes a base body containing metal magnetic particles and a binder binding together the metal magnetic particles and having a first surface extending along a coil axis and a second surface opposing the first surface, a first external electrode provided on the base body, a second external electrode provided on the base body, and a coil conductor electrically connected to the first and second external electrodes and extending around the coil axis. In one embodiment, the coil conductor has a winding portion, the winding portion has first conductor portions and one or more second conductor portions smaller in number than the first conductor portions, and the first and second conductor portions alternate with and are connected to each other, and a distance between the first conductor portions and the first surface is less than a distance between the second conductor portions and the second surface.
To provide a superconducting magnet apparatus with a structure which can prevent an increase in apparatus size even when a number of connection portions serving to connect superconducting wires is great. The superconducting magnet apparatus includes a first wiring-holding portion (tubular body (12)) extending from a bobbin (6) in an axial direction of a superconducting coil (1) and a second wiring-holding portion (joint plate (13)) which is provided on a same side in the axial direction as the tubular body (12), extends in a direction intersecting with the axial direction, and has a greater diameter than that of the bobbin (6) and the tubular body (12). Superconducting wires (7a to 11a) which extend from the superconducting coil (1) and connect to one another are spirally wound on the tubular body (12) and fastened to a groove (13a) formed on the joint plate (13).
An active feedback controller for a power supply current of a no-insulation (NI) high-temperature superconductor (HTS) magnet to reduce or eliminate the charging delay of the NI HTS magnet and to linearize the magnet constant.
A motor comprising a steel sheet used as a core material of the motor, wherein the steel sheet includes a composition including: by mass %, 0.010% or less of C; 2.0% to 7.0% of Si; 2.0% or less of Al; 0.05% to 1.0% of Mn; 0.005% or less of S; 0.005% or less of N; and balance Fe and inevitable impurities; the steel sheet includes a magnetic flux density changing area where a change ΔB in magnetic flux density to a change ΔH=50 A/m in a magnetic field, is equal to or higher than 0.50 T; a thickness of the steel sheet is 0.05 mm to 0.20 mm; and an eddy-current loss of the steel sheet, at 1000 Hz−1.0 T, is equal to or less than 0.55 of a total iron loss.
Disclosed herein are embodiments of an enhanced resonant frequency hexagonal ferrite material and methods of manufacturing. The hexagonal ferrite material can be Y-phase strontium hexagonal ferrite material. In some embodiments, sodium can be added into the crystal structure of the hexagonal ferrite material in order to achieve high resonance frequencies while maintaining high permeability.
A data transmission cable includes a plurality of juxtaposed wires, a plastic layer enclosing on the wires integrally and a metallic shielding layer arranged on an outer side of the plastic layer. The metallic shielding layer has a length matching the data transmission cable and a width greater than the circumferential extension length of the data transmission cable, two ends of the metallic shielding layer in a width direction are compacted and bonded to each other on one side of the data transmission cable in the width direction, to form a shielding portion covering the plastic layer and a compacting portion connected to one side of the shielding portion.
A reactor control interface includes a home screen video display unit (VDU) displaying blocks representing functional components of a nuclear power plant and connecting arrows that connect blocks that are providing the current heat sinking path for the nuclear power plant. Directions of the connecting arrows represent the direction of heat flow along the current heat sinking path. If the current heat flow path of the plant changes, the connecting arrows are updated accordingly. Additional VDUs include: a mimic VDU displaying a mimic of a plant component; a procedures VDU displaying a stored procedure executable by the plant; a multi-trend VDU trending various plant data; and an alarms VDU displaying side-by-side alarms registries sorted by time and priority respectively. If a VDU fails, the displays are shifted to free up one VDU to present the display of the failed VDU, and one display is shifted to an additional VDU.
The present disclosure relates to a radioactive material reduction facility, including a containment, a boundary section provided inside the compartment to partition an inner space of the containment into a first space for accommodating a reactor coolant system and a second space formed between the first space and the containment, and surround the reactor coolant system to prevent radioactive material discharged from the reactor coolant system or a line connected to the reactor coolant system inside the first space from being directly discharged into the second space during an accident, an in-containment refueling water storage tank (IRWST) installed between the first space and the second space and formed to accommodate refueling water, and a first discharge line formed to guide the flow of steam and radioactive material formed in the first space inside the boundary section into the in-containment refueling water storage tank.
Specifically, the radioactive material reduction facility according to the present disclosure may include a plurality of pools separated from each other, and the plurality of pools may include at least a first pool and a second pool, and the steam and the radioactive material may be discharged to the second pool through the first pool during an accident.
A method includes generating an intervention model for a population of users based on contact data, demographic data, and engagement data indicating successfulness of prior interventions for each of the population of users. The method includes, obtaining first data related to a first user, including engagement data indicating successfulness of prior interventions with the first user. The method includes supplying the obtained data as input to the intervention model to determine an intervention expectation, which indicates a likelihood that the first user will take action in response to an intervention. The method includes determining a likelihood of a gap in care. The method includes, in response to the care gap likelihood exceeding a minimum threshold, selecting and scheduling execution of a first intervention. The first intervention is one of a real-time communication with the first user by a specialist and an automated transmission of a message to the first user.
Evaluating future healthcare event risks of a patient includes receiving, at one or more computers, patient healthcare data for the patient, wherein the patient healthcare data represents a healthcare event and includes one or more healthcare codes, accessing, with the one or more computers, a database that associates the healthcare event and the healthcare codes with risks of potentially preventable healthcare events, and presenting, with the one or more computers, indications of the risks of potentially preventable healthcare events to a user to facilitate mitigation of the risks of potentially preventable healthcare events for the patient.
An example system for therapy delivery includes one or more processors configured to in response to a prediction indicating that the meal event is to occur, output instructions to an insulin delivery device to deliver a partial therapy dosage, to a device to notify the patient to use the insulin delivery device to take the partial therapy dosage, or to the insulin delivery device to prepare the partial therapy dosage prior to the meal event occurring, and in response to a determination indicating that the meal event is occurring (e.g., based on movement characteristics of a patient arm), output instructions to the insulin delivery device to deliver a remaining therapy dosage, to the device to notify the patient to use the insulin delivery device to take the remaining therapy dosage, or to the insulin delivery device to prepare the remaining therapy dosage.
The disclosure relates to a method for acquiring and for altering a configuration of a number of objects in a procedure room for planning and for collision avoidance during a medical procedure, wherein each object is represented by a virtual model, including a physical model of the object and a safety zone around the physical model. The physical model represents the configuration of the object and the safety zone represents a collision-prevention area for a movement of any of the objects during a medical procedure. The virtual models of the objects are placed at a position in a virtual model of the procedure room. Additionally, the configurations of the physical models during the medical procedure are computed and the configuration of the physical model of the corresponding object is altered when a collision during the movement is determined. The disclosure further relates to a device for executing the method.
A medication administration and verification system includes scanning a code for a cavity of a multi-dose package to identify at least one previously prescribed medication determined at a time of packaging the at least one previously prescribed medication in the cavity. A list is received in response to the electronically encoded package identifier for at least one currently prescribed medication. At least one visual indicator is displayed respectively corresponding to the at least one currently prescribed medication for the patient for administration during the medication administration event, and a presence or exclusion of each of the currently prescribed medication in the cavity is automatically confirmed for the presence or the exclusion of in the cavity.
A method and system for reporting medical data including both current and past medical results for medical tests performed on a patient is provided. The medical data is output in columns, and the current results and past results of the same medical test are presented in the same row. In this manner, the report is provided in a layout that has rows and columns, so that all current results are presented in one column, and all past results are presented in a separate column. In addition, graphs of the medical results can be displayed to illustrate current and past medical results in a view that allows for trend and comparative diagnosis.
A computer-implemented method of training a neural network to improve a characteristic of a protein comprises collecting a set of amino acid sequences from a database, compiling each amino acid sequence into a three-dimensional crystallographic structure of a folded protein, training a neural network with a subset of the three-dimensional crystallographic structures, identifying, with the neural network, a candidate residue to mutate in a target protein, and identifying, with the neural network, a predicted amino acid residue to substitute for the candidate residue, to produce a mutated protein, wherein the mutated protein demonstrates an improvement in a characteristic over the target protein. A system for improving a characteristic of a protein is also described. Improved blue fluorescent proteins generated using the system are also described.
The present invention discloses a gene sequencing data compression preprocessing, compression and decompression method, a system, and a computer-readable medium. The preprocessing method implementation steps include: obtaining reference genome data; obtaining a mapping relationship between a short string K-mer and a prediction character c to obtain a prediction data model P1 containing any short string K-mer in the positive strand and negative strand of a reference genome and the prediction character c in a corresponding adjacent bit. The compression and decompression methods relate to performing compression/decompression on the basis of the prediction data model P1. The system is a computer system including a program for executing the previous method. The computer-readable medium includes a computer program for executing the previous method. The present invention can be oriented towards lossless gene sequencing data compression, provides fully effective information for a high-performance lossless compression and decompression algorithm for gene sequencing data.
There is provided a technology that supports selection of a label to be used for analysis of target molecules. The present technology provides a label selection support system including an information acquisition unit that obtains, via a network, information associated with a plurality of target molecules to be analyzed, an information processor that obtains, using the information associated with a plurality of target molecules, in vivo expression information of the plurality of target molecules from a database storing in vivo expression information of target molecules and generates support information associated with assignment of a label to each of the plurality of target molecules on the basis of the expression information, and a transmitter that transmits the generated support information via the network.
The present invention provides algorithm-based molecular assays that involve measurement of expression levels of genes from a biological sample obtained from a kidney cancer patient. The present invention also provides methods of obtaining a quantitative score for a patient with kidney cancer based on measurement of expression levels of genes from a biological sample obtained from a kidney cancer patient. The genes may be grouped into functional gene subsets for calculating the quantitative score and the gene subsets may be weighted according to their contribution to cancer recurrence.
Apparatuses and techniques are described for programming data in memory cells while concurrently storing backup data. Initial pages of multiple bit per cell data are encoded to obtain at least first and second pages of single bit per cell data. The initial pages of multiple bit per cell data are programmed into a primary set of memory cells, while concurrently the first and second pages of single bit per cell data are programmed into first and second backup sets of memory cells, respectively. In the event of a power loss, the first and second pages of single bit per cell data are read from the first and second backup sets of memory cells, and decoded to recover the initial pages of multiple bit per cell data.
An apparatus includes a substrate; circuit components disposed on the substrate; and a location identifier layer over the circuit, wherein the location identifier layer includes one or more section labels for representing physical locations of the circuit components within the apparatus.
The present disclosure provides a method of testing a testing device with a ground noise. The method includes coupling a device under test in series between a source and a ground in an automatic test equipment, coupling a ground bounce generator in series between the device under test and the ground, coupling the testing device to the device under test, providing a current by the source through the device under test and the ground bounce generator, controlling the ground bounce generator to generate the ground noise, and collecting a performance result of the testing device in the automatic test equipment.
A memory device includes: one or more planes each including a plurality of memory blocks; and a control circuit for selectively performing a dummy read operation before a valid read operation on the first memory block, according to whether a read command on the first memory block is firstly received from a host after a program operation is performed on a plane including the first memory block.
A non-volatile memory system adjusts the speed of a memory operation for a subset of non-volatile memory cells. For example, during a GIDL based erase process, the GIDL generation can be dampened for a subset of memory cells (e.g., for a set of NAND strings, or one or more sub-blocks).
A memory device includes a cell region in which memory blocks are disposed, each memory block including word lines stacked on a substrate, and channel structures penetrating through the word lines, and a peripheral circuit region including peripheral circuits executing an erase operation of deleting data for each of the memory blocks as a unit. The peripheral circuits control a voltage applied to each word line included in a target memory block to delete data in the erase operation, based on at least one of a position of the target memory block, a height of each word line included in the target memory block, and a profile of each channel structure.
In one embodiment, an electronic device includes a compute-in-memory (CIM) array that includes a plurality of columns. Each column includes a plurality of CIM cells connected to a corresponding read bitline, a plurality of offset cells configured to provide a programmable offset value for the column, and an analog-to-digital converter (ADC) having the corresponding bitline as a first input and configured to receive the programmable offset value. Each CIM cell is configured to store a corresponding weight.
A memory device according to one embodiment includes a memory cell array, bit lines, amplifier units, a controller, and a register. The memory cell array includes a memory cell that stores data nonvolatilely. The bit lines are connected to the memory cell array. The sense amplifier units are connected to the bit lines, respectively. The controller performs a write operation. The register stores status information of the write operation. The memory cell array includes a first storage region specified by a first address. The plurality of sense amplifier modules include a buffer region capable of storing data.
The present invention relates to a neuromimetic network comprising a set of neurons and a set of synapses, at least one neuron comprising a first stack of superimposed layers, the first stack successively comprising: a first electrode, a first barrier layer made of an electrically insulating material, and a second electrode, the first electrode, the first barrier layer and the second electrode forming a first ferroelectric tunnel junction, at least one synapse comprising a second stack of superimposed layers, the second stack successively comprising: a third electrode, a second barrier layer made of an electrically insulating material, and a fourth electrode, the third electrode, the second barrier layer and the fourth electrode forming a second ferroelectric tunnel junction.
A circuit for recycling energy in bit lines (BL and BLB) of SRAM during write operation by (i) storing the charges BL and BLB to an intermediate voltage source (VLB) in a discharge phase and (ii) restoring the charges from the intermediate voltage, back to the BL or BLB in a recovery phase. The circuit includes an inductor, a pair of NMOS transistors, a series resonance node, and an energy source (VLB) in addition to the components of an SRAM input-output circuit shown as in FIG. 1. During the SRAM write operation, the BL or BLB is discharged to the energy source VLB through the pair of NMOS transistors and, the inductor and the series resonance node. The remaining energy in the BL and the BLB is discharged to ground using the write complementary write drivers.
A memory device according to the present technology includes a memory cell array configured to include planes having a plurality of memory cells, a page buffer connected to at least one memory cell among the memory cells through a bit line and configured to perform a sensing operation of reading data stored in the at least one memory cell connected to the bit line, a common reference voltage generator configured to generate a common reference voltage, a plurality of merged buffers configured to generate a reference signal using the common reference voltage, and control logic configured to control an operation of the common reference voltage generator and the merged buffers so that page buffer control signals generated based on the reference signal are supplied to the page buffer.
A method of operation in a memory controller is disclosed. The method includes receiving a strobe signal having a first phase relationship with respect to first data propagating on a first data line, and a second phase relationship with respect to second data propagating on a second data line. A first sample signal is generated based on the first phase relationship and a second sample signal is generated based on the second phase relationship. The first data signal is received using a first receiver clocked by the first sample signal. The second data signal is received using a second receiver clocked by the second sample signal.
A semiconductor memory device includes: an input control circuit suitable for providing an active address which is input together with an active command, as an input address; a plurality of latches suitable for sequentially storing, as a latch address, the input address according to input control signals and outputting the latch addresses as a target address according to output control signals; a plurality of counters respectively corresponding to the latches and each suitable for increasing, when the active address matches the latch address stored in the latch, a counting value corresponding to the latch; and a refresh controller suitable for dividing the counters and the latches into a plurality of groups based on the counting values and generating, in response to a refresh command, reset signals for initializing the counters included in one group of the groups.
According to one embodiment, a semiconductor storage device includes a first memory cell, a second memory cell, a first transistor, a second transistor, and a third transistor. The first transistor includes a first portion electrically connected to a first circuit, a second portion electrically connected to the first memory cell, and a first gate electrode installed between the first portion and the second portion. The second transistor includes a third portion electrically connected to the first circuit, a fourth portion electrically connected to the second memory cell, and a first gate electrode installed between the third portion and the fourth portion. The third transistor includes the second portion, the fourth portion, a fifth portion electrically connected to a second circuit, and a second gate electrode installed between the second portion and the fifth portion and between the fourth portion and the fifth portion.
In one aspect, an example method includes (i) receiving a first group of video content items; (ii) identifying from among the first group of video content items, a second group of video content items having a threshold extent of similarity with each other; (iii) determining a quality score for each video content item of the second group; (iv) identifying from among the second group of video content items, a third group of video content items each having a quality score that exceeds a quality score threshold; and (v) based on the identifying of the third group, transmitting at least a portion of at least one video content item of the identified third group to a digital video-effect (DVE) system, wherein the system is configured for using the at least the portion of the at least one video content item of the identified third group to generate a video content item.
The magnetic tape includes a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which an absolute value ΔN of a difference between a refractive index Nxy measured regarding an in-plane direction of the magnetic layer and a refractive index Nz measured regarding a thickness direction of the magnetic layer is 0.25 to 0.40, and a logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding a surface of the magnetic layer is equal to or smaller than 0.050.
Systems and methods are disclosed for creating a machine generated avatar. A machine generated avatar is an avatar generated by processing video and audio information extracted from a recording of a human speaking a reading corpora and enabling the created avatar to be able to say an unlimited number of utterances, i.e., utterances that were not recorded. The video and audio processing consists of the use of machine learning algorithms that may create predictive models based upon pixel, semantic, phonetic, intonation, and wavelets.
An embodiment of the present invention provides a method of man-machine interaction, including: receiving first audio uploaded by a user through a client end, marking a start time and an end time of the first audio, and generating a first recognition result of the first audio using an audio decoder; determining whether the first audio is a short speech based on the start time and end time thereof, and in case of a short speech, generating a second recognition result of the second audio using the audio decoder upon receiving the second audio uploaded by the client end within a preset heartbeat protection time range, sending at least the first recognition result and the second recognition result to a language prediction model; and if it is determined that a combination of the recognition results constitutes a sentence, generating an answering instruction corresponding to the sentence, and sending the answering instruction together with a feedback time mark of the answering instruction to the client end. Unreasonable sentence segmentation in a full-duplex dialogue scenario and redundant replies in the dialogue can thereby be avoided.
Systems and methods for screenless computerized social-media access may include (1) producing, via an audio speaker that is communicatively coupled to a computing device, a computer-generated verbal description of a social-media post provided via a social-media application, (2) detecting, via a microphone that is communicatively coupled to the computing device, an audible response to the social-media post from a user of the computing device, and (3) digitally responding to the social-media post in accordance with the detected audible response. Various other methods, systems, and computer-readable media are also disclosed.
A system for categorizing a call between an agent and a caller comprises at least one processor and a memory communicably coupled to the at least one processor. The memory comprises computer executable instructions, which, when executed by the at least one processor implement a method as follows. A call document comprising text of the call between the agent and the caller is received by the system. The system categorizes the call into at least one class using regressive probability analysis of the call document. The system splits the call document to at least two portions, the at least two portions comprising a call header and a call body, and thereafter, using rule-based entity extraction, the system extracts a mandatory entity from the call header and an optional entity from the call body.
Embodiments of the present disclosure provide an interactive method of a robot, an interactive device of a robot and a device. The method includes: obtaining voice information input by an interactive object, and performing semantic recognition on the voice information to obtain a conversation intention; obtaining feedback information corresponding to the conversation intention based on a conversation scenario knowledge base pre-configured by a simulated user; and converting the feedback information into a voice of the simulated user, and playing the voice to the interactive object.
A method for generating an acoustic model is disclosed. The method can generate the acoustic model with high accuracy through learning data including various dialects by training the acoustic model using text data, to which regional information is tagged, and changing a parameter of the acoustic model based on the tagged regional information. The acoustic model can be associated with an artificial intelligence module, an unmanned aerial vehicle (UAV), a robot, an augmented reality (AR) device, a virtual reality (VR) device, devices related to 5G services, and the like.
An electronic device and a method for controlling the electronic device are disclosed. The electronic device of the disclosure includes a microphone, a memory storing at least one instruction, and a processor configured to execute the at least one instruction. The processor, by executing the at least one instruction, is configured to: obtain second voice data by inputting first voice data input via the microphone to a first model trained to enhance sound quality, obtain a weight by inputting the first voice data and the second voice data to a second model, and identify input data to be input to a third model using the weight.
Systems and methods for generating training data are described herein. Pieces of metadata captured by a plurality of networked sensor systems can be captured, where each piece of metadata is associated with a specific set of sensor data captured by one of the plurality of networked sensor systems and includes a set of characteristics for the specific set of captured sensor data. A probabilistic model can be generated based on the received metadata and simulations can be performed based upon a training corpus by generating multiple scenarios, and, for each scenario, a scenario specific version of a particular annotated sample is generated by performing a simulation using the particular annotated sample. The scenario specific versions of annotated samples from the training corpus can be stored as a training data set on the at least one network device.
A dialog system is described that is capable of maintaining a single dialog session covering multiple user utterances, which may be separated by pauses or time gaps, and that continuously determines intent across the multiple utterances within a session.
A system and method for translating audio, and video when desired. The translations include synthetic media and data generated using AI systems. Through unique processors and generators executing a unique sequence of steps, the system and method produces more accurate translations that can account for various speech characteristics (e.g., emotion, pacing, idioms, sarcasm, jokes, tone, phonemes, etc.). These speech characteristics are identified in the input media and synthetically incorporated into the translated outputs to mirror the characteristics in the input media. Some embodiments further include systems and methods that manipulate the input video such that the speakers' faces and/or lips appear as if they are natively speaking the generated audio.
A natural language processing system may use system response configuration data to determine customized output data forms when outputting data for a user. The system response configuration data may represent various output attributes the system may use when creating output data. The system may have a certain number of existing profiles where a profile is associated with certain settings for the system response configuration data/attributes. The system may also use various data such as context data, sentiment data, or the like to customize system response configuration data during a dialog. Other components, such as natural language generation (NLG), text-to-speech (TTS), or the like, may use the customized system response configuration data to determine the form, timing, etc. of output data to be presented to a user.
A speaker system uses destructive wave interference to generate “dead spots” with respect to an audio presentation. The signal for the dead spot generating device can be an inverted signal generated using the audio signal. In one embodiment, the inverted signal is generated using the audio signal, an indication of loudness at one or more active speakers, and a determination of the characteristics of the sound path from the one or more active speakers (including delay and attenuation).
An electronic musical instrument according to one embodiment includes: a sound source configured to generate a first sound signal and a second sound signal in accordance with an instruction signal for instructing to produce a sound; a first output unit configured to output a third sound signal containing the first sound signal and the second sound signal at a first sound volume ratio; and a second output unit configured to output a fourth sound signal containing the first sound signal and the second sound signal at a second sound volume ratio that is different from the first sound volume ratio.
A saxophone has a body tube, a high-F #structure, and a side-Bb structure. The body tube has a high-F #tone hole and a side-Bb hole. The high-F #structure opens or closes the high-F #tone hole. The side-Bb structure has a side-Bb tone-hole cover, a side-Bb driving assembly, an auxiliary key, and a main key. The main key is separated from the auxiliary key. The auxiliary key is disposed above a high F #key of the high-F #structure along a vertical line. The auxiliary key and the main key are separately arranged around a centerline of the body tube. The auxiliary key and the main key correspond in height position. Both of the auxiliary key and the main key are connected to the side-Bb driving assembly and drive the side-Bb tone-hole cover to close or open the side-Bb tone hole.
A system for displaying information indicative of driving conditions, to a driver, using a smart ring are disclosed. An exemplary system includes a smart ring with a ring band having a plurality of surfaces including an inner surface, an outer surface, a first side surface, and a second side surface. The system further includes a processor, configured to obtain data from a communication module within the ring band, or from one or more sensors disposed within the ring band. The obtained data are representative of information indicative of one or more driving conditions to be displayed to the driver. The smart ring also includes an electronic ink (e-ink) display disposed on at least one of the plurality of surfaces, and configured to present information indicative of the one or more driving conditions.
A display apparatus including a communication module comprising circuitry; a display; a motor configured to rotate the display; a user input module; a memory storing at least one instruction; and a processor in communication with the communication module, the display, the motor, the user input module, and the memory to control the display apparatus. The processor, upon execution of the stored at least one instruction, is configured to control the display to display a first screen based on the display being placed in a first orientation, and based on a first user command being input through the user input module while the first screen is displayed, control the display to display at least one second screen having a history of being displayed on the display and information on the display orientation of the at least one second screen being displayed.
A display apparatus includes a display panel, a first coordinate calculator, a second coordinate calculator and a gamma setter. The display panel includes a first display area and a second display area. The first coordinate calculator is configured to calculate color coordinates of first image data of the first display area. The second coordinate calculator is configured to calculate color coordinates of second image data of the second display area. The gamma setter is configured to adjust luminance of the first image data, the color coordinates of the first image data, luminance of the second image data and the color coordinates of the second image data.
A gate driver circuit can include a plurality of stage circuits, in which each of the plurality of stage circuits supplies a gate signal to gate lines arranged in a display panel, and includes an M node, a Q node, a QH node, a QB node, a line selector, a Q node controller, a Q node and QH node stabilizer, an inverter, a QB node stabilizer, a carry signal output circuit portion, a gate signal output circuit portion, and a Q node bootstrapper, in which the Q node bootstrapper is connected between the carry signal output circuit portion and the gate signal output circuit portion, or the gate signal output circuit portion is connected between the carry signal output circuit portion and the Q node bootstrapper.
An electronic device includes a display panel, a scan driving circuit, and a data driving circuit. The display panel includes a plurality of scan lines, a plurality of data lines, and a plurality of pixels. The scan driving circuit is configured to apply a scan signal to the scan lines. The data driving circuit is configured to apply a data signal to the data lines. The scan lines extend in a first direction. The scan driving circuit and the data driving circuit are arranged in the first direction.
Disclosed are a display panel and a display device including the same according to an embodiment. A display panel according to the embodiment includes: a display area in which a plurality of first pixels are arranged at a first pixels per inch (PPI); and a sensing area in which a plurality of second pixels are arranged at a second PPI that is lower than the first PPI, wherein the first pixels of the display area and the second pixels of the sensing area are arranged adjacent to each other at a boundary between the display area and the sensing area, the second pixel includes red, green, and blue sub-pixels, and at least one of the red and green sub-pixels of the second pixel is arranged closest to the first pixel.
A pixel circuit including an organic light-emitting element, a switching transistor, a storage capacitor that stores a data signal applied via a data line, a driving transistor that allows a driving current corresponding to the data signal to flow into the organic light-emitting element, an emission control transistor electrically connected to the organic light-emitting element and the driving transistor in series, and sync transistors electrically connected to a bottom metal electrode of the driving transistor. The sync transistors include a first sync transistor electrically connected to a first one selected from a source electrode of the driving transistor, a gate electrode of the driving transistor, the high power voltage, and the low power voltage and a second sync transistor electrically connected to a second one selected from the source electrode of the driving transistor, the gate electrode of the driving transistor, the high power voltage, and the low power voltage.
Embodiments relate to display panel and pixel driving device techniques. A hybrid scheme is provided in that a PWM (pulse width modulation) scheme, in which a ramp voltage is supplied as a gate voltage of a transistor and an LED is turned off at a time point when the gate voltage becomes the same as a threshold voltage, and a PAM (pulse amplitude modulation) scheme, in which a start voltage of the ramp voltage is determined depending on a gray scale value of a pixel, are combined.
A display module includes a display panel in which a plurality of pixels each including a plurality of sub-pixels are disposed on a plurality of row lines; and a driver. The driver is configured to set a PWM data voltage to the plurality of sub-pixels included in the plurality of row lines in a row line sequence, apply a sweep signal, which is a voltage signal sweeping between two different voltages, to sub-pixels among the plurality of sub-pixels that are included in at least some consecutive row lines among the plurality of row lines in the row line sequence, and drive the display panel to cause the sub-pixels included in the at least some consecutive row lines to emit light based on the PWM data voltage in the row line sequence.
A display apparatus includes a display panel, a data driver and a frequency controller. The display panel displays an image based on an input image data. The data driver outputs a data voltage to the display panel. The frequency controller determines a driving frequency of the display panel based on the input image data and a play speed setting.
A display device includes: a gray converter which adds compensation grays to input grays to provide output grays; a data driver which provides data voltages corresponding to the output grays; and a display panel which includes pixels which receives the data voltages, where the gray converter includes: a voltage domain converter which converts the input grays into conversion grays; and a compensation gray calculator which calculates the compensation grays based on the conversion grays.
A display device includes a display area including a first pixel area, in which pixels including subpixels of a first arrangement structure are disposed, and a second pixel area, in which pixels including subpixels of a second arrangement structure are disposed, a panel driver which provides a driving signal to the display area, and a data processor which converts first image data to second image data, where the first image data corresponds to the boundary subpixel of a first boundary pixel located adjacent to the second pixel area, among the pixels of the first pixel area, and the boundary subpixel of a second boundary pixel adjacent to the first boundary pixel, among the pixels of the second pixel area. The data processor determines the boundary subpixels of the first and second boundary pixels based on boundary types indicating positional relationships between the first and second boundary pixels.
An electronic device including a substrate, a plurality of first signal lines, and a plurality of second signal lines is provided. The first signal lines are disposed on the substrate. Each of the first signal lines includes a first intersecting section and a first extending section. The first intersecting section each has a constant extending direction. The first intersecting section is connected to the first extending section, while the first intersecting section and the first extending section have different extending directions. The second signal lines are disposed on the substrate. Each of the second signal lines includes a second intersecting section. The second intersecting section each has a constant extending direction. The second signal lines intersect with the first signal lines to form a plurality of intersections on each of the first signal lines, and the intersections are located on the first intersecting sections.
To suppress degradation of a transistor. A method for driving a liquid crystal display device has a first period and a second period. In the first period, a first transistor and a second transistor are alternately turned on and off repeatedly, and a third transistor and a fourth transistor are turned off. In the second period, the first transistor and the second transistor are turned off, and the third transistor and the fourth transistor are alternately turned on and off repeatedly. Accordingly, the time during which the transistor is on can be reduced, so that degradation of characteristics of the transistor can be suppressed.
A foldable mobile electronic device is provided. The foldable mobile electronic device includes a processor configured to recognize, based on the data received from the first sensor, a change in a state of the foldable mobile electronic device from the folded state to a partially folded state before reaching an unfolded state, to identify a first illuminance by using the data received from the second sensor, based on the recognized state change, to set a first luminance corresponding to the first illuminance as a brightness of the display, to when an angle identified after the state change falls within a predetermined first angle range or when a specific time has not elapsed after the state change, perform a real-time adjustment operation on the brightness of the display, based on a second illuminance identified using the second sensor, and to when the angle identified after the state change is outside the first angle range or when the specific time has elapsed after the state change, perform a hysteresis adjustment operation on the brightness of the display, based on the first illuminance.
A cable hanger includes: a base panel having opposed ends; a pair of arms, each of the arms attached to a respective end of the base panel and having a free end; a pair of locking projections, each of the locking projections attached to a respective free end of the arms; and a pair of gripping members, each gripping member attached to a respective arm, each gripping member having opposed ends, wherein one of the ends of each gripping member is fixed to the arms and the other of the ends of each gripping member is fixed to the arm or to the base panel. The arms and locking projections are configured to spread apart to enable insertion of a cable between the arms, wherein the gripping projections engage and grip the cable, and wherein the locking projections are configured to be inserted into the aperture of the supporting structure.
An electronic device is disclosed and includes a base substrate, a circuit layer, and a plurality of light-emitting elements. The base substrate has a plurality of through holes, the circuit layer is disposed on the base substrate, and the light-emitting elements are disposed on the first circuit layer. An absolute value of a difference between two adjacent spacings of the plurality of through holes of the base substrate is less than 0.5 times radius of curvature of the electronic device when the electronic device is bent.
A simulated eye surgical training tool, namely an eye model that facilitates training of ophthalmic surgical procedures, such as goniotomy and trabecular meshwork manipulation. The eye model includes a core made of a rigid material and a Canal frame disposed at an upper end of the core that defines an inwardly-facing Schlemm's canal groove in an inner wall thereof. Various structures may be used in or across the Schlemm's canal groove to simulate a trabecular meshwork. For instance, a flexible sheet may span across the groove, or a soft material placed in the groove. Color or opacity may be used to distinguish the groove from surrounding structures. Also, a corneal dome having an upper hemispherical portion is mounted over the Canal frame, and a scleral dome having an upper bore is mounted around the corneal dome. The core may be mounted on one of a number of angled pedestals on a base.
An augmented reality system including: a physical anatomic model; a display unit via which a user is adapted to receive first and second optic feedbacks, the first optic feedback emanating from the physical anatomic model and passing through the display unit, and the second optic feedback emanating from the display unit and including a virtual anatomic model; a tracking system adapted to track a position and orientation of the display unit; and a computing device adapted to: receive a first signal from the tracking system relating to the position and orientation of the display unit, and send a second signal to cause the display unit to overlay the second optic feedback on the first optic feedback, the second signal being based on the first signal. In some embodiments, the second optic feedback further includes ancillary virtual graphics such as medical data, instructional steps, expert demonstrations, didactic content, and exigent circumstances.
A system and apparatus for assisting in determining the best course of action at any point inflight for an emergency. The system may monitor a plurality of parameters including atmospheric conditions along the flight path, ground conditions and terrain, conditions aboard the aircraft, and pilot/crew data. Based on these parameters, the system may provide continually updated information about the best available landing sites or recommend solutions to aircraft configuration errors. In case of emergency, the system may provide a procedure associated with a hierarchy of available emergency landing sites for execution via the autopilot system for landing the aircraft.
A method for planning flight trajectories for at least two aircraft aiming to subsequently approach a predefined reference point, in particular a predefined destination, wherein each aircraft travels along a flight route according to an individual flight trajectory, such that a first aircraft travels along a first flight route according to a first flight trajectory and a second aircraft travels along a second flight route according to a second flight trajectory, wherein at least the second flight trajectory is set or adjusted such that at least one predetermined minimum separation between the two aircraft approaching the predefined destination according to their respective flight trajectories is ensured and the predetermined minimum separation is ensured throughout the whole flight trajectories by setting or adjusting an adjustable trajectory parameter (θ) of the first or second flight trajectory.
A computer system operates to receive transport service requests from computing devices of requesters within a geographic region. The system matches each transport service request with an available transport provider operating a service vehicle within the geographic region, and determines a location bias for a first transport provider that operates a corresponding vehicle within the geographic region, the location bias being associated with a preferred location of the first transport provider. The system may then match the first transport provider to a transport service request based on (i) the location bias of the first transport provider, and (ii) a destination of the transport service request which, upon fulfilling the transport service request, results in the first transport provider being positioned to arrive at the preferred location within a future time interval.
A tag measurement environment evaluation device includes a processor and a memory storing a program. The program is configured to, when executed by the processor, cause the processor to determine a moving tag evaluation value of each of a plurality of wireless tags based on a radio wave transmitted from each of the wireless tags and received by a tag reader configured to communicate with each of the wireless tags, and determine whether a measurement environment is suitable for a moving tag detection based on the moving tag evaluation values.
A wearable device and a system that includes the wearable device is provided. The wearable device includes at least one sensor configured to sense a characteristic of a user, a communication interface configured to obtain a first identifier of a vehicle or equipment, and a controller. The controller is configured to monitor the user based on the first identifier or send the first identifier to a monitoring system; determine whether there is a harm possibly occurring to the user of the wearable device based on at least one output from the at least one sensor, or send the at least one output to the monitoring system via the communication interface; and output, after the harm is determined to be possibly occurring, an alarm based on receiving confirmation from the user, or based on not receiving any confirmation from the user within a predetermined amount of time.
Systems and methods for dynamic communication and control of devices associated with a premises are disclosed. The systems and methods may include receiving first status information by a device associated with a premises; determining a priority condition based at least on the first status information; transmitting the first status information including a first differentiated services code point indicative of the priority condition; and transmitting second status information including a second differentiated services code point indicative of the normal condition.
According to one or more embodiment, a hygiene management device includes a processor. The processor determines based on image recognition whether a plurality of predetermined procedures of a hand-washing action have been completed by a subject. The processor executes different types of processing, such as, for example, opening or closing a passage, depending on completion or incompletion of each of the plurality of predetermined procedures.
Embodiments of the present disclosure generally relate to systems and methods for detecting misplaced items in an establishment. In one implementation, the system may include at least one processor configured to receive from at least one reader in the establishment, identification signals of tags read by the reader; determine current locations of the tags; and record the current locations of the tags. The processor may also be configured to access a designated location in the establishment for each of the tags; and determine, by comparing the current locations with the designated locations, a particular tag with a current location that differs from the designated location of the particular tag. The processor may also be configured to generate a notification signal when the current location of the particular tag does not match the designated location of the particular tag.
A system and a method for presence detection and notification. The system includes a a first unit including a first sensor and a first visual alert, and a second unit including a second sensor and a second visual alert. The first unit is constructed to send a signal to the second unit to trigger the second visual alert, when the first sensor detects a presence. The second unit is constructed to send a signal to the first unit to trigger the first visual alert, when the second sensor detects a presence. The first and second visual alerts are constructed to be triggered independently of one another.
Embodiments of the present invention set forth systems, apparatuses and methods for facilitating the configuration of multigame bonuses on independent gaming devices. Accordingly, a gaming device including a display, input device, memory, and processor can be configured to be part of a multigame bonus while not requiring a direct connection to a multigame bonus controller, or to other gaming devices involved in the multigame bonus. This may be accomplished by configuring the gaming device to provide a mechanism for an operator to set up bonus parameters with a specified side wager or bet to be eligible for a particular jackpot prize. Since each gaming device can be independently set up to be part of the multigame bonus, unrelated gaming devices running different primary gaming events with different wager or game characteristics can be part of the same multigame bonus without affecting game play of the primary gaming events.
A gaming machine includes an electronic display device configured to display an array of symbol positions and registers. The registers are associated with respective subsets of one or more of the symbol positions of the array. Game-logic circuitry directs the display device to animate a plurality of spins of symbol-bearing reels wherein, in each spin, the reels are spun and stopped to land symbols in the array. The plurality of symbols include value-bearing symbols, redemption symbols, and reset symbols. For each landed value-bearing symbol, the symbol value is added to the applicable register. In response to accumulating a predetermined number of the redemption symbols in a subset, the value in that subset's register is awarded. In response to the reset symbol landing in a subset, the value in that subset's register is reset.
To bring the excitement to the people (majority, who are not experts in games), we present the examples, described here, for one person to be able to bet on and be part of the deal and excitement for a third party, as his agent, proxy, or shadow, to bet for him, or instead of him, or as if the first person was doing the game directly, or one betting for another, or one playing for another with the other person's money. That generates more excitement on the game or casino, with more participation, transactions, income, profit, loyalty, and repeat customers. This brings a lot of variations on the game, e.g., stock market model, or derivatives model, or hedge model. This can be applied to sports and table games or fantasy sports. This can be applied to online, real, mobile, fantasy, simulation, computer generated, human based, or casino games or settings.
A gaming machine provides a game feature. The gaming machine includes an operation unit, a display unit, a memory device and a game control unit. The operation unit receives an operation input of the player. The display unit is configured to display a game screen including computer generated graphics. The memory device stores a game execution program including computer instructions for generating the game feature. The game control unit executes the game execution program to provide the game feature and is coupled to the operation unit, the display unit and the memory device. The game control unit includes a processor programmed to display a game feature structure on the game screen on the display unit. The game feature structure includes a wheel having a plurality of wedges. Each wedge has an associated indicia. The indicia are from a set of indicia which includes a plurality of prize symbols.
The present disclosure relates generally to electronic playing cards, each of the playing cards comprising opposing first and second planar playing card surfaces such that, when being viewed by the corresponding player, the first planar playing card surface faces the other players and the second planar playing card surface faces the corresponding player. The first and/or second planar playing card surface can comprise a digital display. A gaming system can assign an electronic playing card to each player in a card game and determine and provide to each of the electronic playing cards an assigned playing card parameter (e.g., card suit and rank) for depiction by a digital display of the respective playing card.
A sanitizing system, configured to receive, sanitize and dispense payment objects; the sanitizing system has a housing with a universal money recognizer. A coin counter display and a bill counter display are arranged on the housing. A bill check in slot, a coin in slot, a bill check out slot, and a coin check out slot are arranged on the housing. When a user inserts coins into the coin in slot, the coins are counted, sanitized and released through the coin check out slot.
A sensor system for acquiring a perturbation, induced by a contact patch of a tire, in data generated by a sensor system mounted in the tire, comprises at least one sensor adapted for generating the data related to a physical property of the tire, and an acquisition system comprising memory. The sensor system is adapted for triggering the acquisition system to acquire the data and for storing it in a buffer in the memory, until a predefined delay after the perturbation is recognized. The perturbation is recognized by comparing the stored data with at least one characterizing feature of the perturbation.
Systems and methods to fit an image of an inventory part are described. In one aspect, a method includes receiving images of items over a computer network from a server, capturing a live video image of an object using a camera, playing the live video of the object on an electronic display, and continually refitting an image of a first item from the received images of items to the object as the object changes perspective in the video by applying an affine transformation to the image of the first item.
Methods and systems are provided for a coolant system. In one example, a method may include diagnosing a condition of a pump of the coolant system based on a temperature change of coolant. The diagnostic may determine if the pump is stuck on or off.
A system includes a processor configured to detect an onboard request for vehicle-action reporting configuration. The processor is also configured to send a vehicle identifier to a configuration server, responsive to the request. The processor is further configured to receive a set of configuration data, representing tuned trigger variables for vehicle reporting, tuned to a vehicle identified by the identifier. Additionally, the processor is configured to use the configuration data to tune a set of vehicle reporting trigger variables, such that a reporting entity reports based upon occurrence of a tuned variable.
A method, apparatus, system, and computer program product for managing a vapor cycle machine. Data is received for the vapor cycle machine in an aircraft. The data comprises a pressure, a temperature, and a speed for a set of compressors in the vapor cycle machine. A ratio of the pressure to the temperature is determined for the set of compressors that ran during a flight of the aircraft. A set of actions is performed when the ratio of the pressure to the temperature for the set of compressors that ran during the flight of the aircraft exceeds a threshold more than a selected number of times over a range of flights for the aircraft.
Embodiments herein disclose systems, methods, and computer-readable media for integrating facial recognition technology into clinical workflows. An application can manage receipt of a source image, including a face of an unidentified individual, and communicate the source image for facial recognition processing. The facial recognition processing can identify an individual and demographic information associated thereto, as well as provide information to access an electronic health record server housing one or more electronic health records. The application can access health-related data for the individual from the individual's EHR and rank the accessed information to communicate to a source device in a custom, prioritized communication.
Detection of whether a video is a fake video derived from an original video and altered is undertaken using both image analysis and frequency domain analysis of one or more frames of the video. The analysis may be implemented using neural networks.
A system and method are capable of ensuring that one or more text strings will be able to be fully rendered in a target area of a user interface or a target area of a graphics file. The system and method determine the number of pixels of first and second reference text that fit in the target area in the horizontal direction and the vertical direction, respectively, determine the number of pixels of string text in the horizontal direction and the vertical direction, and compare the number of pixels in the horizontal direction of the first reference text and the vertical direction of the second reference text respectively to the number of pixels in the horizontal direction and the vertical direction of the text string that is desired to be rendered in the target area to determine whether the text string will fit in the target area.
A document scanner with the capability of landing a document by determining its location on the scanning bed, using intelligent methodologies for framing the document to determine the edges/boundaries of the document, processing the image using various techniques and methodologies to speed up the processing, so that the document feed track does not have to be slowed, and a unique binarization of the image to efficiently create different renderings of the scanned image.
A vehicle external environment recognition apparatus to be applied to a vehicle includes a road surface determination processor and a three-dimensional object determination processor. The road surface determination processor determines a road surface region that corresponds to a road surface in an image, plots representative distances of respective horizontal lines in the road surface region at respective vertical positions of the horizontal lines, and generates first and second road surface models. The second road surface model represents a farther portion of the road surface region from the vehicle than the first road surface model and differs in a gradient from the first road surface model. On a condition that an angle formed by the first and second road surface models is greater than a predetermined angle, the three-dimensional object determination processor cancels the second road surface model and extends far the first road surface model.
An image processing apparatus comprising, a tracking unit configured to detect an object and track the object in images to be processed, the images being sequential with respect to time, a determining unit configured to determine a stay time for which the object stays, on the basis of a result of the tracking, and an associating unit configured to specify, on the basis of the result of the tracking, one predetermined location from one or more predetermined locations included in the images to be processed, and associate the specified one predetermined location with the stay time.
An apparatus configured to, based on first imagery (301) of at least part of a body of a user (204), and contemporaneously captured second imagery (302) of a scene, the second imagery comprising at least a plurality of images taken over time, and based on expression-time information indicative of when a user expression of the user (204) occurs, provide a time window (303) temporally extending from a first time (t−1) prior to the time (t) of the expression-time information, to a second time (t−5) comprising a time equal to or prior to the first time (t−1), the time window (303) provided to identify at least one expression-causing image (305) from the plurality of images of the second imagery (302) that was captured in said time window, and provide for recordal of the at least one expression-causing image (305) with at least one expression-time image (306) comprising at least one image from the first imagery (301).
Systems and methods for improved operations of ski lifts increase skier safety at on-boarding and off-boarding locations by providing an always-on, always-alert system that “watches” these locations, identifies developing problem situations, and initiates mitigation actions. One or more video cameras feed live video to a video processing module. The video processing module feeds resulting sequences of images to an artificial intelligence (AI) engine. The AI engine makes an inference regarding existence of a potential problem situation based on the sequence of images. This inference is fed to an inference processing module, which determines if the inference processing module should send an alert or interact with the lift motor controller to slow or stop the lift.
An apparatus for retraining an object detector according to an exemplary embodiment includes an inputter configured to receive an undetected image, a style transferer configured to generate one or more first augmented images that have the same content attribute as an object area of the undetected image, but a different style attribute, a content transferer configured to generate one or more second augmented images that have the same style attribute as the object area, but a different content attribute, and an influence analyzer configured to analyze a cause of non-detection of the undetected image by comparing object detection reliabilities of the undetected image, the first augmented image, and the second augmented image.
A Virtual Reality (VR) computer system and method including a VR headset to be worn by at least one user; one or more pupil sensors located in the VR headset configured and operative to capture and track pupil movement of the at least one user wearing the VR headset; and at least one camera device operative to capture video image of at least one user wearing the VR headset. A computer processor is instructed to generate a two-dimensional (2D) image of the least one user such that an image of the VR headset is virtually removed from the image of the at least one user wearing the VR headset.
Systems, devices, media, and methods are presented for presentation of modified objects within a video stream. The systems and methods receive a set of images within a video stream and identify at least a portion of a face in a first subset of images. The systems and methods determine face characteristics by analyzing the portion of the face in the first subset of images. The systems and methods apply a graphical representation of glasses to the face based on the face characteristics and cause presentation of a modified video stream including the portion of the face with the graphical representation of the glasses in a second subset of images of the set of images while receiving the video stream.
Interaction-based ecosystems are presented. Interaction analysis engine analyze media content to derive a set of media features. The engine can then identify one or more interaction objects (e.g., transactions, searches, game play, etc.) based on the set of media features. Relevant interaction objects can then be instantiated as persistent available or active points of interaction readily accessed by a consumer. The consumer need only capture a digital representation of the content via a user device, a smart phone for example. A second set of media features can be derived from the digital representation and the second set of media features can then be used to find the instantiated interactions.
Among other things, embodiments of the present disclosure improve the functionality of computer imaging software and systems by facilitating the manipulation of virtual content displayed in conjunction with images of real-world objects and environments. Embodiments of the present disclosure allow different virtual objects to be moved onto different physical surfaces, as well as manipulated in other ways.
System and method are provided to detect objects in a scene frame of two-dimensional (2D) video using image processing and determine object image coordinates of the detected objects in the scene frame. The system and method deploy a virtual camera in a three-dimensional (3D) environment to create a virtual image frame in the environment and generate a floor in the environment in a plane below the virtual camera. The system and method adjust the virtual camera to change a height and angle relative to the virtual image frame. The system and method generate at an extended reality (XR) coordinate location relative to the floor for placing the detected object in the environment. The XR coordinate location is a point of intersection of a ray cast of the virtual camera through the virtual frame on the floor that translates to the image coordinate in the virtual image frame.
A system and method for translating a 3D image into a 2D image is provided. A 3D image of voxels and properties associated with the voxels is analyzed. Each of the voxels in the 3D image is scaled to match a size of an output tile for a 2D image. Colors are added to the 2D image based on the properties of the voxels. Contour lines are added to the 2D image based on changes in altitude represented by the 3D image. The 2D image is output.
Computing an output image of a dynamic scene. A value of E is selected which is a parameter describing desired dynamic content of the scene in the output image. Using selected intrinsic camera parameters and a selected viewpoint, for individual pixels of the output image to be generated, the method computes a ray that goes from a virtual camera through the pixel into the dynamic scene. For individual ones of the rays, sample at least one point along the ray. For individual ones of the sampled points, a viewing direction being a direction of the corresponding ray, and E, query a machine learning model to produce colour and opacity values at the sampled point with the dynamic content of the scene as specified by E. For individual ones of the rays, apply a volume rendering method to the colour and opacity values computed along that ray, to produce a pixel value of the output image.
Data structures, methods and primitive block generators for storing primitives in a graphics processing system. The method includes: receiving a primitive associated with state data that defines how the primitive is to be rendered; determining whether the state data associated with the received primitive matches state data for a current primitive block; and in response to determining that the state data for the received primitive matches the state data for the current primitive block: determining, based on one or more primitive section size constraints, whether the received primitive is to be added to a current primitive section of the current primitive block in a data store; in response to determining that the received primitive is to be added to the current primitive section, adding the received primitive to the current primitive section; and in response to determining that the received primitive is not to be added to the current primitive section: outputting the current primitive section; reconfiguring the data store to store a new primitive section for the current primitive block; and adding the received primitive to the new primitive section for the current primitive block.
A virtual reality apparatus and method are described for tile-based rendering. For example, one embodiment of an apparatus comprises: a set of on-chip geometry buffers including a first buffer to store geometry data, and a set of pointer buffers to store pointers to the geometry data; a tile-based immediate mode rendering (TBIMR) module to perform tile-based immediate mode rendering using geometry data and pointers stored within the set of on-chip geometry buffers; spill circuitry to determine when the on-chip geometry buffers are over-subscribed and responsively spill additional geometry data and/or pointers to an off-chip memory; and a prefetcher to start prefetching the geometry data from the off-chip memory as space becomes available within the on-chip geometry buffers, the TBIMR module to perform tile-based immediate mode rendering using the geometry data prefetched from the off-chip memory.
Methods, apparatus, systems and articles of manufacture to perform graphics processing on combinations of graphic processing units and digital signal processors are disclosed. A disclosed example method includes processing first data representing input vertices to create second data, the first data using a first format organized by vertex, the second data using a second format organized by components of the vertices. A digital signal processor (DSP) is to perform vertex shading on the second data to create third data, the third data formatted using the second format, the vertex shading performed by executing a first instruction at the DSP, the first instruction generated based on a second instruction capable of being executed at a graphics processing unit (GPU). The third data is processed to create fourth data, the fourth data formatted using the first format.
A media sequence includes media items arranged in a sequence. A graph is generated to represent animations available for the media items in the media sequence. The graph includes nodes that represent the available animations. The animations to be used in generating the media sequence is selected via selection of a path through the graph, and the media sequence is generated using the selected animations.
Systems and methods for animating from audio in accordance with embodiments of the invention are illustrated. One embodiment includes a method for generating animation from audio. The method includes steps for receiving input audio data, generating an embedding for the input audio data, and generating several predictions for several tasks from the generated embedding. The several predictions includes at least one of blendshape weights, event detection, and/or voice activity detection. The method includes steps for generating a final prediction from the several predictions, where the final prediction includes a set of blendshape weights, and generating an output based on the generated final prediction.
The present disclosure relates to systems, methods, and non-transitory computer readable media for generating deterministic enhanced digital images based on parallel determinations of pixel group offsets arranged in pixel waves. For example, the disclosed systems can utilize a parallel wave analysis to propagate through pixel groups in a pixel wave of a target region within a digital image to determine matching patch offsets for the pixel groups. The disclosed systems can further utilize the matching patch offsets to generate a deterministic enhanced digital image by filling or replacing pixels of the target region with matching pixels indicated by the matching patch offsets.
Techniques are described herein that overcome the limitations of conventional techniques by bridging a gap between user interaction with digital content using a computing device and a user's physical environment through use of augmented reality content. In one example, user interaction with augmented reality digital content as part of a live stream of digital images of a user's environment is used to specify a size of an area that is used to filter search results to find a “best fit”. In another example, a geometric shape is used to represent a size and shape of an object included in a digital image (e.g., a two-dimensional digital image). The geometric shape is displayed as augmented reality digital content as part of a live stream of digital images to “assess fit” of the object in the user's physical environment.
A system and a method are disclosed for a structured-light system to estimate depth in an image. An image is received in which the image is of a scene onto which a reference light pattern has been projected. The projection of the reference light pattern includes a predetermined number of particular sub-patterns. A patch of the received image and a sub-pattern of the reference light pattern are matched based on either a hardcode template matching technique or a probability that the patch corresponds to the sub-pattern. If a lookup table is used, the table may be a probability matrix, may contain precomputed correlations scores or may contain precomputed class IDs. An estimate of depth of the patch is determined based on a disparity between the patch and the sub-pattern.
Systems and methods of automating the generation of a correction of an estimate of an elevation of a digital elevation model (DEM) of the bare earth under forest canopy. The disclosed embodiments facilitate generation of a more accurate DEM in areas of canopy coverage (where the input X-band DSM cannot see the ground) to estimate both the canopy height and the associated DEM. In some embodiments, the result of computationally correcting an estimate of an original DEM is a modified DEM. The method of correcting an estimate of an original DEM utilizes a pair of P-band radar images, an original DEM overlapping the same scene as the P-band radar images, at least one common, uniquely-identifiable point in the P-band radar images, and a definition of a geographical area surrounding the common, uniquely identifiable point over which the elevation correction is applicable.
A multi-target tracking method includes: obtaining a first image and a second image including N tracking targets from the same target video file, and obtaining N first tracking boxes of the first image that precedes a preset number of frames of the second image, the N first tracking boxes configured to frame the N tracking targets in the first image; superposing and synthesizing the first second images to obtain a target image; inputting the target image into an hourglass network model for feature extraction, to output a target feature map; inputting the target feature map into a prediction network to output a thermodynamic diagram, a width and height value set, a minor deviation value set, and a feature vector set; determining N second tracking boxes configured to frame N tracking targets in the second image, based on the thermodynamic diagram, the above three sets, and the N first tracking boxes.
A method for analyzing biological-tissue image includes following steps. A plurality of biological-tissue images are provided, and each of the biological-tissue images includes a plurality of target object image blocks. An image pre-processing step is performed so as to obtain a plurality of processed biological-tissue images. A fitting step is performed so as to obtain a plurality of object fitting images of the target object image blocks. A sampling step is performed, wherein a target region of each of the processed biological-tissue images is selected, and the target region includes the object fitting images. A calculating and analyzing step is performed so as to obtain an analysis result of a target regional center of the biological-tissue images.
An object detection method for a 3D mammogram is disclosed. The object detection method comprises steps of: controlling N filters to execute a filtering computation in the 3D mammogram respectively to generate N 3D filtering images; computing a difference variation among the plurality of voxels to obtain a blurriness value of the plurality of voxels; using the blurriness value of the plurality of voxels in a decision module to execute a plurality of first decision operators to generate a plurality of first decision results, and using one of the plurality of first decision results to execute the plurality of second decision operators to generate a plurality of second decision results; and executing a final decision operator by using the plurality of first decision results and the plurality of second decision results to generate a detection object of the 3D mammogram.
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are commonly used to assess patients with known or suspected pathologies of the lungs and liver. In particular, identification and quantification of possibly malignant regions identified in these high-resolution images is essential for accurate and timely diagnosis. However, careful quantitative assessment of lung and liver lesions is tedious and time consuming. This disclosure describes an automated end-to-end pipeline for accurate lesion detection and segmentation.
A smart, human-centered technique that uses artificial intelligence and mixed reality to accelerate essential tasks of the inspectors such as defect measurement, condition assessment and data processing. For example, a bridge inspector can analyze some remote cracks located on a concrete pier, estimate their dimensional properties and perform condition assessment in real-time. The inspector can intervene in any step of the analysis/assessment and correct the operations of the artificial intelligence. Thereby, the inspector and the artificial intelligence will collaborate/communicate for improved visual inspection. This collective intelligence framework can be integrated in a mixed reality supported see-through headset or a hand-held device with the availability of sufficient hardware and sensors. Consequently, the methods reduce the inspection time and associated labor costs while ensuring reliable and objective infrastructure evaluation. Such methods offer contributions to infrastructure inspection, maintenance, management practice, and safety for the inspection personnel.
A method, computer system, and computer-readable medium are provided for point cloud attribute coding by at least one processor. Data associated with a point cloud is received. The received data is transformed through a lifting decomposition based on enabling a scalable coding of attributes associated with the lifting decomposition. The point cloud is reconstructed based on the transformed data.
A computing system for generating a dynamic path for a fellow, includes a processor and a memory storing instructions that when executed by the processor cause the computing system to receive the fellow's skill graph, receive a target skill, receive a calendar object and generate the dynamic path including a task and/or a session. A non-transitory computer readable medium includes program instructions that when executed, cause a computer to receive the fellow's skill graph, receive a target skill, receive a calendar object and generate the dynamic path including a task and/or a session. A method for generating a dynamic path for a fellow includes receiving the fellow's skill graph, receiving a target skill, receiving a calendar object and generating the dynamic path including a task and/or a session.
A computer implemented method for generating digital models of relative crop yield based on nitrate values in the soil is provided. In an embodiment, nitrate measurements from soil during a particular portion of a crop's development and corresponding crop yields are received by an agricultural intelligence computing system. Based, at least in part, on the nitrate measurements and corresponding crop yields, the system determines maximum yields for each location of a plurality of locations. The system then converts each crop yield value into a relative crop yield by dividing the crop yield value by the maximum crop yield for the location. Using the relative crop yields and the corresponding nitrate values in the soil, the system generates a digital model of relative crop yield as a function of nitrate in the soil during the particular portion of the crop's development. When the system receives nitrate measurements from soil in a particular field during the particular portion of a crop's development, the system computes a relative yield value for the particular field using the model of relative crop yield.
Systems, methods, and computer-readable medium storing instructions can be used to predict insurance information. One of the methods includes obtaining information about an insured entity. The method includes providing the information to a machine learning system, the machine learning system trained to provide insurance information based on the provided information. The method includes in response to providing the information, receiving a prediction of the insurance information. The method also includes adjusting an insurance premium based on the prediction.
Systems and methods for creating indicators to quantify and index financial market liquidity risk that is market-wide among a broad set of securities or asset classes or portfolio specific relative to an individual investor's portfolio holdings. A liquidity risk index can be created as a counterpart to any well-known market index, such as the Dow Jones Industrial Average® or the S&P 500® index. The present disclosure relates to risk management in financial markets, and in particular to systems and methods for quantifying and indexing liquidity risk such that these indices can serve as underlying assets for futures, options, or other financial instruments that investors would use to hedge against the liquidity risk.
A computer-implemented method for initiating online collections that includes determining a current status of an account held by an account holder, determining a real-time financial profile of the account holder using information on the banking institution computer systems and third party information providers and displaying a customized status message based on the account holder's financial profile. The method provides remediation options to the account holder.
An intelligent store system and an intelligent store method are provided. The method includes: sensing, by a proximity sensor, whether there is a first customer approaching the proximity sensor; sensing, by an image sensor, a movement trajectory of the first customer; and determining whether the first customer is entering or leaving a store in response to the first customer approaching the proximity sensor sensed by the proximity sensor. If the first customer is entering the store, a first virtual identity and a first virtual shopping cart corresponding to the first virtual identity are generated for the first customer, and a first product list of the first virtual shopping cart is updated according to the movement trajectory. If the first customer is leaving the store, a first operation of the first customer is received by a human machine interface, and the first product list according to the first operation is updated.
A computer-implemented method of digital information presentation may include receiving a selection of an item reference from among digital data via a digital user interface. The method may further include receiving a request to search for information relating to the item reference. The method may include sending a request to search for the information relating to the item reference in the digital database. The method may also include receiving the information relating to the item reference. The method may further include presenting the information relating to the item reference via the digital user interface, the digital user interface including a purchase information element. The method may include facilitating a purchase of the item via the digital user interface.