A module substrate includes a module substrate including a plurality of external connection electrodes disposed on a second surface thereof; communication elements mounted on the module substrate, the communication elements including one or more first communication elements mounted on a first surface of the module substrate and one or more second communication elements mounted on the second surface of the module substrate; a first heat radiation frame mounted on the first surface of the module substrate and configured to accommodate at least one of the one or more first communication elements; and a second heat radiation frame mounted on the second surface of the module substrate and configured to accommodate at least one of the one or more second communication elements. One or more of the external connection electrodes are disposed around the second heat radiation frame.
A microchip includes a PCB, a first contact feature positioned along a first area of the PCB, a second contact feature positioned along a second area of the PCB that is disposed opposite the first area, a contact frame including first and second contact members respectively coupled to the first and second contact features for signal communication between the first and second contact features and an external electronic device, and a housing enclosing an interior region of the microchip and carrying the first and second contact members of the contact frame.
A method of manufacturing an electronic device includes preparing an electronic component including a first substrate on a main surface of which a functional unit and a first resin layer are formed. The first resin layer has a first surface facing the main surface of the first substrate, a second surface opposed to the first surface, a cavity on the first surface enclosing the functional unit, and a portion defining a wall of the cavity. The first resin layer defines a recess provided with a solder layer on the second surface. The method further includes preparing a second substrate having an electrode pad formed on a main surface, aligning the electronic component with the second substrate to layer the solder layer and the electrode pad in contact with the solder layer, and forming the electronic component and the second substrate into the electronic device.
A manufacturing method of a display device is disclosed. The method includes the following steps. A first substrate having a first region and a second region is provided. A second substrate is disposed on the first substrate. The second substrate is overlapping the first region. At least one drive IC is disposed on the second region. A protection layer is disposed on the second region. The protection layer is disposed enclosing the at least one drive IC. The protection layer has a maximum height larger than a maximum height of the at least one drive IC.
In one embodiment, an apparatus generally comprises a power delivery board for integration with a printed circuit board, the power delivery board comprising a power plane for delivering power from a voltage regulator module to an application specific integrated circuit (ASIC) mounted on a first side of the printed circuit board. The power plane in the power delivery board interconnects with power vias in the power delivery board for vertical alignment with the ASIC through power vias in the printed circuit board to electrically couple the voltage regulator module and the ASIC when the power delivery board is mounted on a second side of the printed circuit board.
Systems and methods that may be implemented to provide on-board trace impedance testing for a system level board of an information handling system. A printed circuit board (PCB) of the system level board may include built-in test trace circuitry that may be used to measure board trace impedance so that the trace impedance of a fully assembled system level board may be tested and verified for compliance with trace impedance specification, and without requiring any disassembly of the board.
A circuit board is provided in which a transmission loss is reduced. The circuit board includes a first layer; a transmission line disposed on the first layer; and a second layer stacked with the first layer. The second layer includes a first region, which is constructed of a first material, corresponding to a position of the transmission line, and a second region, which is constructed of a second material having a permittivity that is different from that of the first material, corresponding to the position of the transmission line.
Embodiments of the disclosure relate to flexible electronic substrates for placement on an external surface of a vehicle motor assembly. In one embodiment, a motor assembly includes a motor comprising an external surface and one or more electronic assemblies positioned on the external surface of the motor. Each electronic assembly includes a metal substrate disposed on the external surface of the motor, a dielectric layer disposed on the metal substrate, a flexible metal base layer disposed on the dielectric layer, a bonding layer disposed on the flexible metal base layer, and one or more electronic devices disposed on the bonding layer. The bonding layer bonds the one or more electronic devices to the flexible metal base layer.
An X-ray tube, including: an envelope (11) that holds inside thereof at a predetermined pressure; a filament (12) for emitting electrons and a focus electrode (13) provided in the envelope: and a target (15) for generating X-ray provided in the envelope facing to the filament (12) and the focus electrode (13), wherein the envelope (11) has an envelope body (11a) and an X-ray window portion (16) having a higher X-rays transmissivity and a higher electric conductivity than the envelope body (11a), when the X-ray window portion (16) or the anode (14) is set to a lower electric potential than both of an electric potential of the anode (14) or the X-ray window portion (16) and an electric potential of the filament (12) and the focus electrode (13), detection of at least one of an ion current (Ii) or an electron current (Ie) through the X-ray window portion (16) or the anode (14) is possible.
A functional contactor is provided. The functional contactor contains a conductive elastic portion having elasticity and electrically contacting one of a circuit board of an electronic device, a bracket coupled to the circuit board, and a conductor which can come into contact with the human body; a substrate containing a plurality of dielectric layers; and a functional element embedded in the substrate so as to be electrically connected in series to the conductive elastic portion.
A power management system for lighting circuit may include a grid shifting controller that includes a processor and a connection to an external power source. The power management system may also include a communication interface associated with the grid shifting controller. The grid shifting controller may be configured to provide control information to a processor of at least one grid shifting electrical fixture over the communication interface, the control information being configured to direct the at least one grid shifting electrical fixture on the use of power from the external power source and an energy storage device associated with the at least one grid shifting electrical fixture.
A lighting driver for driving a light-emitting component at a high speed is provided. A control terminal of a second transistor is connected to a control terminal and a first terminal of a first transistor. Input terminals of an operational amplifier are connected to the first terminal of the first transistor and first terminals of first and second switches. Control terminals of third and fourth transistors are connected to an output terminal of the operational amplifier. Second terminals of the first switch and the fourth transistor are connected to a first terminal of the second transistor. A second terminal of the second switch and a current source are connected to a second terminal of the third transistor. A first terminal of the fourth transistor is connected to the light-emitting component. A control circuit is connected to the current source, and control terminals of the first and second switches.
The present disclosure is related to accurate analog dimming of a light emitting diode (LED). Accurate dimming can require precise control of a power converter that supplies the LED with a current. The precise control relies on accurately sensing a level of the LED. When the power converter operates in a discontinuous conduction mode (DCM), for example at a low dimming ratio, the accuracy of the sensed LED-level can be affected by a resonant current offset, resulting from current ringing in the power converter. The disclosed circuits and methods provide accurate control of the LED-level by compensating for the resonant current offset in the sensed LED-level.
System and method for dimming control of one or more light emitting diodes. An example system includes one or more signal processing components configured to receive a first signal associated with a TRIAC dimmer, process information associated with the first signal, determine whether the TRIAC dimmer is in a first condition or a second condition, generate a second signal based on at least information associated with the first signal, and send the second signal to a switch. The one or more signal processing components are further configured to, if the TRIAC dimmer is determined to be in the first condition, generate the second signal to cause the switch to be opened and closed corresponding to a modulation frequency.
The present invention is one that intends to reduce the number of working processes necessary to provide a secondary conductor on the inner circumferential surface of a roll main body, and an induction heated roll apparatus including: a roll main body that is rotatably supported; and an induction heating mechanism that is provided inside the roll main body and has an induction coil for allowing the roll main body to inductively generate heat. In addition, on the inner circumferential surface of the roll main body, the secondary conductor is formed by build-up welding.
An apparatus for heating an insulation fluid in a medium-voltage or high-voltage switchgear comprises an infrared source which is adapted to emit infrared radiation of at least one wavelength. Thus, at least one vibrational or rotational mode of at least one component of the insulation fluid is excited by absorption of at least a part of the infrared radiation, and condensation of the insulation fluid is efficiently prevented by this direct heating of the insulation fluid. A closed loop temperature regulator is used to heat only when required. A circulator in a heating chamber further provides for a mixing of the insulation fluid, thus preventing steep temperature gradients.
Provided is a temperature controller for an industrial heating apparatus adjusting a soak time on the basis of the variation of the thermal energy. Accordingly, since a temperature equilibrium time point of the center is determined by reflecting a temperature tolerance in the chamber and a soak time is corrected and since the temperature equalization time point is set on the basis of a full load state in which the variation of the input thermal energy per time is the smallest, the temperature at the center falls within an allowable upper/lower limit range even if a partial load state is applied, whereby the temperature control apparatus and method for an industrial heater applicable regardless of the amount of heating targets may be provided.
A gateway device and system and method for use of the same are disclosed. In one embodiment, multiple wireless transceivers are located within an in-wall housing, which also interconnectedly includes a processor, memory, various physical ports and wireless transceivers. To improve convenience, the gateway device may establish a pairing with a proximate wireless-enabled interactive programmable device. Virtual remote control functionality for various amenities may then be provided. To improve safety, the gateway device may be incorporated into a geolocation and safety network.
User equipment (UE) includes processing circuitry. To configure the UE for enhanced coverage (EC) in a 5G network, the processing circuitry is to encode N1 configuration request signaling for transmission to an Access and Mobility Function (AMF) of the 5G network. The N1 configuration request signaling includes an EC support capability indication of whether the UE supports restriction for EC. An N1 configuration response signaling is decoded from the AMF, the N1 configuration response signaling including EC restriction information. The EC restriction information is determined based on the EC support capability indication and subscription information of the UE. An enhanced coverage restriction determination is performed using the EC restriction information. A cell is selected from a plurality of available cells within the 5G network based on the enhanced coverage restriction determination.
Embodiments of this application provide a data sending method, a data receiving method, and a device. In the data sending method, a receive end device performs a DRX operation at a low frequency based on a DRX parameter; and receives, in a time indicated by the DRX parameter, first indication information sent by a transmit end device, where the first indication information is used to instruct the receive end device to prepare to receive data at a high frequency. In this process, the receive end device performs the DRX operation only at the low frequency, and starts beam tracking only after receiving the first indication information that instructs the receive end device to receive the data at the high frequency, to avoid unnecessary beam tracking and save power of the receive end device.
A method and apparatus are disclosed. In an example from the perspective of a User Equipment (UE), the UE keeps a dedicated Preconfigured Uplink Resources (PUR) configuration when the UE is in Radio Resource Control (RRC) idle state and a serving cell of the UE is a second cell, wherein the UE is configured with the dedicated PUR configuration in a first cell different than the second cell. The UE selects a third cell during a RRC connection re-establishment procedure. In response to the selecting the third cell, the UE determines whether or not to release the dedicated PUR configuration based upon whether or not the third cell is the same as the first cell, wherein the determining whether or not to release the dedicated PUR configuration is performed when the UE is in RRC connected state.
Methods, systems, and devices for wireless communications are described. A user equipment (UE) and a base station may communicate in an unlicensed spectrum (e.g., a shared radio frequency spectrum band). As such, the UE may determine a codebook size for transmitting hybrid access request (HARQ) acknowledgement (ACK) feedback with respect to the unlicensed spectrum. Accordingly, the UE may base the HARQ ACK codebook size on a number of HARQ processes with which the UE has been configured. Additionally or alternatively, the UE may base the HARQ ACK codebook size on a number and/or duration of downlink channel monitoring occasions indicated by the base station. In some cases, the UE may base the HARQ ACK codebook size on a combination of the techniques described herein.
A wireless device receives parameters of a configured periodic grant. The parameters indicate: a timing offset and a symbol number; a first periodicity indicating a time interval between two subsequent resources; and demodulation reference signal parameters. One or more symbols of a resource of the configured periodic grant are determining based on the timing offset, the symbol number, and the first periodicity. One or more transport blocks are transmitted, via the resource of the configured periodic grant, employing the demodulation reference signal parameters.
Methods, systems, and devices for wireless communications are described for identifying a modulation and coding scheme (MCS) independently of a channel quality indicator (CQI) table that is configured at a user equipment (UE). A rate matching parameter may be determined based on one or more of the MCS or CQI table, which may be used for dimensioning a soft buffer that is used to store received transmissions for decoding. The MCS field may be a six-bit field and may indicate an MCS that exceeds a highest MCS associated with the CQI table. The base station may activate a semi-persistent scheduling (SPS) configuration at the UE through an activation command, and the UE may verify that SPS is activated based on information in a number of different fields of control information which may include the MCS field.
A method for resource allocation and an apparatus in a communication device are provided. The method includes that: a sidelink logical channel with high priority is selected from sidelink logical channels belonging to a target address, where the priority of the logical channel is associated with a ProSe Per Packet Priority (PPPP) and the logical channel with high priority is associated with high PPPP; resources are allocated for data in the sidelink logical channel with the high priority; and data transmission is performed between UEs based on the allocated resources.
Methods, systems, and devices for wireless communication are described. A wireless device may determine that a serving base station supports multi-code and single-code transmissions, receiving a scheduling message having a cyclic redundancy check scrambled with a radio network temporary identifier (RNTI), determine resources for communicating with the serving base station based on the scheduling message, and communicate on the resources using coding associated with the single-code transmissions. A base station may identify at least one user equipment that supports single-code transmissions, transmit a scheduling message having a cyclic redundancy check (CRC) scrambled with a radio network temporary identifier (RNTI), wherein the scheduling message schedules the at least one user equipment for communication on resources using coding associated with the single-code transmissions and communicate with the at least one user equipment on the resources using the coding.
Provided is a resource allocation method suitable for a downlink control channel of a narrowband MTC UE, and a base station and an MTC UE for executing the method. The method according to embodiments of the present invention includes: allocating one or more MPDCCH-PRB-sets for an MTC UE in order to transmit the MPDCCH, the numbers of PRB-pairs in the MPDCCH-PRB-sets being 2, 4, or 6; and transmitting MPDCCH allocation information to the MTC UE, the MPDCCH allocation information including information indicating the MPDCCH-PRB-sets. The allocated MPDCCH-PRB-sets may be associated with repetition levels.
A wireless communications system is configured to perform wireless communication by using a first band dedicated to the system and a second band shared by the system and another wireless communications system. The system includes a base station configured to transmit in the first band to a terminal when detecting an available carrier wave of the second band, a control signal permitting data transmission in the second band from the terminal to the base station, the base station continuously sending out a radio wave of the second band during a period until the data transmission; and the terminal configured to perform the data transmission after a predetermined time from transmission of the control signal by the base station.
A method of controlling switching between dedicated radio resources of a mobile radio communications network includes providing, using a first radio bearer (RB), a first service to a mobile radio communications device within the network, receiving, from the mobile radio communications device, a message indicating a desired change of service and sending a Radio Resource Control (RRC) message to the mobile radio communications device, the RRC message serving to initiate both release of the first radio bearer, and set-up of a second radio bearer to provide a second service to the mobile radio communications device, the second service being different from the first service.
The present disclosure relates to methods for determining a first-link transmit power. One example method includes receiving, by a first user equipment (UE), first indication information, where the first indication information comprises indication information of a first maximum transmit power of a second UE, and determining, by the first UE, the first-link transmit power based on the first indication information, where the first link is a link between the first UE and the second UE.
A system for providing real-time always-on location is presented for maintaining the current location of a mobile device, while saving the battery by managing the GPS in a power-saving mode while the device is considered to be stationary. The system also provides a real-time location in an indoor environment where a GPS signal may not be available. Additionally, methods for driving detection are also presented.
While a transmission time interval (TTI) length of other than 1 ms is in effect for communication between mobile and network nodes, at least one timer related to discontinuous reception (DRX) is implemented according to a rule that defines a time duration of the timer different from a time duration of the same timer implemented when the TTI length is defined as 1 ms. There are a plurality of such DRX-related timers, and in certain embodiments each is associated with one rule of a set of rules for implementing the respective timer when the TTI length is other than 1 ms; and in particular examples the timers are associated with groups for this purpose and all the timers of at least one of the groups is implemented according to the same rule of the set. Thus new DRX parameters need not be sent anytime the TTI length changes.
Techniques are disclosed for reducing power consumption on a power sensitive wireless device, such as for example a digital wireless camera operating on a battery. According to some techniques, power can be reduced when a portable device is in close proximity to the power sensitive wireless device, such as when a person is home and the recording of video on a digital wireless security camera can be disarmed. Some techniques include filtering mechanisms, which reduce unnecessary information being transmitted to the wireless network circuit of the power sensitive wireless device. Other techniques include modifying or adapting IEEE 802.11 standards to achieve power reducing results such as for example reducing the number of times to wake up to receive the beacons. Also, improved synchronization techniques are implemented such as for example improved synchronization accuracy allows reducing the duration of the wake time for receiving the beacons.
[Object] To provide a communication apparatus, a communication method, and a program, each of which is capable of flexibly controlling operation of the communication apparatus in accordance with a change in communication environment while reducing power consumption.
[Solution] A communication apparatus includes: a control module configured to control operation of the communication apparatus; and a communication module configured to determine whether or not information obtained by reception from another communication apparatus has been changed and control state transition of the control module in a case where it is determined that the information obtained by the reception has been changed.
An information processing apparatus includes a memory, circuitry coupled to the memory, the circuitry configured to determine whether or not a binary search method is used by using a predetermined reference to determine the number of wireless access points, and search for a minimum number of access points satisfying communication requirements in a binary search loop in a case where it is determined that the binary search method is used and search for the minimum number of access points satisfying the communication requirements by decreasing the number of access points by a predetermined number of units at a time in a case where it is not determined that the binary search method is used to search for an arrangement of the wireless access points with respect to the searched minimum number of access points.
The present invention relates to a method and an apparatus for an inter-cell load distribution and interference mitigation in a wireless communication system, and the inter-cell load distribution method by a first base station in a heterogeneous network wireless communication system including the first base station and a second base station for solving the above-described problem, comprises the steps of: setting a reserved area for the second base station so as to distribute an inter-cell load; and managing a terminal according to the reserved area.
Systems and methods are provided for opportunistic load balancing across one or more communication links supported by one or more base stations. As part of the opportunistic load balancing process, a load balancer may measure a performance metric and an idle capacity metric for the one or more communication links. In some embodiments, the load balancer may directionally measure the performance metric and the idle capacity metric. Based on the measured metrics, the load balancer may determine a candidate base station for a network socket. The load balancer may then establish the network socket with the candidate base station. As a result, the load balancer may help alleviate network congestion.
A method for switching from a first communication interface to a second communication interface on a terminal in the process of communication. This method includes the following steps: detecting a number of commands to implement a process of replacing missing samples while audio of the communication is being decoded; and switching to a second communication interface when the number of commands exceeds a threshold. Also disclosed are a device and communication terminal implementing the method as described.
Concepts and technologies disclosed herein are directed to collective intelligence-based cell congestion detection in mobile telecommunications networks. According to some aspects of the concepts and technologies disclosed herein, a core network element or device application can detect cell congestion based upon Internet layer, transport layer, and application layer data, such as, for example, traffic type, volume, rate, latency, jitter, and the like. According to one aspect disclosed herein, a cell congestion detection (“CCD”) system can collect data from an Internet layer, a transport layer, and an application layer. The CCD system can apply a machine learning algorithm to the data to determine whether the cell is congested. According to another aspect the CCD system can collect the data that is associated with a specific application executed by a plurality of UE devices connected to a cell.
This disclosure relates to techniques for a wireless device to report uncategorized data in a buffer status report. A first portion of buffered uplink data to be reported in a buffer status report may be categorized using a traffic flow template. A second portion of buffered uplink data to be reported in the buffer status report may not be categorized using the traffic flow template. A buffer status report indicating both the categorized and the uncategorized buffered uplink data may be transmitted to a base station providing a serving cell to the wireless device. According to some embodiments, the categorized buffered uplink data may be stored in a baseband processor buffer of the wireless device, while the uncategorized buffered uplink data may be stored in an application processor buffer of the wireless device.
Methods for quality of service monitoring, policy enforcement, and charging in a communications network, are disclosed. The methods include mapping quality of service parameters to measured parameters of a real-time video or packet data unit flow. The mapping may be used to monitor bursty traffic to adhere to quality of service requirements, perform traffic shaping, and for use in reporting certain network events. The measured parameters of real-time packet data unit flow include a first bit rate measured over a short-term measurement window and a second bit rate measured over a long-term measurement window. The short-term and long-term measurement windows are differently sized.
Apparatuses, methods, and systems for data source reporting are disclosed. A method includes receiving, by a network provider, data types a customer user is to have reported from one or more data sources of the customer user, wherein the reporting is from data sources, and wherein the wireless reporting is through a wireless uplink between the data sources to a base station, providing, by the network provider, options of data packages to the customer, wherein the options of data packages are selected from the set of data packages based on the data types provided by the customer user, and receiving, by the network provider, from the customer user, a selection of a data package from the provided options of data packages, wherein the selected data package includes one or more data types, and how and when data within the selected data package are to be reported.
The present disclosure relates to terminal devices, access network devices, air interface configuration methods, and wireless communications systems. In one example method, a second access network device in a radio access network determines air interface configuration information of an air interface between a terminal device and the radio access network, and sends a first air interface configuration message comprising the air interface configuration information to a first access network device in the radio access network. The first access network device and the second access network device use different wireless communications standards.
The invention refers to a method performed by a radio network node (200), wherein the radio access network comprises a central unit, CU (220), and a distributed unit, DU (210), comprising obtaining (502) one or more criteria for determining a preferable location for a UE context controller in the radio access network node, the UE context controller managing a connection between a UE (100) and the radio access network node (200); and determining (504), based on the one or more criteria, whether the UE context controller shall be located in the CU (220) and/or in the DU (210). The invention further related to a corresponding radio network node (200).
An electronic equipment in a wireless communication system, and a wireless communication method. The wireless communication system includes at least one first cell and at least one second cell, and at least one of the second cells is operating in an unlicensed band. The electronic equipment includes one or more processing circuits configured to perform: configuring for a user equipment at least one second cell operating in an unlicensed band to perform carrier aggregation communication; and generating, dynamically or semi-statically, energy detection threshold information for each second cell operating in the unlicensed band so that the user equipment can perform energy detection on the unlicensed band according to the energy detection threshold information.
An always-listening-capable computing device is disclosed, comprising: a first electronic sensor configured to receive user input, a second electronic sensor configured to receive a signal indicating that a user depressed a physical button, a gate-keeping module implemented by a processor, wherein data from the first electronic sensor passes through the gate-keeping module while a gatekeeping function is disabled, no data from the first electronic sensor passes through the communications module while the gatekeeping function is enabled, all data input to the gate-keeping module is received via an exclusive input lead from the first electronic sensor, and all data output from the gate-keeping module is transmitted via an exclusive output lead to a component other than the first electronic sensor. The device receives the signal indicating that the user has depressed the physical button; and enables or disables a functionality of a second computing device.
Communication network architectures, systems and methods for supporting a network of mobile nodes. As a non-limiting example, various aspects of this disclosure provide communication network architectures, systems, and methods for supporting a dynamically configurable communication network comprising a complex array of both static and moving communication nodes (e.g., the Internet of moving things), where the network may involve autonomous and/or non-autonomous vehicles.
The disclosed system, method and computer-readable medium provide for a first wireless network, a second wireless network, a premises device and a mobile device. The first and second wireless networks are configured to operate according to respective first and second wireless networking standards, where the first and second wireless networking standards are incompatible. The mobile device is configured to communicate according to the first wireless network standard. The premises gateway device includes a transmitter for the second wireless networking standard. The premises gateway is configured to communicate according to the second wireless network standard; receive commands from the portable device, the commands formatted according to the first wireless networking standard; and output corresponding commands according to the second wireless networking standard device in a format compatible with the second wireless networking standard to allow the portable device to control an Internet of Things (IoT) device operating on the second wireless network standard.
The present technology provides for establish a direct ad hoc communication link between a first vehicle and a second vehicle for exchanging the map changes. The present technology provides an efficient propagation of map changes, which can be large data files, while keeping the use of such changes under the control of a central authority.
Methods, systems, and apparatus for call prompting when a call initiated by a terminal is unconnected during a call between two other terminals. In one example method, a first interface, indicating that the first terminal is in a call with a second terminal, is displayed on the first terminal. If a third terminal initiates a call to the first terminal, a second interface, indicating the call initiated by the third terminal, is displayed on the first terminal, and a sound, which includes a call voice and a prompt tone of the initiated call, is output. If the third terminal's initiated call is rejected, the call voice is output on the first terminal, and the prompt tone stops being output. If the third terminal stops initiating the call, the first interface is displayed on the first terminal, and the call voice between the first terminal and the terminal continues being output.
Methods, computer-readable media, systems, and/or apparatuses for evaluating movement data to identify a user as a driver or non-driver passenger are provided. In some examples, movement data may be received from a mobile device of a user. The movement data may include sensor data including location data, such as global positioning system (GPS) data, accelerometer and/or gyroscope data, and the like. Additional data may be retrieved from one or more other sources. For instance, additional data such as usage of applications on the mobile device, public transportation schedules and routes, image data, vehicle operation data, and the like, may be received and analyzed with the movement data to determine whether the user of the mobile device was a driver or non-driver passenger of the vehicle. Based on the determination, the data may be deleted in some examples or may be further processed to generate one or more outputs.
Embodiments described herein are directed to a tracking objects using a cognitive heterogeneous ad hoc mesh network. Participant objects transmit notification signals to inform other participant objects in line-of-sight of their position and movement. The participants also utilize echoes of the notification signals to detect and estimate the position and movement of non-participant objects. Participant objects can then share this positional information with one another to refine the estimated position and movement of non-participant objects. The position of each other participant and non-participant object is updated based on an individualized update rate that dynamically changes based on the distance and velocity of closure between the participant and the other participant or non-participant object.
Disclosed are techniques for using ranging signals to determine a position of a pedestrian user equipment (P-UE). In an aspect, a UE receives a plurality of ranging signals transmitted by one or more UEs, measures one or more properties of each of the plurality of ranging signals, and calculates an estimate of the position of the P-UE based on the one or more properties of each of the plurality of ranging signals. In an aspect, the P-UE transmits a plurality of ranging signals, receives a first message and a second message from first and second vehicle UEs (V-UEs), the first and second messages including first and second estimated positions of the P-UE and associated first and second confidences, and calculates an estimate of the position of the P-UE based on the first estimated position, the first confidence, the second estimated position, the second confidence, or a combination thereof.
Embodiments of this application provide a method for transmitting positioning assistance data and a device. The method includes: receiving, by a network device, at least one positioning assistance data message sent by a positioning server, where the at least one positioning assistance data message is used to carry positioning assistance data; and broadcasting, by the network device, a system message to a terminal device, where the system message is used by the terminal device to obtain the positioning assistance data. According to the embodiments of this application, the network device broadcasts the system message to broadcast the positioning assistance data.
A system for use with a system for providing predictive discovery data services to a user comprising processor means providing enhanced data reflecting one or more of: refined proximity boundaries around areas of user interest; analysis of time of a user device location relative to proximity boundaries; assessment of location of user attendance in and allowing selected user access to the enhanced data.
A communication element, comprising a communication element transceiver, a sensor (configured to detect jerking motion), and an electronic storage device, the communication element configured to: [A] repeat a sequence comprising a broadcast mode in which is sends broadcast signals followed by a sleep mode in which it does not send any broadcast signal, [B] discontinue the sequence and enter a communication mode (in which stored information regarding an asset, e.g., a heavy-duty attachment, is transmitted to a controller, e.g., in a heavy-duty vehicle, upon request) upon receiving (during the broadcast mode or within a set time span after detecting a jerking motion). Also, communication systems comprising one or more such communication elements and one or more controllers, and methods of broadcasting and, upon specific conditions being met, communicating. Also, an element for cumulatively tracking time that an element has been in use.
Aspects of the present disclosure provide techniques for efficient location tracking. Embodiments include receiving a device location from a mobile device. Embodiments include identifying a plurality of region definitions and selecting a set of region definitions from the plurality of region definitions based on a proximity of a location of each region definition of the plurality of region definitions to the device location. Embodiments include generating a provisional region definition based on a location of a region definition of the set of region definitions that is farthest from the device location and including the provisional region definition in the set of region definitions. Embodiments include providing the set of region definitions to the mobile device for provisioning and refraining from requesting device locations from the mobile device until receiving a notification from the mobile device that the mobile device has exited a provisional region defined by the provisional region definition.
The present invention provides methods and systems for digitally processing audio signals in two-channel audio systems and/or applications. In particular, the present invention includes a first filter structured to split a two-channel audio input signal into a low frequency signal and a higher frequency signal. An M/S splitter is then structured to split the higher frequency signal into a middle and a side signal. A detection module is then configured to create a detection signal from the middle signal, which is used in a compression module configured to modulate the side signal to create a gain-modulated side signal. A processing module is then structured to combine the low frequency signal, middle signal, and the gain-modulated side signal to form a final output signal.
The audio device according to the present disclosure may include a mixer that adjusts the number of channels of an inputted audio signal based on the number of speakers connected, a transmitter that transmits a test audio signal for speaker setup, to at least one speaker among the plurality of speakers, a feedback receiver that receives a signal of the outputted audio, a controller that determines an output time difference between the plurality of speakers, based on the signal of the outputted audio, and a post-processor that adds an output delay signal to the audio signal of at least one channel of a multi-channel audio signal provided to the plurality of speakers so as to synchronize the outputs of the plurality of speakers, based on the determined output time difference.
The present invention relates to a method and an apparatus for processing an audio signal, and more particularly, to a method and an apparatus for processing an audio signal, which synthesize an object signal and a channel signal and effectively perform binaural rendering of the synthesized signal.
To this end, provided are a method for processing an audio signal, which includes: receiving an input audio signal including a multi-channel signal; receiving truncated subband filter coefficients for filtering the input audio signal, the truncated subband filter coefficients being at least some of subband filter coefficients obtained from binaural room impulse response (BRIR) filter coefficients for binaural filtering of the input audio signal and the length of the truncated subband filter coefficients being determined based on filter order information obtained by at least partially using reverberation time information extracted from the corresponding subband filter coefficients; obtaining vector information indicating the BRIR filter coefficients corresponding to each channel of the input audio signal; and filtering each subband signal of the multi-channel signal by using the truncated subband filter coefficients corresponding to the relevant channel and subband based on the vector information and an apparatus for processing an audio signal by using the same.
A panel audio loudspeaker includes a panel and an actuator rigidly coupled to a surface of the panel. The actuator includes: a magnet assembly that includes a permanent magnet arranged within a cup, wherein an air gap exists between sidewalls of the cup and the permanent magnet; and a coil rigidly coupled to the panel, the coil including a length of an electrically conducing wire wound in a coil and extending along an axis. The coil includes a first region having a first winding density and a second region having a second winding density higher than the first winding density, the second region at least partially extending into the air gap of the magnet assembly.
An electrodynamic acoustic transducer (1a . . . 1e) is presented, which comprises a housing (2), a membrane (3), a coil arrangement (6, 6a . . . 6h) attached to the membrane (3) and a magnet system (9, 10, 11). The coil arrangement (6, 6a . . . 6h) comprises a plurality of coils (7, 8) each having two terminals (T7a, T7b, T8a, T8b, T9a, T9b) being static in relation to the housing (2). Connecting wires (12a, 12b, 13a, 13b) connect the coils (7, 8) and the terminals (T7a, T7b, T8a, T8b, T9a, T9b, T78b). The connecting points (C7a, C7b, C8a, C8b) between the connecting wires (12a, 12b, 13a, 13b) and the coils (7, 8) are symmetrically arranged on the coil arrangement (6, 6a . . . 6h).
A combinatorial inner module is installed primarily inside a wireless earphone, including a circuit loop, a lower cover and an upper cover. The circuit loop is provided with a first circuit board and a second circuit board which is extended from the first circuit board. The upper cover is disposed above the lower cover to fix the first circuit board between the upper cover and the lower cover. Moreover, the upper cover includes a first side wall which is formed with an angle with respect to the lower cover and is used to install the second circuit board, forming an included angle between the second circuit board and the first circuit board. Therefore, the inner module is formed into a modularized design to simplify the assembly procedure of the wireless earphone, which reduces the labor cost in assembling the wireless earphone significantly.
Novel tools and techniques are described for auto-summarizing video and/or audio content. In some embodiments, a summary server might retrieve one or more time codes from a time code database, and might analyze the one or more time codes to determine at least one selected time code among the one or more time codes that exceeds a predetermined number of selections. The one or more time codes might correspond to one or more triggers, which might include user-inputted triggers, triggers associated with actions by a live audience, or broadcaster/distributor/producer-provided triggers (i.e., cue tones). The summary server might determine one or more selected segments of video or audio content corresponding to the at least one selected time code, and might create one or more summary tracks, where each of the one or more summary tracks might comprise each of the one or more selected segments of the video or audio content.
A play control method includes obtaining a playing state of at least one of a plurality of terminals playing a same video; and controlling a playing progress of at least one of the plurality of terminals when the playing state meets a preset condition. Using the disclosed play control method and apparatus for a plurality of terminals playing a same video, playing synchronization of the plurality of terminals can be maintained under a premise of ensuring that the plurality of terminals do not miss each video segment, so that no communication barrier is resulted due to asynchronous video playing during interactions between users who watch the same video, thus being able to improve user experience.
Methods, systems, and media for presenting media content are provided. In some embodiments, the method comprises: receiving, at a streaming media device connected to a display device, an instruction, from a mobile phone communicatively coupled with the streaming media device using a peer-to-peer networking protocol, to launch an application for presenting media content on the display device; in response to receiving the instruction, transmitting a request to a media content sharing service associated with the application for presenting media content to render a video player on the display device; receiving, from the mobile phone, an instruction to present a media content item on the display device using the video player; transmitting, to the mobile phone, a request for a first portion of the media content item, wherein a plurality of portions of the media content item including the first portion have been previously downloaded to the mobile phone; receiving, from the mobile phone, the first portion of the media content item using the peer-to-peer networking protocol; storing the first portion of the media content item in memory of the streaming media device; and causing the first portion of the media content item to be presented on the display device using the video player by playing the stored first portion of the media content item from the memory of the streaming media device.
In embodiments of video media item selection, items that have been designated for association with video media are displayed while the video media is also displayed for viewing. An item grab application is implemented to receive a user input as an item selection of an item that is associated with the video media while being displayed for viewing. An item page for the selected item can be displayed, where the item page includes an identifier and image of the selected item, as well as a selectable link to the video media. The item grab application can also post the item selection to a social media site when the user shares the selected item. The item selection is posted without the video media that the selected item is associated with, and the video media is selectable for viewing from the item selection that is posted to the social media site.
A method and apparatus for delivering selected multimedia content to a user of a mobile device in a pervasive computing environment is disclosed. Communications with a mobile device in the environment is established. A user profile and viewing history is received from the mobile device. Multimedia content is selected and sequenced for viewing by the user. The selection of multimedia content is based on search logic that includes the user profile and viewing history. Metadata is transmitted to the mobile device that is associated with the selected multimedia content.
A multimedia device of a vehicle may include: a broadcast receiver configured to receive broadcast information of a plurality of channels from a radio signal; a controller configured to divide the received broadcast information into sound information and subtitle information, and to simultaneously output the sound and subtitle information; a sound outputter configured to output the divided sound information; and a display configured to display the divided subtitle information. The controller is further configured to determine electronic program guide (EPG) information of the radio signal, and to control the display so as to display a text-changeable channel according to the EPG information.
A method of adjusting visual content. The method comprises: identifying when a client device captures at least one of an image and a video file; analyzing textual content in a plurality of content providing network sources, available via a network, to identify at least one current event; acquiring at least one demographic characteristic of a user of the client device; selecting one or more visual content editing functions based upon the at least one demographic characteristic and according to the at least one current event; and supplying the one or more selected visual content editing functions to the client device.
A display apparatus includes: an image processor; a display unit; a remote controller which includes a touch input unit to detect motion of a user; a remote control signal receiver which receives a remote control signal from the remote controller corresponding to the motion of a user; and a controller which displays the content information window as if the content information window enters from an outside of a display area to an inside of the display area in accordance with the motion that a user moves from an outside of an area of the touch input unit to an inside of the area, or stops displaying the content information window as if the content information window exits from the inside of the display area to the outside of the display area in accordance with the motion that a user moves from the inside of the area of the touch input unit to the outside of the touch input unit.
A method and system for planning and running video-on-demand (VOD) advertising includes a planner for planning advertising campaigns and an ad selector for running selected advertisements from selected ones of the campaigns. The campaigns are associated with household demographic classifications, video content category categories, household geographic locations, and/or video viewing times. In response to a viewer requesting a video, the selector selects the campaigns corresponding to the demographic classification associated with the viewer, the content category of the requested video, the geographic location associated with the viewer, and/or the viewing time at which the requested video is viewed. The demographic classification is determined by using an identifier of the viewer's set-top-box. The selector may select the campaigns corresponding to the content categories of the requested video. The content categories are determined by using an identifier associated with the requested video.
A system and method for reducing the delay and optimizing the process of delivering real-time media segments on communication networks. This is accomplished by allowing media segment requests to be queued ahead of the time that the segment exists. The system includes the ability to request segments by selected criteria or by explicit reference naming techniques. This reduces delay and optimizes bandwidth usage when applied within otherwise high latency communication networks, including Content Delivery Networks.
Methods and systems for providing multi-track video content includes, receiving a user request for multi-track video, the multi-track video including a plurality of videos, each of the plurality of videos corresponding to a track, each of the plurality of videos being divided into time-based video segments; requesting a first video of the plurality of videos, the first video corresponding to a first track of the multi-track video; receiving first video segments corresponding to the first video; sequentially transferring the first video segments to a player for displaying the sequentially transferred first video segments; receiving second video segments of a second video of the plurality of videos instead of receiving the first video segments, the second video segments corresponding to a second track of the multi-track video; and sequentially transferring the second video segments to the player for displaying the sequentially transferred second video segments.
A device for processing media content obtains data from a box within a file conforming to a file format for a video codec, the box comprising a syntax structure that includes the data, the file being associated with the media content and the media content being coded according to the video codec; and determines, based on the data obtained from the box, whether to accept or reject the media content associated with the file. A device for generating media content generates data in a box within a file conforming to a file format, the box comprising a syntax structure that includes the data, the file being associated with the media content, wherein the data is for use in determining whether a client is to accept or reject the media content associated with the file; and outputs the file.
Techniques are disclosed for coding video data predictively based on predictions made from spherical-domain projections of input pictures to be coded and reference pictures that are prediction candidates. Spherical projection of an input picture and the candidate reference pictures may be generated. Thereafter, a search may be conducted for a match between the spherical-domain representation of a pixel block to be coded and a spherical-domain representation of the reference picture. On a match, an offset may be determined between the spherical-domain representation of the pixel block to a matching portion of the of the reference picture in the spherical-domain representation. The spherical-domain offset may be transformed to a motion vector in a source-domain representation of the input picture, and the pixel block may be coded predictively with reference to a source-domain representation of the matching portion of the reference picture.
A method of compressing digital image data is provided that includes selecting an entropy code for encoding a line of pixels in the digital image data, wherein the entropy code is selected from a plurality of variable length entropy codes, using spatial prediction to compute a pixel predictor and a pixel residual for a pixel in the line of pixels, and selectively encoding the pixel residual using one of the entropy code or run mode encoding.
According to one embodiment, an image encoding method includes selecting a motion reference block from an already-encoded pixel block. The method includes selecting an available block including different motion information from the motion reference block, and selecting a selection block from the available block. The method includes generating a predicted image of the encoding target block using motion information of the selection block. The method includes encoding a prediction error between the predicted image and an original image. The method includes encoding selection information identifying the selection block by referring to a code table decided according to a number of the available block.
An image decoding method includes: dividing a current block into sub-blocks; deriving, for each sub-block, one or more prediction information candidates; obtaining an index; and decoding the current block using the prediction information candidate selected by the index. The deriving includes: determining whether a neighboring block neighboring each sub-block is included in the current block, and when not included in the current block, determining the neighboring block to be a reference block available to the sub-block, and when included in the current block, determining the neighboring block not to be the reference block; and deriving a prediction information candidate of the sub-block from prediction information of the reference block; and when the number of prediction information candidates is smaller than a predetermined number, generating one or more new candidates without using the prediction information of the reference block till the number of prediction information candidates reaches the predetermined number.
The systems and methods are configured to efficiently and effectively determine or find an estimated optimal encoding parameter set. In one embodiment, a video encoding parameter set estimation method comprises: performing an offline encoding parameter set characteristic prediction process that determines an estimate of a candidate encoding parameter set characteristic; and performing an encoding parameter set search process that identifies a predicted or estimated optimal video encoding parameter set. The encoding parameter set search process can include applying a constraint to the candidate encoding parameter set characteristic; and determining if candidate encoding parameter set meets an objective, wherein the determining is performed if the constraint is satisfied. The candidate encoding parameter set characteristic can be an estimated encoding time of the candidate encoding parameter set. The objective can be the best video quality out of a plurality of candidate encoding parameter sets.
The present disclosure provides a method for processing a video signal through target modification, the method comprising the steps of: acquiring a target modification flag from a sequence parameter set of the video signal, wherein the target modification flag indicates whether a modification is performed on a target region; if the modification is performed on the target region according to the target modification flag, acquiring a target modification index, wherein the target modification index indicates a target modification scheme which corresponds to a non-modification, a left-right symmetric modification, an up-down symmetric modification, a rotation modification, or a combination thereof; identifying a target modification scheme which corresponds to the target modification index; and performing an inverse-modification on a reconstructed target region, according to the identified target modification scheme.
Systems, apparatuses, and methods are described for encoding media content based on an ending delay of first media content and a startup delay of second media content. Second media content may be configured for transmission after first media content in a media content stream. The first media content may be associated with an ending delay corresponding to transmission and/or decoding of frames of the first media content. The second media content may be associated with a starting delay corresponding to transmission and/or decoding of frames of the second media content. The first media content and the second media content may be encoded using different encoding formats. Based on comparing the ending delay and starting delay to a threshold, encoding parameters may be selected, one or more frames may be removed from the first media content and/or the second media content, and/or buffers of one or more devices may be adjusted.
To encode an image divided into blocks of a set of images, each block being encoded according to one of a plurality of encoding modes including at least one temporal correlation prediction encoding mode utilizing a plurality of images, a motion estimation vector search area is defined in a second image of the set of images, distinct from the first image and previously encoded according to a predefined sequence of encoding images of the set of images, a portion at least of the search area having substantially the shape of an ovoid, the data from the search area is stored in a cache memory, a motion estimation vector of the current block is determined by a search in the search area in the cache memory, and the motion estimation vector is used to decide the encoding of the current block according to the one of the plurality of encoding modes.
A method for video processing is provided. The method includes determining, for a conversion between a current video block of a video that is a chroma block and a coded representation of the video, parameters of a cross-component linear model based on R chroma samples from a group of neighboring chroma samples, wherein the R chroma samples are selected from the group based on a position rule; and performing the conversion based on the determining and R is greater than or equal to 2.
A video processing method includes: an i-th block of a target frame partitioned into a plurality of blocks is received; at least one of a spatial attribute parameter and a temporal attribute parameter of an i-th block of the target frame is determined; and at least one of a delta quantization parameter and a modified Lagrange multiplier is determined according to at least one of the spatial attribute parameter and the temporal attribute parameter, for encoding the i-th block of the target frame.
The disclosure describes various aspects of a partial light field display architecture. In an aspect, a light field display includes multiple picture elements (e.g., super-raxels), where each picture element includes a first portion having a first set of light emitting elements, where the first portion is configured to produce light outputs that contribute to at least one a two-dimensional (2D) view. Each picture element also includes a second portion including a second set of light emitting elements (e.g., sub-raxels) configured to produce light outputs (e.g., ray elements) that contribute to at least one three-dimensional (3D) view. The light field display also includes electronic means configured to drive the first set of light emitting elements and the second set of light emitting elements in each picture element. The light field display can also dynamically identify the first portion and the second portion and allocate light emitting elements accordingly.
Techniques for controlling optical behavior of a multi-view display apparatus comprising a first layer comprising first optical elements and a second layer comprising second optical elements. The techniques include obtaining a plurality of scene views; obtaining information specifying a model of the multi-view display apparatus; obtaining information specifying at least one blurring transformation; and generating actuation signals for controlling the multi-view display apparatus to concurrently display a plurality of display views corresponding to the plurality of scene views, the actuation signals comprising first actuation signals for controlling the first optical elements and second actuation signals for controlling the second optical elements, the generating comprising: generating the first actuation signals and the second actuation signals based, at least in part, on the plurality of scene views, the information specifying the model of the multi-view display apparatus, and the information specifying the at least one blurring transformation.
A display control apparatus configured to perform display control so as to display information on a plurality of image capturing apparatuses configured to capture images for generating a virtual viewpoint image includes acquisition means configured to acquire information on the plurality of image capturing apparatuses, and display control means configured to cause a display unit to display information on a communication connection of the plurality of image capturing apparatuses for transmitting an image captured by each of the plurality of image capturing apparatuses based on the information acquired by the acquisition means.
A lightweight, portable and configurable system for image acquisition for photogrammetry purposes includes a portable rig having at least two cameras supported thereon in spaced relation to one another. The cameras are angled towards one another and actuated in an automated fashion so as to capture images of an object at a minimum rate over time. At least a plurality of the captured images are used to digitally reconstruct three-dimensional geometry of the object.
In accordance with an example embodiment of the present invention, disclosed is a method and an apparatus thereof for receiving a first command via a first interface that is addressable by a first address and receiving a second command via a second interface that is addressable by a second address.
When a predetermined condition based on an instruction input from a user or a change in a posture of the user is satisfied (N in S300), an original image manipulating section of an image generating apparatus acquires amounts of displacement of viewpoints of a viewer from base points with respect to an image stereoscopically viewed by the user on the basis of display of left and right parallax images (S302). On the basis of the amounts of displacement, the original image manipulating section acquires the amount of adjustment of the position of an image plane in a virtual space in which the parallax images are expressed (S304). In generating, from each pixel on the image plane, an image reference vector for referencing the original images of the parallax images, the original image manipulating section executes calculation reflecting the amount of adjustment of the position of the image plane to achieve adjustment of the position of the image plane (S306).
Briefly, example methods, apparatuses, and/or articles of manufacture are disclosed that may be implemented, in whole or in part, using one or more computing devices to facilitate and/or support one or more operations and/or techniques for remote electronic monitoring infrastructure, such as implemented, at least in part, via electronic communications, which may include, for example, enhanced machine-type communications (eMTC).
Various aspects of the subject technology relate to systems, methods, and machine-readable media for meeting room control. The method includes receiving, through a mobile device of a user, a request to access a meeting, the meeting comprising one or more meetings. The method also includes receiving, from the mobile device of the user, a request to toggle a control mode for the meeting, the control mode comprising an interface for the meeting, the interface displayed through the mobile device. The method also includes receiving instructions regarding controlling functions of the meeting through the interface on the mobile device, the functions comprising at least one of muting all meeting participants, promoting a speaker, recording the meeting, sharing the meeting, or transferring the meeting. The method also includes applying the instructions to the functions of the meeting.
A pixel sensing circuit and driving method therefor, an image sensor, and an electronic device are provided. The pixel sensing circuit includes a photoelectric conversion element configured to generate electric charges in response to incident light, a transmission element configured to output the electric charges generated by the photoelectric conversion element, and a source follower circuit configured to compensate an output current of the transmission element. The source follower circuit includes a first source follower transistor, a second source follower transistor, and a first storage capacitor.
An imaging device includes objective optics configured to form an image at a focal plane and having an optical axis that intersects the focal plane at an optical center. An image sensor, which includes an array of sensor elements arranged in a matrix of rows and columns, is positioned in the focal plane with a center point of the matrix displaced transversely by at least ten rows relative to the optical center.
An image capture device may capture two hemispherical views of a scene. The two hemispherical view of the scene may be stitched along a stitch line. The image capture device may be rotated to align the stitch line with a mid-line of a panoramic field of view of the scene. Separate exposure settings may be used to capture the two hemispherical views of the scene, with the exposure settings increasing the dynamic range of the scene depicted within the panoramic field of view of the scene. The panoramic field of view of the scene may be punched out as panoramic visual content.
A digital camera (100) includes a plurality of drive units that moves a movable member (2) including an imaging element (20) in directions X, Y, and θ along a light receiving surface (20a) of the imaging element (20), and a system controller (108) that controls the plurality of drive units. The system controller (108) includes a power amount decision unit (108A) that decides power amounts to be supplied to the plurality of drive units for moving the movable member (2) to a target position, and a drive controller (108B) that performs a first control for reducing a total value of the power amounts decided by the power amount decision unit (108A) while maintaining a ratio between the power amounts decided by the power amount decision unit (108A) and supplying the power amounts after the reduction to the drive units.
A lens apparatus attachable to a camera that includes a first corrector configured to move configured to move for an image stabilization includes a second corrector configured to move for the image stabilization, and a controller configured to control, based on an imaging condition, the second corrector according to a first drive that moves both the first corrector and the second corrector during imaging, or a second drive that moves only one of the first corrector and the second corrector during the imaging.
Described are systems, methods, and apparatus for generating motion extracted images having a high dynamic range (“HDR”) based on image data obtained from one or more image sensors at different times. The implementations described herein may be used with a single image sensor or camera that obtains images at different exposures sequentially in time. The images may be processed to detect an object moving within the field of view and pixel information corresponding to that moving object extracted. The non-extracted image data may then be combined to produce a motion extracted HDR image that is substantially devoid of the moving object.
An electronic device is capable of assigning a function selected by a user as a function to be executed in accordance with each of a plurality of operations, and the electronic device includes: a first accepting unit configured to accept a first user operation for selecting any of a plurality of groups obtained by classifying a plurality of assignable functions; a second accepting unit configured to, after any of the plurality of groups is selected, narrow down options to a plurality of assignable functions included in the selected group among all assignable functions excluding functions not included in the selected group, and accept a second user operation for selecting a function to be respectively assigned to the plurality of operations among the options; and an assigning unit configured to assign the function selected by the second user operation to each of the plurality of operations.
A system and method for tracking an object within a surgical field are described. A system may include a lighting component to illuminate a surgical field, and a camera device to capture an image of a tracked device within the surgical field. The system may include a rotational component configured to rotate with respect to the lighting component. The camera device may couple to the rotational component to rotate with respect to the lighting component, such as in response to an obstruction of a tracked object being detected.
System and method for improving the shaving experience by providing improved visibility of the skin shaving area. A digital camera is integrated with the electric shaver for close image capturing of shaving area, and displaying it on a display unit. The display unit can be integral part of the electric shaver casing, or housed in a separated device which receives the image via a communication channel. The communication channel can be wireless (using radio, audio or light) or wired, such as dedicated cabling or using powerline communication. A light source is used to better illuminate the shaving area. Video compression and digital image processing techniques are used for providing for improved shaving results. The wired communication medium can simultaneously be used also for carrying power from the electric shaver assembly to the display unit, or from the display unit to the electric shaver.
An image processing apparatus according to one aspect of the present invention includes a projected image input unit that inputs a projected image formed by light incident on a Fresnel zone plate from a subject, a complex image generation unit that generates a complex image including an image of a real part and an image of an imaginary part by multiplying the projected image with each of a first Fresnel zone pattern and a second Fresnel zone pattern having the same local spatial frequency in each region and a different phase of the local spatial frequency with respect to the first Fresnel zone pattern, and a Fourier transformation unit that reconstructs an image of a spatial domain by performing two-dimensional complex Fourier transformation on the complex image.
A communication device according to an embodiment includes: a processor configured to execute a media clock for generating a frame synchronization signal having a frequency which is m times a sampling frequency; a first interface configured to output 2m-channel audio data to a DAC or receive an input of the 2m-channel audio data from an ADC, in synchronization with the frame synchronization signal; and an external counter configured to generate a frequency-divided frame synchronization signal obtained by 1/m-frequency division of the frame synchronization signal and output the frequency-divided frame synchronization signal to the DAC and the ADC.
An image forming apparatus includes a gradation correction unit configured to perform a correction process on first image data expressing first gradation values, and output second image data expressing second gradation values. The gradation correction unit is configured to determine the second gradation values based on the first gradation values of a plurality of colors of a plurality of pixels in an area including a process target pixel and having a size corresponding to a first color misregistration amount. The gradation correction unit is further configured to determine the second gradation values such that there is no pixel in which a sum of the second gradation values of the plurality of colors exceeds a first threshold value, even when color misregistration within the first color misregistration amount occurs.
A transmission apparatus includes a scanner. A first control is performed about reading of a plurality of pages of documents by using the scanner to generate image data. A second control is performed about conversion processing of the generated image data. A third control is performed about transmission of processed data on which the conversion processing is performed. The third control includes starting a session while a document is being read based on the first control, and transmitting, to an external apparatus via a network, the processed data on which conversion is already performed. Where an error occurs in the scanner in reading the documents, the third control further includes disconnecting the started session. Where the error is resolved, the third control further includes connecting the session again and transmitting, to the external apparatus via the network, processed data on which the conversion processing is performed.
An image forming apparatus includes an image forming section, a first detecting section, a second detecting section, a display section, and a control section. The first detecting section detects a person present within a predetermined range from the image forming apparatus. The second detecting section detects an eye gaze of the person detected by the first detecting section. When, during a power saving state of the image forming apparatus, the first detecting section detects a person and the second detecting section detects an eye gaze of the person directed in a predetermined direction, the control section wakes up the image forming apparatus from the power saving state and allows the display section to display a predetermined screen according to the direction of the person's eye gaze detected by the second detecting section.
A method for printing defect detection includes processing and analyzing a difference image obtained by comparing an image scanned with a verifier to a reference image. The detected defects are grouped, and the grouping is refined. Confidence level values are then assigned to the refined groups, and analysis is performed to determine if one or more servicing actions should be taken.
An image reading device includes light guides (5, 6) that emit light to an object to be read, a lens body (8) that condenses reflected light, a light receiver (13) that receives the reflected light, a sensor board (24) on which is mounted the light receiver (13), a lens holder (11), and a housing (9) that houses or holds these components. The lens holder (11) includes a holder bottom (11g), light guide positioners (11a, 11b) and lens body holders (11e, 11f). In the lens holder (11), the lens body (8) is attached between the lens body holders (11e, 11f), the sensor board (24) is attached to the holder bottom (11g) such that the light receiver (13) aligns with an optical axis of the lens body (8), and the light guides (5, 6) are attached to the light guide positioners (11a, 11b). A surface of each light guide positioner (11a, 11b) that faces the corresponding light guide (5, 6) to be attached has at least a portion having a same shape a s a shape of a surface of the light guide.
An image inspection apparatus includes: an illumination part that emits light on an inspection target; a reading part that is arranged with, in one or more dimensions, elements that detect light reflected by the inspection target, the reading part reading an entire width of the inspection target; and a hardware processor that inspects a characteristic of the inspection target, wherein a light guide member is provided at a position where light regularly reflected by the inspection target passes, the light guide member is arranged to allow an optical path of light incident on the reading part via the light guide member to be parallel to an optical path of light incident on the reading part without via the light guide member, and the hardware processor inspects a gloss distribution of the inspection target, and inspects a density distribution of the inspection target.
An acoustic echo cancellation device includes: a first echo canceller which, using an input signal obtained from at least two microphones and a reproduced signal outputted to a speaker, produces a first pseudo echo signal which indicates a component of the reproduced signal contained in the input signal; and a second echo canceller which, using at least one input signal outputted from the at least two microphones and the first pseudo echo signal, produces a second pseudo echo signal which indicates a component of the first pseudo echo signal contained in the at least one input signal, and cancels an acoustic echo component of the at least one input signal using the second pseudo echo signal.
When a caller initiates an interaction with an interactive voice response (“IVR”) system, the caller may be transferred to a live agent. Apparatus and methods are provided for integrating automated tools into the interaction after the caller been transferred to the agent. The agent may determine which AI responses are appropriate for the caller. AI may be leveraged to suggest responses for both caller and agent while they are interacting with each other. Such human-computer interaction may shorten response time of human agents and improve efficiency of IVR systems.
An incoming communication is received. For example, an incoming voice call is received for a user. A rule is applied to the incoming communication. The rule is based on sensor information associated with the user, presence information associated with the user, and a prior history of handling communications by the user. In response to applying the rule to the incoming communication, a method of notifying the user of the incoming communication is determined. For example, a voice call may be converted to a text communication where the user is notified via text. The incoming communication is routed to a user communication device of the user based on the rule.
A controller for an acoustic echo canceller includes a noise estimator configured to estimate a level of noise that is comprised in a microphone signal relative to an echo component, estimated by the acoustic echo canceller, comprised in the microphone signal. The controller further includes a control module configured to control the acoustic echo canceller in dependence on that estimate.
In one example, a network management system (NMS) device manages a plurality of network devices. The NMS device includes one or more processing units, implemented using digital logic circuitry, configured to receive configuration data for a plurality of network devices managed by the NMS device, construct a graph database representing the configuration data, wherein to construct the graph database, the one or more processing units are configured to construct a plurality of vertices representing respective elements of the configuration data, and connect related vertices of the plurality of vertices with edges. The one or more processing units are further configured to manage the plurality of network devices using the graph database.
There is provided a method comprising receiving at least one request from a first function instance of a self-organising network, comparing said first function instance and a second function instance effective in the self-organising network to determine whether the first function instance and the second function instance overlap, and, characterised by, receiving operational stage information of the first function instance and if the first function instance and the second function instance overlap using said operational stage information in determining which of the first and second function instance to nm in dependence on which of the first function instance and the second function instance has higher priority and causing the determined instance to be run.
Systems and methods for provisioning system components to execute jobs are provided. In one embodiment, receiving a request to provision system components of computing units for executing a job. An aggregate latency may be calculated for each of the computing units based on a startup latency for each job executing on the computing units. A computing unit with a lowest aggregate latency may be identified, and system components may be provisioned from the computing unit with the lowest aggregate latency.
A system includes display of user interface, detection of a UI event associated with the user interface, interception of a request to a network triggered by the UI event, generation of a cache key based on the UI event, reception of a response to the request from the network, generation of a data structure including the response, and storage of the data structure in the persistent storage system in association with the cache key.
Techniques described herein improve network security and traffic management. In an embodiment, a request associated with an identifier (ID) is received. It is determined whether the ID exists in a first membership database (MDB). If the ID exists in the first MDB, the request is serviced subject to a rate limit. If the ID does not exist in the first MDB, it is determined whether the ID exists in a second MDB. If the ID exists in the second MDB, the request is serviced. If the ID does not exist in the second MDB, the request is serviced subject to another rate limit. A response is received. The first and second MDBs can be updated based on the type of received response. In an embodiment, the response is classified as indicative of degraded or typical network performance, and the first and second MDBs are updated accordingly.
A method in a cache node (30) of a network comprises monitoring a secure data stream being received at the cache node from a server node, and detecting from one or more data chunks of the secure data stream that the secure data stream contains a data object that has been previously received and cached at the cache node, and sending a notification signal to the server node that the data object has been previously cached. The method may further comprise receiving one or more encryption header portions (e.g. TLS headers) from the server node, inserting a previously cached data chunk corresponding to each of the one or more encryption header portions into the data stream, and sending the data stream to a client device.
An information sending method is provided. The method includes calculating a weight of an interaction setting between a first terminal device and a second terminal device, calculating a relational score based on the weight between the first terminal device and the second terminal device, the second terminal device being one or more second terminal devices, calculating a service index of the first terminal device based on the relational score, and sending information to the first terminal device based on the service index.
A website server computer hosting a website can identify a visitor to the website by using information provided by a visitor server computer that interacts with the visitor. The information provided by the server computer, in some embodiments, can be a combination of an IP address and characteristics of a computing device from where the visitor visits the website. In some embodiments, the IP address of the visitor server computer is used. In embodiments where the visitor may be sharing the computing device with other users, the characteristics may include at least one characteristic that is uniquely associated with the visitor. The website server computer can use a visitor identifier thus generated to start tracking the pages that the visitor requests during the session and can generate and customize pages for the visitor by using characteristics originated from the visitor.
A network node may determine parameters of an authenticated client session for a client device, wherein the parameters comprise a network address of the client device. The network node may determine inactivity of the client device in the authenticated client session. The network node may generate, based on determining the inactivity of the client device, an address resolution protocol (ARP) message or a neighbor solicitation (NS) message to send to the client device, wherein the ARP message or the NS message is to trigger a response from the client device to indicate that the network address of the client device is in use. The network node may provide, toward the client device, the ARP message or the NS message. The network node may perform one or more actions based on receiving or not receiving the response, from the client device, to the ARP message or the NS message.
A method and system for providing information management of data from hosted services receives information management policies for a hosted account of a hosted service, requests data associated with the hosted account from the hosted service, receives data associated with the hosted account from the hosted service, and provides a preview version of the received data to a computing device. In some examples, the system indexes the received data to associate the received data with a user of an information management system, and/or provides index information related to the received data to the computing device.
Systems and techniques are provided for syncing shared resource across multiple systems using an intermediary system. The system includes logic to store membership data that includes a plurality of members in a membership. The system includes logic to create a reference content hash for the shared resource of the membership. The system can download the content hash of a copy of shared resource, upon receiving a notification of a transaction with the copy of the shared resource. The system can compare the content hash of the copy with the content hash of the master copy to detect any changes to the copy of shared resource. The system can designate the copy of shared resource with updated content as master copy and fanout the master copy to storage accounts associated with members in the membership. The system can perform the fanout for sets of members in the membership.
A communication apparatus connected to a network over which data is updated every predetermined cycle is provided. The communication apparatus includes first scheduling means for securing a first communication band necessary for updating every predetermined cycle, first data to be used for control of a manufacturing apparatus or a production facility, second scheduling means for securing a second communication hand necessary for delivering second data to a destination within a designated time period in a communication hand other than the first communication band of communication bands of the network, and third scheduling means for securing a third communication band for transmitting third data in a communication band set as neither of the first communication band and the second communication band of the communication bands of the network.
An indication to determine a device to host at least one shared content found on a first device is received. The first device is connected to a network. The network includes two or more devices. To each device of the two or more devices connected to the network, a request to host the at least one shared content found on the first device is transmitted. Responsive to transmitting the request, a response to host from at least one device of the two or more devices connected to the network is received. An optimal device of the at least one device to host the at least one shared content is determined. The at least one shared content is transmitted to the optimal device.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for providing to user devices identifiers of edge servers from which to obtain content. One example system includes a traffic control service. The traffic control service is configured to receive polling requests from user devices. In response to a particular polling request, the traffic control service obtains aggregated data about the user devices and edge servers. The traffic control service selects, based on the aggregated data, a best edge server for the user device that sent the particular polling request. The traffic control service sends an identifier of the selected best edge server to the user device.
A data transmission system and a data transmission method are disclosed. The data transmission system includes a cloud server, an edge computing device, and a gateway. The cloud server includes a schema database which stores a transmission address corresponding to a target schema. The edge computing device transmits a data receiving request message related to the target schema to the cloud server. The cloud server transmits the transmission address to the edge computing device after receiving the data receiving request message. After receiving the transmission address, the edge computing device receives at least one data value corresponding to at least one label of the target schema from the gateway according to the transmission address, and generates a target data corresponding to the target schema according to the at least one label and the at least one data value.
An approach provides access to cloud services that are impractical or difficult to implement on end-user devices without a high level of programming skill and customization. The approach uses a first set of cloud services, referred to herein as Integrated Cloud Environment (ICE) cloud services, to access to a second set of cloud services, referred to herein as Smart Integration (SI) cloud services, on end-user devices. The ICE cloud services provide a user-friendly user interface for accessing the SI cloud services via an end-user device, implement the Application Program Interfaces (APIs) of the SI cloud services, and also manage results generated by the SI cloud services. The ICE cloud services also manage user information, authorization credentials and tokens needed to access third-party services. According to another embodiment, the SI cloud and the ICE cloud are integrated using direct linking, i.e., directly linking an end-user device to the SI cloud.
An apparatus and method for dynamically providing web-based multimedia to a mobile phone are described. According to one embodiment, an RSS feed is received that references multimedia files meeting one or more criteria. A playlist is generated dynamically from the multimedia files. The playlist is a single virtual multimedia file. An updated RSS feed is received that references one or more additional multimedia files meeting the one or more criteria. A second playlist is generated dynamically from the multimedia files and the one or more additional multimedia files.
Aspects of the disclosure relate to a content (e.g., media) transfer or fling platform system and method. In a media fling platform system, media items may be cached at a rendering device prior to any selection of media items to fling. The determination of which media to cache may be based on a variety of factors including a user fling history, a currently viewed media item, and a navigation point in the media files. A fling request may take priority over caching, and the fling request may interrupt any caching processes.
A communication system, and a construction method and a communication method thereof are provided. The communication system includes a relay server and a plurality of communication nodes. The relay server is in signal connection with the plurality of communication nodes, the plurality of communication nodes respectively store routing links for connection to the relay server, and the relay server stores routing links respectively corresponding to the plurality of communication nodes. The plurality of communication nodes are in signal connection with a plurality of groups of terminals in one-to-one correspondence. The relay server provides communication connections for terminals connected to different communication nodes.
A tag-based policy architecture enforces information technology (IT) policy in a virtualized computing environment using cryptographically-verifiable metadata to authenticate compute resources coupled to a computer network and to authorize access to protected resources of the network. The compute resources are illustratively virtual machine instances (VMIs) provided by a virtual data center (VDC) of the environment, whereas the protected resources are illustratively virtualized storage, network and/or other compute resources of the VDC. Each VMI includes an intermediary manager, e.g., metavisor. The tag-based policy architecture includes an infrastructure having a centralized policy decision end point (e.g., a control plane of the VDC) and distributed policy enforcement endpoints (e.g., metavisors of the VMIs) to provide end-to-end passing of the cryptographically-verifiable metadata to (i) authorize instantiation of the VMIs at the control plane, and (ii) enforce access to the virtualized resources at the metavisors.
A method, an apparatus, a system and a computing system for policy deployment of a trusted server are provided. The method includes sending a metric policy of at least one metric object and a verification policy of at least one verification object in a process of policy deployment of a trusted server to a service center; the trusted server receiving reminder information returned by the service center, wherein the reminder information is used for representing a reminder to the trusted server to redeploy a metric algorithm and a verification algorithm that are consistent if a metric algorithm of a metric object is detected to be inconsistent with a verification algorithm of a corresponding verification object. The present disclosure solves the technical problems of poor independence and flexibility due to the use of a same metric algorithm for all metric objects by existing trusted server policy management solutions.
A system for determining whether a velocity event is fake or real is provided. The system accesses a data store of velocity events, each of which specifies a pair of addresses that share the velocity event. For each address of the velocity events, the system sets a score for that address based on the number of addresses that share a velocity event with that address. When the score for that address satisfies an originating address criterion, the system designates that address as an originating address. The system may determine that a velocity event is real when both addresses of the velocity event are originating addresses.
A mitigation system comprises a plurality of types of mitigation devices which execute a defense function against an attack, and a control device which selects, if it is detected that an attack has been performed on a network to be monitored, one of the plurality of types of mitigation devices, which executes a defense function in accordance with the type of the attack.
A virtual reality system including a virtual reality user device with a display that presents a virtual reality environment to a user, an electronic transfer engine, and a virtual overlay engine. The virtual reality user devices receives network component data and security data for a network components. The virtual reality user devices generates overlays the security data onto the network component data to generate a virtual overlay.
A method includes obtaining information regarding authentication events for users accessing assets of an enterprise system. The method also includes determining a likelihood of a given asset of the enterprise system becoming compromised responsive to compromise of a given user of the enterprise system. The method further includes determining an importance of the given asset based at least in part on a criticality value associated with the given asset, and generating a risk score for the given asset based at least in part on the determined likelihood of the given asset becoming compromised responsive to compromise of the given user and the determined importance of the given asset. The method further includes identifying remedial actions to reduce the risk score for the given asset and implementing, prior to detecting compromise of the given user, at least one of the remedial actions to modify a configuration of the given asset.
Methods and systems for penetration testing of a networked system by a penetration testing system (e.g. that is controlled by a user interface of a computing device) are disclosed herein. In one example, a penetration testing campaign is executed according to a manual and explicit selecting of one or more goals of an attacker of the penetration testing campaign. Alternatively or additionally, a penetration testing campaign is executed according to an automatic selecting of of one or more goals of the attacker (e.g. according to a type of attacker of the penetration testing campaign).
A network monitoring “sensor” is built on initial startup by checking the integrity of the bootstrap system and, if it passes, downloading information from which it builds the full system including an encrypted and an unencrypted portion. Later, the sensor sends hashes of files, configurations, and other local information to a data center, which compares the hashes to hashes of known-good versions. If they match, the data center returns information (e.g., a key) that the sensor can use to access the encrypted storage. If they don't, the data center returns information to help remediate the problem, a command to restore some or all of the sensor's programming and data, or a command to wipe the encrypted storage. The encrypted storage stores algorithms and other data for processing information captured from a network, plus the captured/processed data itself.
A computer-implemented method according to one embodiment includes identifying a storage environment, establishing a baseline associated with input and output requests within the storage environment, monitoring activity associated with the storage environment, comparing the activity to the baseline, and performing one or more actions, based on the comparing.
A secure data exchange system comprising a security device including a first external device plug, and a security engine operative to enforce a security policy on data transfer requests received from the host; an external device including a second external device plug; and a host including a first external device port operative to communicatively couple with the first external device plug, a second external device port operative to communicatively couple with the second external device plug, and a driver, e.g., a redirect driver, operative to transfer a data transfer request to the security device before executing the data transfer request.
A system, method, and computer-readable medium are disclosed for generating a prepopulated adaptive trust profile via an adaptive trust profile operation. In various embodiments the adaptive trust profile operation includes: receiving a request to generate prepopulated adaptive trust profiles for a plurality of entities within an organization; accessing adaptive trust profile data, the adaptive trust profile data comprising a plurality of adaptive trust profiles, the plurality of adaptive trust profiles being derived from adaptive trust profiles from a similarly situated organization; identifying an adaptive trust profile relevant to each of the plurality of entities; and, generating a respective adaptive trust profile for each of the plurality of entities using the adaptive trust profile relevant to the entity.
An IoT E2E Service Layer Security Management system supports methods and procedures to allow an application to establish, use, and teardown an IoT SL communication session that has application specified E2E security preferences and that targets one or more SL addressable targets (e.g., an IoT application, device, or gateway SL addressable resource). E2E SL Session based methods and procedures described herein achieve a required overall E2E security level, by allowing IoT SL instances to influence and coordinate hop security for a multi-hop communication path spanning across multiple intermediary nodes. The methods and procedures described herein reduce overhead, simplify and obviate the need for E2E service level nodes (initiation and termination nodes) from having to perform security service negotiation, in order to establish secure hop-by-hop security associations aligned with an E2E security requirement.
Sharing data is disclosed. In some cases, sharing data includes receiving a request to share data from a first account to a second account, receiving an indication of a plurality of first account profiles associated with the first account to share with the second account, and establishing sharing from the plurality of first account profiles to the second account, wherein sharing comprises the second account having read access to a subset of nonpublic data associated with the plurality of first account profiles.
Systems and methods for secure control of a wireless mobile communication device are disclosed. Each of a plurality of domains includes at least one wireless mobile communication device asset. When a request to perform an operation affecting at least one of the assets is received, it is determined whether the request is permitted by the domain that includes the at least one affected asset, by determining whether the entity with which the request originated has a trust relationship with the domain, for example. The operation is completed where it is permitted by the domain. Wireless mobile communication device assets include software applications, persistent data, communication pipes, and configuration data, properties or user or subscriber profiles.
A command to load or unload data at a storage location is received. In response to the command, a storage integration object associated with the storage location is identified. The storage integration object identifies a cloud identity object that corresponds to a cloud identity that is associated with a proxy identity object corresponding to a proxy identity granted permission to access the storage location. The data is loaded or unloaded at the storage location by assuming the proxy identity.
Proxied multi-factor authentication using credential and authentication management in scalable data networks is described, including initiating a request by an extension to authenticate a browser to access a data network, the request being associated with an address and transmitted over HTTP, receiving at a proxy browser a first message from the data network in response to the request, the first message comprising authentication data, the authentication data being forwarded to a server in data communication with the proxy browser and the browser, sending a second message from the server to the extension, the second message comprising the authentication data, and transferring authentication data to the data network from the browser and the extension in response to an query from the data network.
The present disclosure provides an industrial internet encryption system for an internet of things (IoT) environment. The present disclosure provides an apparatus, a system, and a method for providing an industrial internet encryption system comprising: accessing an application module; initiating registration with the application module; completing registration with the application module by providing profile attributes; locally encrypting registration profile attributes; authenticating into a networked environment using encrypted registration information; and maintaining registration information for one or more devices. The method further comprising wherein the profile attributes are at least one of: a fingerprint, a name, a media access control (MAC) address, an international mobile equipment identity (IMEI) number, a password, a cellular phone number, an address, a date of birth, a driver's license, an email address, a username, data nucleus aggregated information (DNA), digital data nucleic authority (DDNA) information, and other personally identifiable information. The present disclosure provides an industrial internet encryption system comprising: a server; an industrial internet encryption system application module; a user interface module; a lokchain module; an endpoint to endpoint cryptographic module for generating secret keys; and an industrial internet encryption system server.
A method operable by a computing device for configuring access for a limited user interface (UI) device to a network service via a local network access point is disclosed. The method comprises the steps of: obtaining from the limited UI device a device identifier via a first out-of-band channel. The device identifier is provided to the network service via a secure network link. A zero knowledge proof (ZKP) challenge is received from the network service. Configuration information is provided to the limited-UI device via a second out-of-band channel, the configuration information including information sufficient to enable the limited-UI device to connect to the local network access point. The ZKP challenge is provided to the limited-UI device via the second out-of-band channel. A secure channel key is received from the network service indicating a successful response from the limited-UI device to the ZKP challenge; and provided to the limited-UI device enabling the limited-UI device to access the network service.
Techniques are provided for using tokenization in conjunction with “behind-the-wall” JWT authentication. “Behind-the-wall” JWT authentication refers to JWT authentication techniques in which the JWT stays exclusively within the private network that is controlled by the web application provider. Because the JWT stays within the private network, the security risk posed by posting the JWT in a client cookie is avoided. However, because JWT is used behind-the-wall to authenticate a user with the services requested by the user, the authentication-related overhead is significantly reduced.
A method is provided for deploying an IoT device node having a primary communication link for communicating with a management server and a secondary communication link for communicating with a deployment device. The method includes: establishing the secondary communication link with the IoT device node; obtaining device information from the IoT device node; forwarding the device information to the management server; based on the device information, establishing the primary communication link with the IoT device node and sending a first key to the IoT device node over the primary communication link and sending a second key to the deployment device; forwarding the second key to the IoT device node over the secondary communication link; generating a device key based on the first key received on the primary communication link and the second key received on the secondary communication link; and authenticating the IoT device node using the device key.
In general, the techniques of this disclosure describe a hub device that is configured to receive data packets from both secured client devices and non-secured client devices. The hub device may send the data packets from the secured client devices to a host device. For the data packets from the non-secured client devices, the hub device may first process the data packets to ensure the integrity of the received non-secure data packets and then send the non-secure data packets to the host device once the hub device determines that the non-secure data packets meet some threshold level of integrity.
A semi-complete secure data container is associated with a unique identifier by a requesting entity. The data container link/portal address, and a request to add data to the container, are combined into a message that is sent to a client. Upon receipt of the request, the client need not do anything to create a secure environment by which to protect the data. The secure environment, or data container, is already created and is merely awaiting data; data supplied by the client. Once the client places the requested data into the data container, the container closes. The data when added is a unidirectional one-way flow and cannot be accessed once added by the sending party. The container, now closed and containing the sending party's data, returns to the original requesting entity per the unique identifier.
A content item service enables users to upload media for content items to be given to others. The content item service performs operations on uploaded media content, such as transcoding. A transformed instance of content is encrypted using a cryptographic key, and an identifier for the encrypted transformed instance of content is generated. The encrypted transformed instance of content and an encrypted version of the cryptographic key are stored in association with the identifier.
A network device identifies an Internet Protocol Security (IPsec) tunnel that connects the network device to a remote device and determines that dead peer detection (DPD) is enabled at the network device. The network device receives a first DPD request message from the remote device via the IPsec tunnel, and sends a first DPD response message to the remote device via the IPsec tunnel. The network device determines that a workload of the network device satisfies a threshold amount, and sends one or more encapsulating security payload (ESP) packets that include traffic flow confidentiality (TFC) payload data to the remote device via the IPsec tunnel. The network device determines that the workload of the network device does not satisfy the threshold amount. The network device receives a second DPD request message from the remote device and sends a second DPD response message to the remote device via the IPsec tunnel.
A logic device and method are provided for intercepting a data flow from a network source to a network destination. A data store holds a set of compliance rules and corresponding actions. A packet inspector is configured to inspect the intercepted data flow and identify from the data store a compliance rule associated with the inspected data flow. A packet filter is configured to, when the data flow is identified as being associated with a compliance rule, carry out an action with respect to the data flow corresponding to the compliance rule.
Retrieving content in an Internet Protocol version 6 (IPv6) network may be provided. A lookup request associated with content may be received from a network node at a server having a mapping database. A response having an ordered list of more than one IPv6 addresses may be generated. The ordered list of the more than on IPv6 addresses may include IPV6 prefixes. Each of the more than one IPv6 addresses may include a first portion having a content identifier and a second portion having an indication of a location of the content. The response may be transmitted to the network node.
Systems, methods, and non-transitory computer-readable media can provide a messaging interface, the messaging interface including one or more options for accessing at least one unified message thread, wherein both ephemeral messages and non-ephemeral messages are exchanged between a group of users through the unified message thread. A determination can be made that a user operating the computing device has created a message to be sent through the unified message thread. The message can be provided for distribution to the group of users through the unified message thread.
In one embodiment, a method includes identifying a mobile service provider network (SPN) and a geographic location of an online social network user and accessing a service-provider table associated with the identified mobile SPN and with the geographic location. The service-provider table indexes a reliability score and a sampling amount for multiple messaging-service providers in the geographic location. The method further determines, based on the service-provider table, whether any of the messaging-service providers has a sampling amount below a threshold sampling amount and sends messaging traffic via the determined messaging-service provider until the sampling amount is greater than or equal to the threshold sampling amount. The messaging traffic is used to update the reliability score for the messaging-service provider. The method further includes selecting a messaging-service provider based on the updated reliability scores of the messaging-service providers and sending a message to the user via the selected messaging service-provider.
Message content is scaled to support rich messaging. Devices and associated messaging systems can support various levels of content richness or fidelity. Message content scaling is employed to ensure sharing of content in as rich a manner as possible given limitations associated with various messaging systems, among other things. Messages can be scaled down or degraded, for instance where communicating devices do not support high fidelity content being transmitted. Alternatively, messages can be scaled up or enriched in cases, where low fidelity content is transmitted to a device supporting richer content, for example.
Method and systems are disclosed for providing a function as a service for an application. The application may comprise an email application. A user may define or select an application codes set for performing a specific functionality. The user may define rules that associate specific events with execution of the application code set. Upon detection of an event, a condition may be checked associated with the application. If the condition is satisfied, the application code set may be caused to be executed. The application code set may modify data, such as an email message.
Approaches, techniques, and mechanisms are disclosed for reutilizing discarded link data in a buffer space for buffering data units in a network device. Rather than wasting resources on garbage collection of such link data when a data unit is dropped, the link data is used as a free list that indicates buffer entries in which new data may be stored. In an embodiment, operations of the buffer may further be enhanced by re-using the discarded link data as link data for a new data unit. The link data for a formerly buffered data unit may be assigned exclusively to a new data unit, which uses the discarded link data to determine where to store its constituent data. As a consequence, the discarded link data actually serves as valid link data for the new data unit, and new link data need not be generated for the new data unit.
A method of reducing network traffic includes blocking, at a mobile device, a first channel to reduce network signaling in a network and to reduce battery consumption. The first channel includes a non-common channel. The method includes offloading application traffic of an application onto a second channel. The second channel may include a common channel. The method may include monitoring the application traffic of the application over the second channel, unblocking the first channel based on the monitored application traffic so that the application can perform an action, and re-blocking the first channel after the action has been completed. The method may include unblocking the first channel when user activity is detected, wherein the user activity includes whether the mobile device is being interacted with.
A method for distributing Sigtran connections among signal transfer point (STP) message processors includes providing a connection load balancer as a front end to plural message processors of an STP. The method further includes publishing, by the connection load balancer, an Internet protocol (IP) address to SS7 peers. The method further includes initializing the message processors of the STP to listen on the IP address published by the connection load balancer. The method further includes receiving, at the connection load balancer, a Sigtran message addressed to the IP address. The method further includes determining, by the connection load balancer, whether the Sigtran message is an initial message for a Sigtran connection or a subsequent message for a Sigtran connection and whether the Sigtran connection has been assigned to one of the message processors. The method further includes forwarding the message to one of the message processors or dropping the message based on whether the message is an initial message or a subsequent message and based on whether the connection has been assigned to one of the message processors.
The present disclosure involves systems and methods for managing a trie routing table for a networking device of a communication or computer network. In one implementation, the networking device may utilize a dynamic algorithm for associating hashing functions with pivot tiles of the routing table to improve hash utilization and avoid hash collisions. Further, route prefixes may be relocated from pivot tiles in an attempt to free the tiles for reallocation to other prefix base width or may be relocated to other possible pivot tiles or to a general storage space when a hash collision is detected. This provides for even distribution of pivots within tiles which have base widths in range of a pivot route. The above implementations may occur together or separately to improve the operation of the networking device and provide faster route lookup.
Cloud based router with policy enforcement. In some implementations, a system is provided. The system includes a plurality of access points. The plurality of access points receive data packets from a plurality of client devices. The system also includes a plurality of tunnel devices coupled to the plurality of access points. The plurality of tunnel devices generate encapsulated packets based on the data packets received by the plurality of access points. The system further includes a plurality of packet forwarding components coupled to the plurality of tunnel devices via a first set of tunnels. The plurality of packet forwarding components receive the encapsulated packets from the plurality of tunnel devices and forward the encapsulate packets. The system further includes a plurality of network access controllers coupled to the plurality of packet forwarding components via a second set of tunnels. The plurality of network access controllers enforce one or more network policies for the plurality of client devices, as the plurality of client devices move between the plurality of access points.
A method of operating a network visibility node is disclosed. In certain embodiments, the network visibility node has a plurality of network ports through which to communicate data with a plurality of network hosts and has a plurality of tool ports through which to communicate data with a plurality of network tools. The network visibility node accesses a port group map associated with a plurality of tool port groups of the network visibility node, where each of the tool port groups includes one or more tool ports of the network visibility node, and where the port group map contains a separate tool alias for each tool port group of the plurality of tool port groups. Each tool alias can correspond to a different type of network traffic. The network visibility node uses the port group map to ascertain a tool port group through which to communicate the plurality of packets with a particular network tool.
Described herein are methods and systems for network performance testing. A computing device may receive a network performance request. The computing device may perform a network performance test, and determine comparable devices of one or more devices associated with the network performance request. The computing device may determine a network performance parameter for the comparable devices, and determine that one or more devices associated with the network performance request are impacting the network performance test.
Various embodiments are described herein to enable physical topology independent dynamic insertion of a service device into a network. One embodiment provides for a network system comprising a set of network elements to interconnect a set of host devices, the set of network elements having a physical topology defined by the physical links between network elements in the set of network elements and a logical topology defined by a flow of network data between a network service device and a client of the network service device, wherein the physical topology differs from the logical topology, and a network management device including a service policy module to monitor a service policy of the network service device and automatically configure the logical topology of the network elements based on a change in the service policy.
Systems and techniques for providing more efficient remote provisioning of assets for software applications are provided. Such systems and techniques allow for more flexible distribution of such assets while reducing bandwidth consumption and storage requirements on provisioned devices and reducing delay time from requesting a software application on a remote device and then having the remote device actually execute the requested software application.
Aspects encompassing public land mobile network (PLMN) configurations are disclosed. In one example, first and second PLMN configurations are determined, and a parameter having a common identifier between a hybrid PLMN and a PLMN from a different PLMN configuration is identified, such that the hybrid PLMN may connect with a first or second core network type. Inclusion of the common identifier is limited to either the first or second PLMN configuration via an index, and the first and second PLMN configurations are transmitted. In another example, first and second PLMN configurations are received, and a hybrid PLMN in one of the two PLMN configurations is selected. A determination is made whether to use the hybrid PLMN to connect with a first or second core network type. Whether a hybrid PLMN parameter was ascertained via the first or second PLMN configuration is reported. Other aspects, embodiments, and features are also included.
A method for detecting abnormalities in network element operation. The method includes monitoring at least a portion of the network element for abnormalities and making a determination that an abnormality exists, in response to the monitoring, and based on the determination, tracking the abnormality. An abnormality includes a measured performance that deviates from a nominal performance, but that does not cause erroneous behavior of the network element.
A computer-implemented method includes generating, by one or more processors, a hyperlink targeting a Uniform Resource Locator (URL), detecting a selection of the generated hyperlink by one or more social entities across one or more social networks, generating a report, wherein the generated report includes analytical details regarding the selection of the generated hyperlink by the one or more social entities, and providing the generated report to a user associated with a protected social entity.
With a receiver according to the present disclosure, a phase of the other modulated wave is adjusted so that a relative phase of the other modulated wave to a reference modulated wave is to be minimum and, then, a notch of the reference modulated wave is compensated with a frequency component of the other modulated wave. Thus, with the receiver according to the present disclosure, it is possible to prevent notches generated due to fading, and to improve a communication quality.
An HE-LTF transmission method is provided, including: determining, based on a total number NSTS of space-time streams, a number NHELTF of OFDM symbols included in an HE-LTF field; determining a HE-LTF sequence in frequency domain according to a transmission bandwidth and a mode of the HE-LTF field, where the HE-LTF sequence in frequency domain includes but is not limited to a mode of the HE-LTF field sequence that is in a 1× mode and that is mentioned in implementations; and sending a time-domain signal according to the number NHELTF of OFDM symbols and the determined HE-LTF sequence in frequency domain. In the foregoing solution, a PAPR value is relatively low.
A terminal (transmission apparatus) is disclosed, which is capable of appropriately configuring processing of a Post-IFFT section in accordance with a communication environment in signal waveform generation. In the terminal, an IFFT section performs IFFT processing on a transmission signal; a control section determines a signal waveform configuration for the transmission signal after the IFFT processing in accordance with a communication environment of the terminal; and the Post-IFFT section performs Post-IFFT processing on the transmission signal after the IFFT processing based on the determined signal waveform configuration.
Systems, methods, and apparatuses, for transform discrete voltage pulses to a continuous signal. One method may include receiving a pulsed-voltage signal. The method may also include alternately directing the pulsed-voltage signal between a pair of processing channels based on a modulation signal or another signal. The method may further include determining rate voltages corresponding to the pair of processing channels based on a pulse rate of the pulsed-voltage signal. Further, the method may include processing the rate voltages using low pass filters corresponding to the pair of processing channels to form filtered rate voltages. The method may also include determining a normalized differential output for the pair of processing channels based on the filtered rate voltages. The method may also include outputting the normalized differential output to an output connector.
Disclosed are a channel estimation method and device for improving accuracy of channel estimation so as to improve the performance of a receiver. The present application provides a channel estimation method, comprising: determining an equivalent pilot sequence by means of a historical effective frequency offset value; determining a sequence for multiple correlation by using the equivalent pilot sequence; and performing multiple correlation calculation of channel estimation by using the sequence for multiple correlation.
Embodiments provide a communication method, a network device, and a terminal device. Under the method, a network device can send SRS configuration information of a first transmission resource and of a second transmission resource to a terminal device. The first transmission resource is a switching source carrier or bandwidth part. The second transmission resource is a switching destination carrier or bandwidth part. The SRS configuration information of the first and second transmission resource includes a first OFDM symbol set and a second OFDM symbol set respectively. Some and all symbols in the first set and second set may be used by the terminal device to send an SRS on the first and second transmission resource respectively. In various embodiments, the network device configures one or more symbols for the terminal device to transmit an SRS, so that high-frequency channel measurement can be better supported.
In connection with a frequency modulated (FM) communications system, exemplary aspects concern processing a desired channel of a frequency modulated (FM) signal based on an indication of an amplitude-level difference between a measured amplitude of a desired channel in the FM broadcast signal and a measured amplitude of another (possibly-interfering) channel. Based on such amplitude-level difference indication, an approach is selected for estimating the frequency spectrum of the other (possibly-interfering) channel in the FM broadcast signal. The selected approach may differ depending on whether the amplitude-level difference corresponds to an amplitude-level difference for which a frequency spectrum of the desired channel may be determined via a coarse estimate or via a less-coarse estimate of the frequency spectrum of the other channel.
Methods and apparatus are provided for processing packets in a network. A received packet includes title materials which include one or more of a title object, a component of the title object, or a reference to the title object. The title object is a digital bearer instrument representing at least one right relating to processing of the packet in the network which may be redeemed by presentation of the title object to a title-enabled device or process operating in the network. Upon validation of the title object, the packet is processed in the network in accordance with the at least one right represented by the title object.
Remote direct memory access (RDMA) enables access to a memory resource on a computing device without involving the device's CPU (central processing unit). Data packets traversing a NIC (network interface controller/card) on a server in a network are efficiently captured by adapting an ASIC (application-specific circuit) in a programmable TOR (top of rack) switch to modify headers of incoming data packets to indicate to the NIC that the packets are RDMA packets. Such modification enables the packets to be written directly to the server memory while bypassing the server's CPU which can typically act as a bottleneck when attempting full packet capture.
According to various aspects of the present application, systems and methods are provided for implementing a garbled circuit on a device. Doing so allows the device to perform computations while protecting the computations from being observed or accessed by an adversarial entity. A garbled circuit involves two parties, known as the generator and the evaluator, jointly evaluating a function. Conventionally, a garbled circuit is executed on two different devices in order for the two different parties to jointly calculate the function without each party revealing to the other party private information such as input values to the function. Some embodiments provide for execution of the garbled circuit on a single device by implementing both parties on the device as separate processes. Some embodiments prevent an adversarial entity with physical access to the device from being able to observe calculations performed by the device to evaluate a function.
The invention relates to a QKD System Active combiner (200) adapted to be installed in a QKD apparatus, said QKD apparatus comprising an emitter (100), a receiver (110) and QKD systems (102/112), wherein the emitter (100) is adapted to send communication signals to the receiver (110) through the QKD System Active combiner (200), characterized in that the QKD System Active combiner (200) comprises an active attenuation system comprising a processing unit (230) adapted to automatically control at least one variable optical attenuator (150) through a control channel (290) in order to control an attenuation of a signal to be sent to the receiver, and a detector/monitor (240) adapted to monitor the intensity of the signal downstream the attenuation, and wherein the processing unit is adapted to control the variable optical attenuator (150) based on a QBER information or an intensity of a signal received by the receiver, sent by the QKD systems (112) through a classical channel (250).
An authentication method for a QKD process includes: a sender selects a basis for preparing authentication information according to an algorithm in an algorithms library, and respectively applies different wavelengths to send quantum states of control information and data information according to a preset information format; a receiver filters the received quantum states, employs a basis of measurement corresponding to the algorithm to measure the authentication information quantum state, sends reverse authentication information when the measurement result is in line with the algorithm, and terminates the distribution process otherwise. In addition, the sender terminates the distribution process when its local authentication information is inconsistent with the reverse authentication information.
A device can receive, from a network device, information that identifies a user device. The network device might have authenticated the user device based on the user device accessing a radio access network. The device can receive, from the user device, a request for a first token. The request can include an encrypted session identifier. A server device might have encrypted the session identifier. The device can determine the session identifier, and generate the first token based on the session identifier and the information that identifies the user device. The device can encrypt the first token using an application public key, and provide, to the user device, the encrypted first token. The user device can provide, to the server device, the encrypted first token. The server device can register the user device to receive content based on the encrypted first token.
This disclosure relates to blockchain-type storage of receipt data. In one aspect, a method includes obtaining a to-be-stored data record including a first service attribute. Execution information of the to-be-stored data record is determined. A previous data record is obtained from a blockchain-type ledger. The previous data record includes a second service attribute that is the same as the first service attribute. Each data block in the blockchain-type ledger includes a block header and a block body. A hash value of the previous data record is determined. A receipt record is generated. The receipt record includes the hash value of the previous data record and the execution information of the to-be-stored data record. The to-be-stored data record and the receipt record are written into a same block body in the blockchain-type ledger.
Aspects of the disclosure provide methods and apparatuses for storing service data. In some examples, an apparatus for storing service data includes processing circuitry. The processing circuitry receives service data of a user and determines, in a plurality of blockchains, a target blockchain according to a user attribute of the user. Based on the service data and an eigenvalue of a block header of a first block in the target blockchain, the processing circuitry generates a second block in the target blockchain. The first block is a previous block of the second block. The second block is used for recording the service data.
Methods, system, and apparatus, including computer programs encoded on computer storage media for data processing are provided. One of the methods includes: establishing a logic contract of a blockchain and one or more data contracts corresponding to the logic contract; deploying the logic contract and the one or more data contracts in the blockchain; storing data of a target block in the blockchain into the one or more data contracts; computing a hash value of each of the one or more data contracts; and determining a hash value of the target block in the blockchain based on the hash value of each of the one or more data contracts.
An integrated circuit comprising a CPU coupled to a system bus, a network interface configured to interface with an external device, and a crypto neuromorphic core coupled to the system bus. The cryptographic core comprising a processor or core, an internal bus, and a non-transitory computer-readable memory, wherein the crypto neuromorphic core is isolated from the CPU and the network interface via the system bus and the crypto neuromorphic core runs its own operating system. The crypto neuromorphic core is configured to: contain a secure core comprising a secure processor and dedicated/protected memory; store a private key in the dedicated/protected memory accessible to the secure core but not accessible to other components of the crypto neuromorphic core, the central processing unit, and the network interface; add data to a blockchain using the private key via the network interface; and read data from the blockchain via the network interface.
A container corresponding to executable code may be received. In response receiving the container, an assertion value may be stored in an assertion register. A final canary value may be generated based on a cycles combining a prior canary value and a mix value. A determination may be made as to whether the final canary value matches with the assertion value stored in the assertion register. In response to determining that the final canary value matches with the assertion value, one or more privilege registers may be programmed to provide access to hardware resources for the container corresponding to the executable user code.
A SerDes system is provided. The SerDes system includes channel circuits, a PLL circuit, first and second buffers, and first and second capacitors. Each channel circuit is coupled to the first and second clock lines. The PLL circuit generates a first differential signal including first and second clock signals. The first buffer buffers the first clock signal. The second buffer and buffers the second clock signal. The first capacitor receives the buffered first clock signal and outputs a third clock signal to the first clock line. The second capacitor receives a buffered second clock signal and outputs a fourth clock signal to the second clock line. A swing of a second differential signal comprising the third clock signal and the fourth clock signal is smaller than a swing of the first differential signal.
A method for synchronizing radio frequency carrier correction of dynamic radio frequency carriers is provided. The method includes receiving a carrier configuration from a carrier controller to modulate a carrier signal based on the carrier configuration and receiving a time reference and timestamped carrier configuration information from the carrier controller. The timestamped carrier configuration information includes a correlation between a plurality of timestamps and a plurality of carrier attributes. The method also includes synchronizing an internal clock of a RF correction preprocessor to the time reference, and receiving a modulated carrier signal from the RF modem. The method further includes generating a radio frequency correction set including a correction solution for each of a plurality of timeslots based on the timestamped carrier configuration information, and generating a corrected carrier signal based on applying the RF correction set to the modulated carrier signal at a coincident timeslot.
The present invention is designed so that communication can be carried out properly even when shortened TTIs are used. A user terminal communicates using a first transmission time interval (TTI) and a second TTI which has a shorter TTI duration than the first TTI, and this user terminal has a receiving section that receives first downlink control information which is transmitted from a radio base station per first TTI, and second downlink control information which is transmitted in the second TTI, and a control section that controls simultaneous reception of first downlink data which is based on the first downlink control information, and second downlink data which is based on the second downlink control information, in a same carrier, based on a given condition.
According to the present disclosure, behaviors of a Base Station (BS) and a User Equipment (UE) pertinent to Reference Signal (RS) transmissions are discussed. BS may configure RS corresponding to a set of antenna ports in two or more groups of Orthogonal Frequency Division Multiplexing (OFDM) symbols on a short Physical Downlink Sharing CHannel (sPDSCH), where subcarrier indices used for RS transmission are different between at least two groups of OFDM symbols. Then, BS may transmit the RS to UE. UE will receive RS and perform channel estimation based on the received RS.
Disclosed are a method and device for eliminating inter-cell interference, which are applicable to elimination of inter-cell interference cancellation. The method comprises: a first transceiving node obtains interference information of a potential interference cell, wherein the potential interference cell belongs to a second transceiving node, and the interference information of the potential interference cell comprises at least one of the following items: duplex mode information of the potential interference cell, multiple access technique information of the potential interference cell, a physical layer parameter of the potential interference cell in each of at least one first transmission resource pool, and resource allocation information of the potential interference cell in each of at least one second transmission resource pool; and the first transceiving node transmits the interference information of the potential interference cell to a first terminal device.
A method for receiving orthogonal time, frequency and space (OFTS) basis allocation information by an user equipment in a wireless communication system using an OTFS transmission scheme includes receiving control information including information on an OTFS basis size N from a base station; and receiving data on OTFS bases of a predetermined size indexed according to a pre-defined rule in an N×N OTFS transform matrix on time and frequency domains corresponding to the OTFS basis size, wherein the OTFS bases of the OTFS basis size N is represented into an N×N OTFS transform matrix, wherein in the N×N OTFS transform matrix, a row index represents a cyclic frequency shift index, and a column index represents a cyclic time shift index, wherein the indexing according to the pre-defined rule includes indexing the OTFS bases of the predetermined size in an order such that the cyclic frequency shift and the cyclic time shift in the N×N OTFS transform matrix are maximized.
The present invention is designed to reduce the degradation of communication quality even when future radio communication systems support UL control channels of different formats than existing systems. A transmission section that allocates uplink control information and an uplink reference signal to different frequency resources in an uplink control channel allocation field, and transmits the uplink control information and the uplink reference signal, and a control section that controls the allocation of the uplink control information and the uplink reference signal are provided, and the control section makes the frequency resources where the uplink reference signal is allocated hop between different time fields and/or between different resource blocks.
Various solutions for frequency domain-resource allocation (FD-RA) when frequency hopping is enabled with respect to user equipment and network apparatus in mobile communications are described. An apparatus may determine whether frequency hopping is enabled. The apparatus may determine at least one of a first coarse step size corresponding to a start of an FD-RA and a second coarse step size corresponding to a length of the FD-RA in an event that the frequency hopping is enabled. The apparatus may determine allocated resources blocks (RBs) according to at least one of the first coarse step size and the second coarse step size. The apparatus may perform a transmission on the allocated RBs.
The present invention relates to a method for an NR (New Radio Access Technology) user equipment to transmit and receive a signal in a wireless communication system and an apparatus therefor. The method comprises the steps of checking a PDCCH (Physical Downlink Control Channel) order and, if the PDCCH order is checked, initiating a random access procedure. In this case, if a first uplink carrier and a second uplink carrier are configured, the random access procedure is configured to transmit a random access preamble via a specific uplink carrier corresponding to an indicator associated with the PDCCH order among the first uplink carrier and the second uplink carrier.
Communicating data in a wireless telecommunications system, the system comprising a base station and one or more terminals operable to communicate via a wireless interface and in accordance with a mobile communication protocol, the wireless interface being provided by at least a first component carrier within a first frequency band and a second component carrier within a second frequency band. The method comprising transmitting a link control layer Packet Data Unit “PDU” from a link control module to an access control layer module for transmission; transmitting first access control layer data using resources allocated within the first component carrier; identifying that transmission of data for the PDU has been unsuccessful; and upon identification that transmission of data for the PDU has been unsuccessful, re-transmitting the POU and causing the re-transmitted POU to be transmitted via second access control layer data using resources allocated within the second component carrier.
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for implementing a hybrid automatic repeat request (HARQ) protocol in a wireless local area network (WLAN). A station (STA) may send a HARQ transmission to another STA. The HARQ protocol may support the use of different types of feedback from the receiving STA to control the HARQ retransmission process. This disclosure provides example message formats to support HARQ transmission and HARQ feedback in a WLAN.
Transmitter having multiple transmit antennas for transmitting two or more streams. The transmitter comprises an encoding circuitry configured to perform space-time block encoding to obtain for at least one of the two or more streams a pair of space-time encoded streams. Further, a mapping circuitry is configured to assign each stream of each pair of space-time encoded streams to a transmit antenna of the multiple transmit antennas for wirelessly transmitting the two or more streams. Finally, a control circuitry is configured to adjust one or more parameters of the mapping circuitry in order to achieve a defined channel characteristic between the transmitter and a receiver.
Technology for a transmitter operable to perform data transmissions using low density parity check (LDPC) codes is disclosed. The transmitter can determine soft buffer information (Nsoft) for a receiver. The transmitter can determine a soft buffer partition per HARQ process (NIR) for the UE. The transmitter can obtain, for a transport block, a number of code block segments (C). The transmitter can select a shift size value (z). The transmitter can determine an amount of soft buffer available for the code block segments (Ncb) based on NIR, C, and z. The transmitter can encode the code block segments based on an LDPC coding scheme to obtain encoded parity bits. The transmitter can select a subset of the encoded parity bits based on the determined amount of soft buffer associated with the code block segments.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a plurality of communications from a corresponding plurality of transmission/reception points (TRPs) included in a coordinated multipoint network. At least two communications, of the plurality of communications, may have different redundancy versions from a common codebook, and may be received in a same transmission time interval (TTI). The UE may decode the plurality of communications using joint decoding. Numerous other aspects are provided.
Embodiments of the application provide a method and device for polar code rate matching in a wireless communication network. A device of the network obtains K information bits. The device generates a to-be-encoded sequence having a length N bits. The to-be-encoded sequence includes the K information bits and L frozen bits. The L frozen bits are placed in L bit positions of the to-be-encoded sequence. The L bit positions are determined according to a rate match manner which is either puncturing or shortening. The device polar encodes the to-be-encoded sequence to obtain the encoded sequence. The device interleaves the encoded sequence to obtain an interleaved sequence and then stores the interleaved sequence into a cyclic cache. The device sequentially outputs M bits of the interleaved sequence from the cyclic cache according to the rate matching manner.
The gains with non-orthogonal multiple access (NOMA) for uplink data transmissions can be high when chosen codes are orthogonal. However, when codes are non-orthogonal, the gains can be low. NOMA can be used when there is more than one mobile device using the same resources. Since orthogonal codes cannot be possible for every length, codes which have low cross-correlation properties can be used. However, when there are a large number of mobile devices using the same resources, the cross-correlation between the codes can cause interference to the mobile devices. Reducing the gains of a NOMA system can reduce the overall throughput. Thus, transmitting data on the same resources in a NOMA can occur in spite of the interference to the UEs transmitting data on the same resources. Therefore, a non-orthogonal multiple access design for a 5G network can mitigate interference.
Examples include classifying high frequency radio signals. Some examples include receiving a fast Fourier transform (FFT) of a high frequency radio signal, determining a first signal strength at a first guard frequency bin, determining a second signal strength at a second guard frequency bin, and determining a third signal strength at a direct current carrier frequency bin. Examples also include classifying the high frequency radio signal based on the first signal strength, the second signal strength, and the third signal strength.
An electronic device is disclosed. In addition, various embodiments understood through the disclosure may be possible. The electronic device includes a first antenna and a second antenna, a wireless communication circuit that is electrically connected to the first antenna and the second antenna and transmits and/or receives a signal through the first antenna and the second antenna, a switch that is electrically connected to the wireless communication circuit and is selectively connected to one of the first antenna and the second antenna, and a detection circuit that measures a magnitude of a first signal transmitted through the first antenna and a magnitude of a second signal through the second antenna, the second signal being obtained from at least a part of the first signal transmitted through the first antenna.
An optical transmission apparatus includes a modulation unit that generates modulated light by modulating light while bias on which a low-frequency signal is superimposed is applied thereto; an optical amplification unit that generates amplified light by amplifying the modulated light while holding an intensity of the amplified light at a changeable target value; an optical detection unit that generates an electric signal by performing photoelectric conversion on a part of the amplified light; an amplification unit that amplifies the electric signal while suppressing variation in the amplified electric signal, the variation being due to a change of the target value; and a control unit that detects a low-frequency component from the amplified electric signal the variation of which is suppressed and controls the bias on a basis of the detected low-frequency component, the low-frequency component being generated by the low-frequency signal.
An information flow control device has: a first network interface card on a transmission side, the first network interface card including first and second transceivers, each of the first and second transceivers having a transmit port and a receive port; and a second network interface card on a receiving side, the second network interface card including at least one receive port. A first data connection segment connects the first transceiver transmit port to the second transceiver receive port, a second data connection segment connects the second transceiver transmit port to the first transceiver receive port, and a third data connection segment connects the first transceiver transmit port to the receive port of the second network interface card. The first and second segments provide continuity, while the third segment provides one-way data transfer. The first and second transceivers are replaceable with third and fourth transceivers to provide different throughput.
An optical device is formed on an optical IC chip. The optical device includes: an optical device circuit; a first optical waveguide that is coupled to the a first grating coupler; a second grating coupler; a polarization rotator that is coupled to the first grating coupler; a polarization beam combiner or a polarization beam splitter that is coupled to the polarization rotator and to the second grating coupler; and a second optical waveguide that is coupled to the polarization beam combiner or to the polarization beam splitter. The first optical waveguide and the second optical waveguide respectively extend to an edge of the optical IC chip.
An EnodeB or a transmitting device intermittently generates synchronization signals, and then performs perfect omnidirectional pre-coding processing on the synchronization signals; the synchronization signals after perfect omnidirectional pre-coding processing pass through a transmission channel and are then received by a mobile terminal or a receiving device, and the mobile terminal or the receiving device uses the received synchronization signals and local replicas of the synchronization signals for receiving and synchronization processing. An EnodeB or a transmitting device generates vector signals via low-dimensional space-time coding, and then performs perfect omnidirectional pre-coding processing on the vector signals; the transmitted signals after perfect omnidirectional pre-coding processing pass through a transmission channel and are then received by a mobile terminal or a receiving device, and the mobile terminal or the receiving device uses the received signals for signal receiving processing.
The disclosure relates to a radio transceiver, comprising: a precoder configured to precode a data signal for transmission to a plurality of multi-stream terminals based on a plurality of precoding weight matrices; and a processor configured to generate for each terminal in an iterative manner a precoding weight matrix and a transformed channel matrix, wherein the transformed channel matrix indicates a channel gain between the radio transceiver and the respective terminal transformed by a receive filter matrix of the respective terminal, wherein the generation of the precoding weight matrix and the transformed channel matrix in a current iteration is based on the transformed channel matrix generated from a previous iteration.
A first communication device generates a beamforming training initiator packet for transmission in a wireless communication network. The beamforming training initiator packet indicates a start of a beamforming training session, and includes a plurality of fields that respectively and individually identify multiple second communication devices that are to process beamforming training packets transmitted by the first communication device during the beamforming training session. The first communication device transmits the beamforming training initiator packet, and then transmits a plurality of beamforming training packets during the beamforming training session.
A communication apparatus includes a PHY frame generating circuit that generates a PHY frame including either of a short Sector Sweep frame and a Sector Sweep frame; and an array antenna that selects, based on the PHY frame, any sector from among a plurality of sectors and transmits the PHY frame. In a case where, in the PHY frame including the short Sector Sweep frame, a Direction field of the short Sector Sweep frame indicates Initiator Sector Sweep, the PHY frame generating circuit replaces a Short Sector Sweep Feedback field indicating a number of a selected best short Sector Sweep with a Short Scrambled Basic Service Set ID field indicating an abbreviated address generated from an address of a destination communication apparatus.
A drone capable of bidirectional communication and control over a cellular network is provided with a signal interference minimization controller configured to periodically scan for neighboring serving cells and determine if beamforming adjustments and/or gain adjustments can be made to an antenna assembly to minimize interference experienced by the drone, in particular interference experienced during travel above the sightlines of base stations defining the network.
A secondary power distribution box (SPDB), solid state power controller (SSPC) line replacement module or printed board assembly (LRM/PBA), integrated power distribution and avionics system, and method of power distribution are disclosed. For example, the method includes receiving electrical power from a power source at a power feeder network, communicating with at least one load of a plurality of loads at least in part over the power feeder network, and coupling the electrical power to the at least one load of the plurality of loads in response to the communicating.
An apparatus includes a transmit-receive switch circuit and a detector circuit. The transmit-receive switch circuit may be connected between an input port, an output port, and a common port, and configured to switch a transmit radio-frequency signal from the input port to the common port in a transmit mode and a receive radio-frequency signal from the common port to the output port in a receive mode. The detector circuit may be integrated within the transmit-receive switch and may be configured to generate a power detection signal in response to at least one of the transmit radio-frequency signal or the receive radio-frequency signal.
A radio receiver includes a local oscillator arrangement and a controller. The local oscillator arrangement is arranged to provide a signal for down-conversion of radio frequency signal to an intermediate frequency or a baseband frequency in the radio receiver, and the local oscillator arrangement is capable of selectably providing multiple frequency generation qualities. The controller is arranged to estimate a tolerable frequency generation quality for the current operation of the radio receiver or determine whether the current operation of the radio receiver is satisfactory in sense of a currently provided frequency generation quality, and based on the estimation or determination adjust frequency generation quality of the local oscillator arrangement by selecting one of the multiple frequency generation qualities. A radio arrangement, a method and a computer program are also disclosed.
A switching circuit for checking an analog input circuit of an A/D converter is shown. The switching circuit comprises the analog circuit and a comparator circuit. The analog input circuit is configured to generate a first derived signal S1 and a second derived signal S2 from an analog input signal SE of the analog input circuit. The first derived signal S1 and the second derived signal S2 are input signals for the comparator circuit, but only the first derived signal S1 is an input signal for the A/D converter. The comparator circuit is configured to check whether a deviation of the derived signals S1, S2 from each other lies within a tolerance range TOL and to output an output signal SA depending on the check, which may be further evaluated.
An integrated circuit device includes a digital signal processing circuit that generates frequency control data by performing a temperature compensation process by a neural network calculation process based on temperature detection data and an amount of change in time of the temperature detection data, and an oscillation signal generation circuit that generates an oscillation signal of a frequency set by the frequency control data using a resonator.
Configurable termination circuits for use with programmable logic devices are disclosed. In one implementation, the termination circuit may include one or more components to couple unused inputs of one or more configurable logic blocks to a fixed voltage. In another implementation, the termination circuit may include one or more components to couple unused inputs of one or more configurable logic blocks to an output of the one or more configurable logic blocks. In some implementations, the programmable logic device may include a platform management controller to configure the termination circuits based on configuration data.
A frequency doubler includes a multiplexer, a digitally controlled delay circuit, a divide-by-two circuit, a duty cycle detector, and a controller. The multiplexer receives a first clock and output a second clock in accordance with a third clock, in which the first clock has a fifty percent duty cycle and is a two-phase clock having a first phase and a second phase. The digitally controlled delay circuit receives the second clock and outputs a fourth clock in accordance with a digital word. The divide-by-two circuit receives the fourth clock and outputs the third clock. The duty cycle detector receives the second clock and outputs a logical signal in accordance with a comparison of a duty cycle of the second clock with a target duty cycle value. The controller outputs the digital word in accordance with the logical signal.
Acoustic resonator devices, filter devices, and methods of fabrication are disclosed. An acoustic resonator includes a substrate having a surface and a single-crystal piezoelectric plate having front and back surfaces. The back surface is attached to the surface of the substrate except for a portion of the piezoelectric plate forming a diaphragm that spans a cavity in the substrate, the diaphragm having an edge about a perimeter of the cavity. An interdigital transducer (IDT) is formed on the front surface of the single-crystal piezoelectric plate such that interleaved fingers of the IDT are disposed on the diaphragm. The IDT is configured to excite a primary acoustic mode in the diaphragm in response to a radio frequency signal applied to the IDT. At least a portion of the edge of the diaphragm is at an oblique angle to the fingers and to an X crystalline axis of the piezoelectric plate.
There is provided an information processing apparatus, an information processing method, and a program that enable output of a sound to be heard at an assumed viewing/listening position of a zoom image when an image is displayed as the zoom image. In the case of image content such as a sports broadcast, the individual location information, direction and posture information, and audio data of each player as an object are stored separately for direct sound and reverberant sound, at the time of recording. At the time of reproducing a zoom image, the direct sound and the reverberant sound are mixed according to the direction of a player as an object with respect to an assumed viewing/listening position in the zoom image, so that a sound to be heard at the assumed viewing/listening position is output. The present disclosure can be applied to a content reproduction apparatus.
A power output circuit supplies an audio power output signal that is adjusted to prevent clipping when needed based on an estimate of available energy from the power supply supplying the power output circuit. The power output circuit may be an audio power output circuit that generates an audio power output signal from samples of an audio program that are stored in a buffer. A processing block determines an energy requirement for producing the audio power output signal from the audio program and adjusts an amplitude of the audio power output signal in conformity with the determined energy requirement and an available energy determined for the power supply so that the audio power output signal is reproduced without clipping of the audio power output signal.
An audio preamplifier includes a first stage including a first triode of a first vacuum tube in a common cathode configuration configured to perform a first gain function favoring one of low frequencies and mid-range frequencies in response to user input; a second stage including a second triode of the first vacuum tube in a common cathode configuration configured to perform a second gain function favoring one of low frequencies and mid-range frequencies in response to user input; a third stage including a first triode of a second vacuum tube in a common cathode configuration configured to perform a tone-shaping function favoring one of low frequencies and mid-range frequencies in response to user input; and a fourth stage including a second triode of the second vacuum tube in a follower configuration configured to perform a tone stack function in response to user input.
A temperature adaptive audio amplifier device includes a digital analog convertor, a gain controller, an amplifier, a temperature sensor and a decision circuit. The digital analog convertor transforms a digital audio signal into an analog convertor. The gain controller includes a gain value and is configured to perform gain processing on the analog audio signal and generate a gained analog audio signal. The amplifier is configured to amplify the gained analog audio signal and generates an amplified analog audio signal. The temperature sensor generates a temperature detect signal according to a junction temperature of the amplifier. The decision circuit receives the temperature detect signal and generates an adaptive gain adjustment signal to the gain controller. The adaptive gain adjustment signal is used to adjust the junction temperature of the amplifier to be within an upper temperature threshold and a lower temperature threshold.
A power supply circuit comprises a power conversion circuit, a voltage selection circuit, and a voltage regulator. The voltage regulator coupled to the voltage selection circuit and a digital-to-analog converter (DAC), and the voltage regulator is configured to provide supply power to the DAC; the power conversion circuit is coupled to a first power supply and a power amplifier (PA), and the power conversion circuit is configured to convert, based on output power of the PA, a voltage of the first power supply into an output voltage that supply power to the PA; and the voltage selection circuit is coupled to a second power supply, the power conversion circuit and the voltage regulator, and the voltage selection circuit is configured to select the second power supply or the power conversion circuit to supply power to the voltage regulator based on an output voltage of the power conversion circuit.
Methods, systems, and computer program products are provided herein in connection with IoT-enabled solar PV health monitoring and advising related thereto. A computer-implemented method includes obtaining current-voltage samples corresponding to solar photovoltaic modules by triggering switch circuitry between (i) an inverter attributed to the solar photovoltaic modules and (ii) a current-voltage tracer; detecting one or more anomalies in the obtained current-voltage samples by applying machine learning techniques to the obtained current-voltage samples; automatically performing a root cause analysis on the detected anomalies by (i) converting the obtained current-voltage samples to sequential data, (ii) applying a sequence classifier to the sequential data, and (iii) identifying a pre-determined anomaly class comparable to the sequential data based on the application of the sequence classifier; and automatically generating and outputting a suggestion for remedial action based on the identified pre-determined anomaly class.
In order to improve the gain of a photovoltaic solar energy system, the system comprises: a plurality of bifacial photovoltaic solar cells, defining together a direct absorption surface as well as an indirect absorption surface, both surfaces being opposite and intended to absorb a solar radiation energy; a support chassis for supporting the cells, the chassis comprising a support structure on which the cells are attached. The chassis further includes a suspension for suspending the support structure, the suspension comprising a top end connected to a first end of the support structure, and the suspension defines a reflective surface configured to reflect light towards the indirect absorption surface defined by the cells.
An apparatus for controlling a multi-winding motor may include: a current detector configured to detect currents of a plurality of windings, each of the windings associated with a corresponding rotor; an abnormal determiner configured to determine abnormality of at least one of the plurality of windings on the basis of the currents of the plurality of windings; a compensation calculation unit configured to calculate a current phase offset and/or compensation current of each of the plurality of windings according to the determined abnormality; and a signal output unit configured to output control signals to control at least one of the plurality of windings according to the current phase offset and/or the compensation current.
A power conversion device includes a first inverter connected to first ends of windings of each phase of a motor, a second inverter connected to second ends of the windings of each phase, a phase separation relay circuit to switch between connection and disconnection between the first ends of the windings of each phase and the first inverter, a neutral point relay circuit connected to the first ends of the windings of each phase and to switch between connection and disconnection between the first ends of the windings of each phase, a first switching element to switch between connection and disconnection between the second inverter and a power supply, and a second switching element to switch between connection and disconnection between the second inverter and a ground.
An electric drive system includes a battery pack, a power inverter module (“PIM”), an electric machine, a switching circuit, and a controller. The electric machine has three or more phase legs. The PIM has a DC-side connected to the battery pack, and an alternating current (“AC”)-side connected to the electric machine. The switching circuit includes AC switches, and for each phase leg also includes three or more winding sections each electrically connectable to or disconnectable from the battery pack and PIM via the AC switches. The controller commands a binary switching state of each respective AC switch based on the rotary speed to implement one of three different speed-based operating modes of the electric machine, and to thereby vary a conductive path from the PIM to the electric machine through one or more of the connected winding sections.
A system and a method of driving a motor are provided. A zero crossing reference module defines a zero-crossing region based on a current zero-crossing point of a coil of the motor, and a mode switching setting module sets a reference parameter of a back electromotive force when the motor rotates at a preset rotating speed. When the current zero-crossing point fails to fall in the zero-crossing region, a driving mode selector module selects a voltage detection mode. When a parameter of the back electromotive force is equal to the reference parameter, the driving mode selector module selects to switch back to a current detection mode. A motor driving controller module calculates a position of a rotor of the motor based on the current in the current detection mode and determines the position based on the back electromotive force in the voltage detection mode to drive the motor.
An electrostatic clutch is described comprising a plurality of micron-scale thickness electrodes, adjacent electrodes being separated by a thin film of dielectric material. A power source and controller apply a voltage across two electrodes, causing an electrostatic force to develop. When engaged, a force can be transferred through the clutch. A tensioning device maintains the alignment of the clutch when the electrodes are disengaged, but permits movement in at least one direction. In some embodiments, multiple clutches are connected to an output to provide variable force control and a broad range of torque input and output values. Moreover, the clutch can be used as an energy-recycling actuator that captures mechanical energy from negative work movements, and returns energy during positive work movements.
A first circuit generates and outputs a transmission signal to a first end and a second end of a first coil in response to variation in logical value of an input first signal. A detection circuit detects a voltage signal generated at each of a first end and a second end and outputs a second signal which reflects the first signal based on a result of detection. A control circuit controls a voltage to be applied across opposing ends of each of a first diode and a second diode of a first rectifier circuit and a voltage to be applied to opposing ends of each of a third diode and a fourth diode of a second rectifier circuit.
A power conversion device includes: power conversion cells; and a controller to control the cells. Each cell includes: a transformer; a primary conversion unit on a primary side of the transformer; a secondary conversion unit on a secondary side; a primary bypass device for short-circuiting between input terminals of the cell; and a secondary bypass device for short-circuiting between output terminals of the cell. The input terminals and/or the output terminals of the cells are connected in series. When the primary conversion unit(s) of a part of the cells is stopped, the controller turns on the primary bypass device and sets secondary DC link voltages to prescribed values; and when the secondary conversion unit(s) of a part of the cells is stopped, the controller turns on the secondary bypass device and controls the primary conversions units to set primary DC link voltages to prescribed values.
A power transfer device and an associated method thereof are disclosed. The power transfer device includes a driver unit having a plurality of converters. The driver unit includes a plurality of legs forming ones of the plurality of converters, such that at least one leg of a first converter of the plurality of converters is common to a second converter of the plurality of converters. Each converter of the plurality of converters includes an output terminal. The driver unit may include a plurality of transmitter coils. In some implementations, a different transmitter coil is coupled to each output terminal of a respective converter.
Provided are electrical circuits and methods for power factor correction. An example method includes receiving, by converter, an input voltage at a fundamental frequency and generating an output voltage; generating, based on the output voltage, a first measurement signal; subtracting a first reference signal from the first measurement signal to obtain a first error signal; generating an adaptive current sense signal, generating a reference voltage based on the input voltage, subtracting the reference voltage from the current sense signal thus generating a second measurement signal to control the current measurement; subtracting the second measurement signal from the input voltage to obtain a difference signal, wherein the difference signal is largely minimized by removing overtones of the fundamental frequency; generating, based on the difference signal, a second error signal; using a sum of the second error signal as a first order correction to the first error signal to regulate the converter.
A power conversion system, a controller for the same, and a method for controlling the same. The power conversion system includes a shutdown array and a power converter. The shutdown array includes multiple shutdown strings that are connected in parallel. Each of the multiple shutdown strings includes multiple shutdown devices, where outputs of the multiple shutdown devices are connected in series. An output terminal of the shutdown array is connected to an input terminal of the power converter. An input terminal of each of the multiple shutdown devices is connected to at least one direct-current power supply. The controller sends a shutdown instruction to each shutdown device of the shutdown array in response to receiving a rapid-shutdown command, controls the power converter to discharge an input capacitor of the power converter, and stops discharging the input capacitor in response to an input voltage of the power converter being reduced to a preset voltage.
A rotary position sensor assembly (10) for detecting the angular position of the rotor (104) of a motor. The assembly (10) includes at least one sensor (12) and a sensor target (14) which is moveable relative to the sensor (12). The sensor target (14) comprises a tubular body (16) with a plurality of integrally-formed radially-extending sections (18). These sections (18) include two radial upper edge portions (24) which are supported by a radially-extending support which is set back from the edge portions (24). Each of the two upper edge portions (24) provide a target for the sensor. A sensor target (14) for use in a position sensor assembly (10), a method of production of the sensor target (14), and an electromechanical actuator which utilises the rotary position sensor assembly (10) are also provided.
The present invention provides a motor for a drone, comprising: a rotary shaft; a stator including a hole into which the rotary shaft is inserted; and a rotor arranged on the outer side of the stator, wherein the rotor comprises: a cover part coupled to the rotary shaft so as to cover the upper portion of the stator; a body part for covering a side portion of the stator; and a magnet coupled to the inner circumferential surface of the body part, wherein the cover part comprises: a propeller coupling part including a hole through which the rotary shaft penetrates; an upper surface part connected to the body part; a connecting part for connecting the propeller coupling part and the upper surface part; and a plurality of blades arranged in the radial direction from the lateral surface of the propeller coupling part and formed so as to be spaced apart from the upper surface part. Therefore, the present invention provides the advantageous effects of preventing water or foreign material from permeating into the motor while ensuring an air passage for heat dissipation.
A rotating electric machine includes a rotor, a stator, a housing, a plurality of control modules and a joining member. The stator includes a stator coil. The housing accommodates both the rotor and the stator therein. The control modules are capable of supplying multi-phase alternating current to the stator coil and rectifying multi-phase alternating current generated in the stator coil into direct current. The control modules include a first control module and a second control module that are arranged adjacent to each other. The first and second control modules are joined, by the joining member, to be in surface contact with each other.
The invention relates to a support structure (17) for a laminated core (9) of a stator segment (13) of a dynamoelectric machine having an external rotor, the support structure (17) having two joint plates (6) and two curved pressure plates (1), the respective longitudinal faces of which are in each case mutually opposed, and which encompass a predefinable space and can be connected at their abutting edges. The support structure also has substantially radial bars or ribs (3) between the pressure plates (1) and at least one element having polygonal cut-outs, which element is connected to a longitudinal face of the ribs (3) and forms a base plate of the support structure (17).
A vehicle includes a housing, an electric machine configured to propel the vehicle, and a clamp. The housing defines an internal cavity, and has first and second stepped surfaces extending radially inward and into the cavity. The electric machine is disposed within the cavity. The electric machine has a stator that includes third and fourth stepped surfaces that extend radially outward. The clamp engages the first and third stepped surfaces, and axially forces the fourth stepped surface into engagement with the second stepped surface.
An electric motor includes a stator including four split cores, and a rotor having four magnetic poles. Each of the split cores includes a yoke and a tooth. An angle θ1 [degree] formed by a side surface of the tooth and a side surface of the yoke on an inner side in a radial direction of the stator satisfies 90 degrees≤θ1<180 degrees.
In one example a docking mat for an electronic device comprises a first major surface on which the electronic device may be positioned, a wireless power transmitting device, and a controller comprising logic, at least partly including hardware logic, to determine a location of the electronic device on the first major surface of the docking mat, establish a communication connection with the electronic device, receive at least one charge parameter from the electronic device, and activate the wireless power transmitting device in response to a determination that the electronic device is positioned proximate the wireless power transmitting device and the at least one charge parameter indicates that the electronic device is in a condition to receive power from the wireless power transmitting device. Other examples may be described.
A wireless power transmitter, a power transmission system and a method for driving a wireless power transmitter are disclosed. In an embodiment, a wireless power transmitter includes an inverter, an impedance circuit, an inductance circuit including a first transmission coil and a second transmission coil and a switch circuit, wherein the impedance circuit and the inductance circuit are configured to establish a resonance circuit, wherein the inverter is configured to provide AC power to the resonance circuit, and wherein the switch circuit is configured to couple the first transmission coil and/or the second transmission coil to the impedance circuit to change a resonance frequency of the resonance circuit and to keep a frequency of the AC power within a prescribed range.
A power transmission circuitry transmits power wirelessly to a plurality of power reception circuitry simultaneously. The power transmission circuitry includes, a communication circuit that wirelessly receives information on receiving power of the plurality of power reception circuitry, and a transmitting power control circuit that controls transmitting power based on the information on receiving power of the plurality of power reception circuitry received by the communication circuit.
Provided is a resonance converter for a wireless charger, which includes a full bridge inverter connected to an input power source that supplies an input voltage and having first to fourth switches, a resonance tank having a plurality of resonators composed of capacitors and coils connected in series and configured to receive the input voltage from the full bridge inverter and perform voltage conversion in an inductive power transfer manner among the plurality of resonators, and a rectification bridge configured to rectify an output voltage sent from the resonance tank and transfer the rectified output voltage to a battery.
A computer including a processor is programmed to determine that an object including ferrous material is in a charging field of an inductive charger, actuate the inductive charger, and determine a temperature of the object. The processor is further programmed to determine, based on the temperature, whether the inductive charger is operational.
A device may include a power supply module (PSM). The PSM may receive information regarding one or more programmable restrictions associated with a power supply. The PSM may receive a measurement of voltage associated with the power supply. The PSM may determine a current associated with the power supply based on the one or more programmable restrictions, the measurement of voltage, and a first amount of power associated with the power supply. The PSM may cause a load associated with the power supply to be adjusted based on determining the current without removing power for a connection between the power supply and a power source associated with the power supply. The PSM may cause the power supply to provide a second amount of power based on causing the load associated with the power supply to be adjusted.
An electronic apparatus, a charge controlling method, and a computer-readable recording medium are provided. The electronic apparatus includes a battery unit including a battery and configured to supply power to components of the electronic apparatus using power of the battery, a charging circuit configured to, in response to the power being received from an external adapter, charge the battery using the received power, and a controller configured to detect a charging state of the battery, divide a charging process into a plurality of charging periods according to the detected charging state, and control the charging circuit to provide different target voltages to the divided charging periods and target currents determined according to the different target voltages and preset power consumption to the battery.
To provide a light-emitting device capable of being used in a wide temperature range. To provide a light-emitting device capable of being used in a low-temperature environment and a high-temperature environment. The light-emitting device includes a light-emitting panel, a secondary battery, a circuit, and a sealing structure. The light-emitting panel includes a light-emitting element. The light-emitting element can emit light with power supplied from the secondary battery. The circuit includes an antenna and can charge the secondary battery wirelessly. The light-emitting panel, the secondary battery, and the circuit are provided in the sealing structure. The sealing structure includes a portion through which light emitted from the light-emitting element passes.
A fixing connector with a charging module which is an assembling structure of a fixing seat and a fixing stand, wherein the fixing seat comprises a seat and a charging module; the seat has a concave portion, the charging module is arranged in the concave portion and comprises a body, a plurality of first conductive terminals and at least an elastic piece; the body has a plane and at least an anti-misinsertion key arranged on the plane, the first conductive terminals are arranged on the body and may be protruded out from the plane, the elastic piece is arranged between the body and the seat; the fixing connector with the fixing seat and the fixing stand includes the said fixing seat and a fixing stand comprising a convex portion to assemble the fixing stand onto the fixing seat by inserting the convex portion in the concave portion. Thereby, the charging module may perform charging when the fixing stand is assembled onto the fixing seat.
A battery control system includes a secondary battery producing gas inside thereof when being used; and a control unit that controls charging/discharging of the secondary battery. The control unit includes a capacity measuring unit that measures capacity of the secondary battery being deteriorated with the use of the same; and a stop commanding unit that stops charging/discharging of the secondary battery, when the capacity measured by the capacity measuring unit is less than or equal to a predetermined threshold.
A charging path switching circuit includes a first port, a second port, a path switch unit, and a conversion unit. The first port is connected to an external electronic device to obtain a first electrical signal. The second port is connected to an external power source to obtain a second electrical signal. The conversion unit is connected the path switch unit and converts the first electrical signal or the second electrical signal to a predetermined voltage. The path switch unit is connected to the first port and the second port. The path switch unit selects to connect to the first port or the second port, to obtain the first electrical signal or the second electrical signal according to the connection of the first and the second port. The path switch unit preferentially selects to obtain the second electrical signal from the second port.
Disclosed techniques include power management across point of source to point of load. Energy is obtained from points of energy generation, where data obtained at a time of energy generation includes information on energy and metadata about the energy. Connection is enabled from the points of energy generation to a large-scale energy storage subsystem. Load information is received from points of load, where the points of load are connected to an energy grid. Processors are used to calculate an energy control policy, based on information on the energy, the energy metadata, availability of the large-scale energy storage subsystem, and the load information. Routing of the energy is controlled from the points of energy generation to the points of load based on the energy control policy. The large-scale energy storage subsystem is controlled based on the energy control policy.
A micro grid system comprises an adapter, a power controller, and secondary energy source. The adapter is in communication with an electric grid and configured to connect and disconnect a connection between the electric grid and a micro grid. The power controller is in communication with the adapter and configured to receive first AC power from the electric grid via the adapter, obtain grid information, and control the adapter to connect and disconnect the connection between the electric grid and the micro grid. The power controller controls the adapter to disconnect the connection in response to determining that the electric grid is abnormal based on the grid information. The secondary energy source is in communication with the power controller and is configured to generate DC power and to supply the DC power to the power controller.
Electrostatic discharge (ESD) protection is provided in circuits which use of a tunneling field effect transistor (TFET) or an impact ionization MOSFET (IMOS). These circuits are supported in silicon on insulator (SOI) and bulk substrate configurations to function as protection diodes, supply clamps, failsafe circuits and cutter cells. Implementations with parasitic bipolar devices provide additional parallel discharge paths.
An apparatus may include a transient voltage suppression (TVS) device array coupled to a first input terminal and a second input terminal; and a linear regulator module having a pair of inputs connected to a respective pair of outputs of the TVS device array, wherein the TVS device array includes at least one TVS diode is connected between a first output and second output of the pair of outputs to generate a first clamping voltage signal, and wherein the linear regulator module is configured to generate a second clamping voltage signal having a second clamping voltage independent of a first clamping voltage of the first clamping voltage signal received from the TVS device array.
There is provided a protection apparatus for protecting an electrical network. The protection apparatus comprises: at least one protection device configured to protect the electrical network from a fault in response to a or a respective protection criterion being met; and a controller configured to: receive real-time information on a change in topological structure of the electrical network; perform an online determination of the real-time impedance or admittance matrix of the electrical network based on the change in topological structure of the electrical network; and adapt the or each protection criterion based on the real-time impedance or admittance matrix.
Provided is a relay device that can switch conduction of a current flow path between power storage units on and off, and can suppress a decrease in the output of the power storage units if an abnormality occurs. A relay device includes: a conductive path between a first power storage unit and a second power storage unit, the conductive path serving as a path through which a current flows; a switch unit that is switched between an ON state in which a current can flow through the conductive path, and an OFF state in which the conductive path is in a predetermined no current flow state; a coil that is connected in series to MOSFETs constituting the switch unit, and has an inductance component; and a control unit configured to switch off the switch unit if a value detected by a current detection unit is a predetermined abnormal value.
A switch faceplate having a body, an aperture arranged within the body, a first tab arranged within the aperture, and a first protrusion extending from the first tab. The protrusion is operatively arranged to receive a fastener. The faceplate is operatively arranged to secure a smart switch or a mounting bracket for the smart switch.
An X-ray laser has a target anode of a crystalline material that emits X-ray radiation in response to excitation and that is located on a thermally conductive substrate. An X-ray source provides an input X-ray beam that illuminates a predetermined volume of the target anode at a predefined angle relative to a surface of the anode so as to induce a Borrmann mode standing wave in the predetermined volume. An electron source outputs an electron beam that is incident on the Borrmann mode region so as to cause electron impact ionization of the crystalline material and thereby induce stimulated emission of a coherent output X-ray beam.
A semiconductor laser tuned with an acousto-optic modulator. The acousto-optic modulator may generate standing waves or traveling waves. When traveling waves are used, a second acousto-optic modulator may be used in a reverse orientation to cancel out a chirp created in the first acousto-optic modulator. The acousto-optic modulator may be used with standing-wave laser resonators or ring lasers.
A connector assembly includes a first electronic component, an electrical connector and a shielding shell fixed to the first electronic component, a second electronic component located above the first electronic component, and a mating member fixed to the second electronic component. The electrical connector includes an insulating body, and a first terminal electrically connected to the first electronic component. The mating member includes a second terminal electrically connected to the second electronic component. The shielding shell has a first grounding portion and a second grounding portion, and covers outside the first terminal. The first grounding portion is electrically connected to the first electronic component. When the mating member is downward mated with the electrical connector, the second terminal is inserted into the shielding shell to be mated with the first terminal, and the second grounding portion abuts the second electronic component to be electrically connected to the second electronic component.
An electrical assembly for a motor vehicle transmission includes a printed circuit board (PCB), at least two contact surfaces, at least two contact elements, and a potting compound. The PCB has a component side and the two contact surfaces are arranged on the component side. The contact elements are each electrically connected by a PCB-side first end portion to one of the contact surfaces. The potting compound is arranged on the component side of the PCB, and the contact elements are partly embedded therein. The potting compound directly contacts the contact surfaces and the PCB-side end portions of the contact elements and covers the same. The contact elements protrude from the potting compound by second end portions facing away from the PCB. The electrical assembly includes a chip protection frame that protrudes outward from the potting compound and forms contact chambers for the second end portions of the contact elements.
Provided is a grounding terminal comprising a terminal fitting including a crimp portion, and a fastened portion that is provided on the front lower side of the crimp portion and is to be connected to a grounding surface using a fastening member, the terminal fitting being provided with a stepped portion between the crimp portion and the fastened portion. A covering layer is configured to be formed on the grounding terminal by thermally shrinking a heat-shrinkable tube including, on its inner circumferential portion, a water sealing agent to be used to cover at least the crimp portion of the terminal fitting and seal the electric wire from water. A water sealing agent is configured to be distributed up to the front side with respect to the covering layer as viewed from above, and a hanging-down length d of a water sealing agent is within the range of the stepped portion.
A wire includes a core wire, an insulating coating that covers an outer periphery of a non-distal end region as a part of the core wire other than the distal end region, and a distal end seal part that is disposed separately from the insulating coating and seals the distal end part of the distal end region of the core wire. The core wire is exposed between the distal end seal part and the insulating coating. The distal end seal part includes a tubular distal end cover part that covers an outer periphery of the distal end part and a welded part that is crushed in an orthogonal direction orthogonal to a wire direction and is closed by welding.
A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.
A multiple-feed antenna system includes a first feed configured to communicate signals in a first frequency range of a plurality of frequency ranges and a second feed configured to communicate signals in a second frequency range of the plurality of frequency ranges. A subreflector assembly is configured to move among multiple positions that include a first position and a second position. When the subreflector assembly is in the first position, a first element of the subreflector assembly redirects a signal reflected by a primary reflector to the first feed. When the subreflector assembly is in the second position, a second element of the subreflector assembly redirects the signal reflected by the primary reflector to the second feed.
A liquid crystal panel of a scanning antenna includes a TFT substrate provided with a first dielectric substrate, a TFT supported by the first dielectric substrate, a gate bus line, a source bus line, and a patch electrode; a slot substrate provided with a second dielectric substrate, and a slot electrode that is formed on a first main surface of the second dielectric substrate and includes a slot arranged so as to correspond to the patch electrode; and a liquid crystal layer provided between the TFT substrate and the slot substrate. One of the TFT substrate and the slot substrate includes a projecting layer formed of resin and disposed on the liquid crystal layer side of the patch electrode or the slot electrode in a region surrounded by a sealing portion. The projecting layer is arranged so as not to overlap the patch electrode or the slot.
There are provided an antenna control apparatus, a head-mounted display, an antenna control method, and a program that are capable of suppressing power consumption of the head-mounted display including a plurality of antennas. A selection unit selects, as an antenna to be driven, a portion of the plurality of antennas in accordance with an attitude of the head-mounted display including the plurality of antennas. An antenna control unit controls only the antenna to be driven to be driven and an antenna other than the antenna to be driven to be stopped.
A wideband dual polarized antenna array system, with minimal number of RF ports that enables wideband array frequency ratios of 25:1 to 120:1. Reduced grating lobe performance is enabled by employing antennas-within-antennas. Orientation and spacing of antennas in novel methodologies further reduces sidelobes and grating lobes. Finally, this technology reduces the number of RF ports, compared to Tightly Coupled Dipole Antenna (TCDA) arrays by 10× to 25× times.
A heat dissipating sheet having an antenna function, and a portable terminal including the same are provided. The heat dissipating sheet, having an antenna function, according to one embodiment of the present disclosure comprises: an antenna part formed into an antenna pattern having a predetermined line width; and a heat dissipating part disposed on the same plane as the antenna part, and dissipating heat transferred from a heat source or distributing locally concentrated heat, wherein the antenna part and the heat dissipating part are directly attached to an inner surface of a rear case or a back cover of a portable terminal body through a medium of an adhesive member.
Disclosed are various embodiments for transmitting energy conveyed in the form of a guided surface-waveguide mode along the surface of a lossy medium such as, e.g., a terrestrial medium by exciting a guided surface waveguide probe.
The present disclosure relates to a radio frequency filter having a cavity structure, and including a housing having internally a hollow space and an open side to provide at least one cavity, at least one resonance element located in the hollow space of the housing, a cover configured to have at least one groove which is internally threaded, recessed at a predetermined diameter and depth at a position corresponding to the resonance element, and has a bottom portion that is thinner than other portions, and to close the open side of the housing, and at least one frequency tuning screw configured to threadedly mate with the groove of the cover. When the frequency tuning screw threadedly mates with the groove, a bottom surface of the groove is depressed by the frequency tuning screw toward the resonant element.
A battery module includes a pair of battery cells, each battery cell having an electrode lead, and the battery cells being stacked to face each other; a connector configured to connect the electrode leads of battery cells; and a connector breaking device disposed in a space formed between terrace portions of the battery cells and configured to be operated with a pressure applied to the connector breaking device due to swelling of at least one of the battery cells to cut off an electric connection between the connector and the electrode leads is provided. A method to interrupt an electrical connection in a battery module is also provided.
In a secondary battery, a positive electrode current collecting portion and a negative electrode current collecting portion are bonded with a part of a positive electrode current collector exposed portion and a part of a negative electrode current collector exposed portion of a laminated electrode body, respectively. A bonding portion between the positive electrode current collecting portion and the positive electrode current collector exposed portion, and a bonding portion between the negative electrode current collecting portion and the negative electrode current collector exposed portion are formed at positions at which, when the full length in a short side direction of each of the current collector exposed portions of the positive electrode and the negative electrode is set as L, a distance from the end close to the lid in the short side direction is less than L/2.
A power storage module includes a cooling member that has a coolant and a sealing body hermetically sealing the coolant; a power storage element that is stacked on the cooling members; and a heat transfer plate that is stacked on the power storage elements with the cooling members therebetween. The sealing body is configured to form a bulging portion deformed by evaporation of the coolant in a region not overlapping the power storage element. The heat transfer plate has a folded portion with which the bulging portion is configured to abut.
A determination method of smoke emission in a battery includes: calculating first and second internal resistance values, of each of the parallel circuits in first and subsequent second periods, respectively; acquiring a temperature value of each of parallel circuits; and determining the smoke emission in at least one of cells included in one of the parallel circuits, when at least detecting that the one of the parallel circuits has the second internal resistance value smaller than the first internal resistance value, and has an increase in the temperature value within a period defined based on the first and second periods.
An electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the electrolyte, the electrolyte including a non-aqueous organic solvent; a lithium salt; and an additive, wherein the additive includes a compound represented by Chemical Formula 1: wherein, in Chemical Formula 1, R is a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C1 to C10 alkoxy group, a substituted or unsubstituted C2 to C10 alkenyl group, a substituted or unsubstituted C2 to C10 alkynyl group, a substituted or unsubstituted C3 to C10 cycloalkyl group, a substituted or unsubstituted C3 to C10 cycloalkenyl group, or a substituted or unsubstituted C6 to C20 aryl group, and n is an integer of 1 to 3.
The electrochemical cell stack assembly has electrochemical cell sub-stacks. A first and second electrochemical cell sub-stack are connected electrically in series and fluidly in parallel. The first and second electrochemical cell sub-stacks have electrochemical cells. The electrochemical cells have a membrane electrode assembly with an cathode catalyst layer, an anode catalyst layer, and a polymer membrane therebetween. The electrochemical cells have an anode plate and a cathode plate with the membrane electrode assembly interposed therebetween, a cathode flow field, and the anode plate.
A fuel cell stack 11 includes a cell laminate 21 composed of a plurality of stacked cells 20, and air is introduced from an anode end part 21a of the cell laminate 21. The cell laminate 21 has two end cells 24 installed adjacently to a cathode end part 21b side, thereby providing the cathode end part 21b with high thermal insulation properties.
A lamellar structure graphite foil is used as a material for a separator for a fuel cell, and a hydrophobic layer is formed by impregnation on flow-field channels of the graphite foil. Such a separator is manufactured by forming the flow field channel by etching the graphite foil formed with the mask pattern thereon and forming a hydrophobic layer by impregnation. According to such a separator, performance of a fuel cell stack is enhanced and the manufacturing process of a separator is simplified.
The invention relates to a process for the preparation of sodium-based solid compounds, such as sodium-based solid alloys and sodium-based crystalline phases by ball-milling using metallic sodium as starting material.
The invention also relates to some sodium-based crystalline P′2-phases and to Na-based vanadium phosphates phases (Na(3+y)V2(PO4)3) with 0
Active material particles, a conductive material, a binder, and a solvent are mixed to prepare composite particles. The composite particles are mixed with metal short fibers to make the metal short fibers adhere to surfaces of the composite particles. After the adhesion of the metal short fibers, the composite particles are brought together and compacted to produce an electrode for electric storage devices. Each of the composite particles contains at least the active material particles, the conductive material, and the binder. The total content of the metal short fibers in the electrode for electric storage devices is not lower than 15 mass % and not higher than 35 mass %.
A positive electrode active material according to the present invention is a positive electrode active material that is used in a positive electrode for a lithium ion secondary battery. This positive electrode active material includes positive electrode active material particles A represented by Formula (A): LiαNixCoyM1(1-x-y)O2 (where 0<α≤1.15, 0.90
A method for producing a sulfide solid-state battery in which, an anode mixture (a) is layered over a surface of an anode current collector, to form an anode mixture layer A1, the anode mixture (a) containing a polyamic acid, and silicon-based active material but not containing a sulfide solid electrolyte; the anode mixture layer A1 is heated to imidize the polyamic acid, to make an anode mixture layer A2; a sulfide solid electrolyte is layered over a surface of the anode mixture layer A2; to be pressed to insert the sulfide solid electrolyte into a void in the anode mixture layer A2, to make an anode mixture layer A3; and thereafter an anode mixture (b) is layered over a surface of the anode mixture layer A3, to form an anode mixture layer B, the anode mixture (b) containing carbonaceous active material and binder.
A separator for a lithium battery having (a) a porous polymeric layer, such as a polyethylene layer; and (b) a nanoporous inorganic particle/polymer layer on both sides of the polymeric layer, the nanoporous layer having an inorganic oxide and one or more polymers; the volume fraction of the polymers in the nanoporous layer is about 15% to about 50%, and the crystallite size of the inorganic oxide is 5 nm to 90 nm.
A secondary battery, which can improve reliability by allowing a membrane to be maintained in a short-circuited state until a preset current level is reached, includes an electrode assembly including a first electrode plate and a second electrode plate, a case accommodating the electrode assembly, a cap plate coupled to an opening of the case and electrically connected to the first electrode plate, an electrode terminal including a terminal plate passing through the cap plate and electrically connected to the second electrode plate, and an asymmetrically shaped inversion plate coupled to the cap plate and configured to perform an inversion operation when an internal pressure of the case exceeds a reference pressure.
Implementations of the disclosed subject matter provide a print bar for organic vapor jet (OVJP) deposition is provided that includes a plurality of n print head segments, where each of the plurality of print head segments may have an OVJP print head. The print bar may include a plurality of distance sensors, where each of the plurality of distance sensors may be configured to measure a distance between a substrate disposed below the print bar and a portion of at least one of the print head segments. The print bar may include a plurality of not more than n+1 actuators configured to adjust at least one of a position and an orientation of one or more of the plurality of print head segments based upon one or more distances between the substrate and the print bar measured by one or more of the plurality of distance sensors.
A display device, to provide compensation for change in color level due to different viewing directions of a display surface and compensation for other optical characteristics of the display surface in a compatible manner, includes a light-emitting element layer including a light-emitting layer including a light-emitting element, a first electrode disposed below the light-emitting layer, and a second electrode disposed above the light-emitting layer, wherein an optical compensation layer is disposed above the light-emitting element layer, the optical compensation layer being configured to compensate for prevention of external light reflection on a display surface and compensate for change in color level of the display surface due to different viewing directions of the display surface.
An organic light emitting display device includes a base substrate, pixels disposed on the base board, panel terminals disposed on the base board to be electrically connected to the pixels, and an encapsulation structure coupled to the base board to cover the pixels. The encapsulation structure includes a base part, a metal encapsulation film, first terminals, and second terminals. The metal encapsulation film is disposed in an encapsulation area of the base part, the first terminals are disposed on a first surface of the base part corresponding to a connection area of the base part, and the first terminals are electrically connected to the panel terminals. The second terminals are disposed on a second surface of the base part corresponding to the connection area, and the second terminals are electrically connected to the first terminals.
A flexible OLED display panel is disclosed. The panel includes a flexible substrate, multiple pixel units disposed on the flexible substrate and arranged as a matrix, and a thin-film encapsulation covering on the multiple pixel units, wherein the flexible substrate is provided with a water-oxygen barrier layer, the multiple pixel units are located on the water-oxygen barrier layer, a spacer wall is disposed between any two adjacent pixel units, the spacer wall is integrally formed with the water-oxygen barrier layer, in a thickness direction of a flexible OLED display panel, and the spacer wall is extended to the thin-film encapsulation layer from the water-oxygen barrier layer. The present invention also discloses a manufacturing method for flexible OLED display panel and a display device including the flexible OLED display panel as described above. The invention can improve the stress release capability of the flexible OLED display panel when being bent.
An electronic device includes an electronic panel having an active area and a pad area, the electronic panel including a sensing unit responsive to external input, and a circuit board connected to the electronic panel in the pad area, in which the electronic panel includes a first conductive layer disposed on the active area, a second conductive layer disposed on the first conductive layer, an organic insulation layer disposed between the first conductive layer and the second conductive layer, and an inorganic insulation layer covering a first surface of the organic insulation layer and exposing a first surface of the second conductive layer.
An organic light-emitting display apparatus including a first substrate including a display area and a peripheral area; a second substrate opposing the first substrate; an insulating layer disposed on the first substrate and including one or more openings; and a sealing member interconnecting the first substrate and the second substrate to each other and interposed between the first and second substrates. The one or more openings are disposed between a first conductive layer disposed on the display area and a second conductive layer disposed on the peripheral area. The one or more openings are at least partially or entirely filled with the sealing member.
Provided are a compound capable of improving the luminous efficiency, stability and life span of a device, an organic electric element using the same, and an electronic device thereof.
Provided are a material for an organic electroluminescent device having a high emission efficiency and an organic electroluminescent device including the same. The material for an organic electroluminescent device according to the present disclosure is represented by Formula 1: in which dibenzoheterole groups are coupled to a phenyl group of a triarylamine at the ortho positions relative to the nitrogen atom. The polarity of the molecule may be increased due to the heteroatoms of the dibenzoheterole groups, and the energy gap (e.g., HOMO-LUMO gap) of the molecule may be increased due to the large steric distortion of the molecule around the amine group. Accordingly, the emission efficiency of an organic EL device may be improved in the blue emission region.
Embodiments of the disclosure provide methods for forming MTJ structures from a film stack disposed on a substrate for MRAM applications and associated MTJ devices. The methods described herein include forming the film properties of material layers from the film stack to create a film stack with a sufficiently high perpendicular magnetic anisotropy (PMA). An iron containing oxide capping layer is utilized to generate the desirable PMA. By utilizing an iron containing oxide capping layer, thickness of the capping layer can be more finely controlled and reliance on boron at the interface of the magnetic storage layer and the capping layer is reduced.
Embodiments are provided for a packaged semiconductor device including: a semiconductor die having an active side and an opposite back side, the semiconductor die including a magnetoresistive random access memory (MRAM) cell array formed within an MRAM area on the active side of the semiconductor die; and a top cover including a soft-magnetic material positioned on the back side of the semiconductor die, wherein the top cover includes a recess formed in a first major surface of the top cover, the first major surface faces the back side of the semiconductor die, and the recess is positioned over the MRAM cell array.
A solid state cooler device is disclosed that includes a first superconductor shunt, a first normal metal pad disposed on the first superconductor shunt, and a first insulator layer and a second insulator layer disposed on the normal metal pad and separated from one another by a gap. The solid state cooler device also includes a first superconductor pad disposed on the first insulator layer and a second superconductor pad disposed on the second insulator layer, a first conductive pad coupled to the first superconductor pad, and a second conductive pad coupled to the second superconductor pad. Hot electrons are removed from the first normal metal pad when a bias voltage is applied between the first conductive pad and the second conductive pad, wherein the first superconductor shunt facilitates even current distribution through the device.
A chip-scale package type light emitting diode includes: a first conductivity type semiconductor layer, a mesa, a second conductivity type semiconductor layer, a transparent conductive oxide layer, a dielectric layer, a lower insulation layer, a first pad metal layer, and a second pad metal layer, an upper insulation layer. The upper insulation layer covers the first pad metal layer and the second pad metal layer, and includes a first opening exposing the first pad metal layer and a second opening exposing the second pad metal layer, in which the openings of the dielectric layer include a narrow and elongated bar-shaped opening adjacent to at least one of the first openings of the lower insulation layer.
A light emitting device includes a substrate including a doped compound semiconductor layer, a mesa structure located on the doped compound semiconductor layer and containing a first-conductivity-type compound semiconductor layer, an active layer stack configured to emit light at a peak wavelength, a second-conductivity-type compound semiconductor layer, and a transparent conductive oxide layer, and a dielectric material layer laterally surrounding the mesa structure and including an upper portion that overlies a peripheral region of the mesa structure and extending above the transparent conductive oxide layer, wherein an opening in the upper portion of the dielectric material layer is located over a center region of the mesa structure.
Fabrication of a double-sided photovoltaic cell, with two opposite active surfaces, comprising a step of depositing, on each active surface, at least one electric contact. The deposition step comprises in particular a shared operation of depositing on each of the active surfaces, implemented by electrolysis in a shared electrolysis tank comprising: a first compartment for depositing a metal layer on a first active surface of the cell, for fabrication of a contact comprising said metal layer on the first active surface; and a second compartment for depositing, by oxidation, a metal oxide conductor layer on the second active surface of the cell, for the fabrication of a contact comprising said metal oxide layer on the second active surface.
A semiconductor device according to an embodiment includes a semiconductor layer that has first and second plane and includes first-conductivity-type first semiconductor region, second-conductivity-type second semiconductor region between the first semiconductor region and the first plane, first-conductivity-type third semiconductor region between the second semiconductor region and the first plane and has a lower first-conductivity-type impurity concentration than the first semiconductor region, and second-conductivity-type fourth semiconductor region between the third semiconductor region and the first plane and has a higher second-conductivity-type impurity concentration than the second semiconductor region; a first electrode on a side of the first plane of the semiconductor layer and is electrically connected to the third semiconductor region and the fourth semiconductor region; and a second electrode on a side of the second plane of the semiconductor layer, is electrically connected to the first semiconductor region, and is not electrically connected to the second semiconductor region.
To provide an oxide semiconductor film having stable electric conductivity and a highly reliable semiconductor device having stable electric characteristics by using the oxide semiconductor film. The oxide semiconductor film contains indium (In), gallium (Ga), and zinc (Zn) and includes a c-axis-aligned crystalline region aligned in the direction parallel to a normal vector of a surface where the oxide semiconductor film is formed. Further, the composition of the c-axis-aligned crystalline region is represented by In1+δGa1-δO3(ZnO)m (0<δ<1 and m=1 to 3 are satisfied), and the composition of the entire oxide semiconductor film including the c-axis-aligned crystalline region is represented by InxGayO3(ZnO)m (0
An array substrate, a manufacturing method thereof and a display panel are provided. The array substrate includes a base substrate, a plurality of thin film transistors and a first light shielding layer. The base substrate includes a first surface and a second surface respectively located on opposite sides of the base substrate. The plurality of thin film transistors are disposed on the first surface of the base substrate, and each of the plurality of thin film transistors includes an active layer. The first light shielding layer is disposed on the second surface of the base substrate. The first light shielding layer has at least one opening that overlaps with at least one thin film transistor in a direction perpendicular to the second surface of the base substrate to allow light to irradiate at least the active layer of at least one thin film transistor.
A method of forming a semiconductor device that includes forming a strain relaxed buffer (SRB) layer atop a supporting substrate, and epitaxially forming a tensile semiconductor material atop a first portion of the strain relaxed buffer layer (SRB) layer. A second portion of the SRB layer is then removed, and a semiconductor material including a base material of silicon and phosphorus is formed atop a surface of the supporting substrate exposed by removing the second portion of the SRB layer. A compressive semiconductor material is epitaxially forming atop the semiconductor material including the base material of silicon and phosphorus. Compressive FinFET structures can then be formed from the compressive semiconductor material and tensile FinFET structures can then be formed from the tensile semiconductor material.
A MOSFET device structure is formed on a semiconductor wafer. The structure includes an array of plurality of MOS gate trenches and self-aligned p+ contact trenches that are formed in a p body region. Trench depth of MOS gate trenches are deeper than the self-aligned p+ contact trenches. P doped shield regions are formed under each MOS gate trench.
A semiconductor device is provided. The semiconductor device includes a substrate, a first III-V compound layer disposed on the substrate, a second III-V compound layer disposed on the first III-V compound layer, a p-type doped III-V compound layer disposed on the second III-V compound layer, a gate disposed over the p-type doped III-V compound layer, a source and a drain disposed on opposite sides of the gate, and a dielectric layer disposed between the p-type doped III-V compound layer and the gate. A method for forming the above semiconductor device is also provided.
A device includes a fin structure protruding over a substrate, wherein the fin structure comprises a plurality of portions formed of different materials, a first carbon doped layer formed between two adjacent portions of the plurality of portions, a second carbon doped layer formed underlying a first source/drain region and a third carbon doped layer formed underlying a second source/drain region.
Methods of selectively nitriding surfaces of semiconductor devices are disclosed. For example, a hardmask is formed on the top portion of the fins to create SOI structure. The hardmask may be formed by nitriding the top portion of the fin. In other embodiments, silicon nitride is grown on the top portion of the fin to form the hard masks. In another example, internal spacers are formed between adjacent nanowires in a gate-all-around structure. The internal spacers may be formed by nitriding the remaining interlayer material between the channel region and source and drain regions.
A method includes removing a dummy gate to leave a trench between gate spacers, forming a gate dielectric extending into the trench, depositing a metal layer over the gate dielectric, with the metal layer including a portion extending into the trench, depositing a filling region into the trench, with the metal layer have a first and a second vertical portion on opposite sides of the filling region, etching back the metal layer, with the filling region at least recessed less than the metal layer, and remaining parts of the portion of the metal layer forming a gate electrode, depositing a dielectric material into the trench, and performing a planarization to remove excess portions of the dielectric material. A portion of the dielectric material in the trench forms at least a portion of a dielectric hard mask over the gate electrode.
The disclosed technology relates generally to integrated circuit structures, and more particularly to a semiconductor fin structure having silicided portions. In an aspect, a semiconductor device including a fin structure and a substrate is disclosed. The fin structure includes a first source/drain region, a second source/drain region, and a channel region. The channel region is arranged between the first source/drain region and the second source/drain region to separate the first source/drain region and the second source/drain region in a length direction of the fin structure. The first source/drain region includes a bottom portion and a top portion, wherein the bottom portion of the first source/drain region is fully silicided and the top portion of the first source/drain region is partly silicided.
A semiconductor device includes a source/drain region in a fin-type active pattern, a gate structure adjacent to the source/drain region, and an insulating layer on the source/drain region and the gate structure. A shared contact plug penetrates through the insulating layer and includes a first lower portion connected to the source/drain region, a second lower portion connected to the gate structure, and an upper portion connected to upper surfaces of the first lower portion and the second lower portion. A plug spacer film is between the insulating layer and at least one of the first lower portion and the second lower portion and includes a material different from a material of the insulating layer.
A first amorphous film containing hafnium, oxygen and a first element such as zirconium is formed, a plurality of grains containing a second element different from any of hafnium, oxygen and the first element are formed on the first amorphous film, a second amorphous film made of the same material as the first amorphous film is formed on the plurality of grains and on the first amorphous film, and a metal film is formed on the second amorphous film. Thereafter, by performing heat treatment, the first amorphous film is crystallized to form a first orthorhombic ferroelectric film and the second amorphous film is crystallized to form a second orthorhombic ferroelectric film.
A semiconductor device includes a plurality of broad buffer layers provided in a drift layer. Each of the plurality of the broad buffer layers has an impurity concentration exceeding that of a portion of the drift layer excluding the broad buffer layers, and has a mountain-shaped impurity concentration distribution in which a local maximum value is less than the impurity concentration of an anode layer and a cathode layer. The plurality of broad buffer layers are disposed at different depths from a first main surface of the drift layer, respectively, the number of broad buffer layers close to the first main surface from the intermediate position of the drift layer is at least one, and number of broad buffer layers close to a second main surface of the drift layer from the intermediate position of the drift layer is at least two. The broad buffer layer includes a hydrogen-related donor.
The present disclosure provides a semiconductor structure, including a memory region, a first metal line in the memory region, a magnetic tunneling junction (MTJ) cell over the first metal line, a carbon-based layer between the first metal line and the MTJ cell, a second metal line over the MTJ cell, a logic region adjacent to the memory region, wherein the logic region is free from a coverage of the carbon-based layer.
An image sensor may include a pixel isolation structure disposed in a semiconductor substrate to define a first pixel region, first and second photoelectric conversion regions disposed in the first pixel region, and a separation structure disposed in the first pixel region, between the first and second photoelectric conversion regions. The pixel isolation structure may include first pixel isolation portions, which are spaced apart from each other in a second direction and extend lengthwise in a first direction, and second pixel isolation portions, which are spaced apart from each other in the first direction and extend lengthwise in the second direction to connect to the first pixel isolation portions. The separation structure may be spaced apart from the pixel isolation structure in the first direction and the second direction, and is at least partly at the same level as the first and second photoelectric conversion regions in a third direction perpendicular to the first direction and the second direction.
The present disclosure, in some embodiments, relates to an image sensor integrated chip. The image sensor integrated chip includes an image sensing element arranged within a substrate. One or more isolation structures are arranged within one or more trenches disposed on opposing sides of the image sensing element. The one or more isolation structures extend from a first surface of the substrate to within the substrate. The one or more isolation structures respectively include a reflective element configured to reflect electromagnetic radiation.
A fan-out sensor package includes: a substrate in which a through-hole is formed and portions of a wiring layer are exposed from an insulating layer; an image sensor having an active surface having a sensing region disposed below the through-hole of the substrate and connection pads disposed in the vicinity of the sensing region; an optical member disposed on the active surface of the image sensor; a dam member disposed in the vicinity of the sensing region; and an encapsulant encapsulating the substrate and the image sensor, wherein the third wiring layer and the connection pads are electrically connected to each other by connection members.
A novel multi-junction detector device and method of manufacture is disclosed, which includes providing a housing, at least one system mount body positioned within the housing, forming at least one beam dump region in the system mount body in optical communication with at least one first detector having a first wavelength responsivity range positioned on the system mount body and at least one second detector having a second wavelength responsivity range positioned on the system mount body in optical communication with the first detector. An arcuate shape, an arcuate shape of varying radius, a polygonal shape or a polyhedral shape may be formed on at least one mount body wall in the beam dump region. The method may also comprise depositing at least one reflectivity enhancing material onto the mount body wall. The method may further comprise depositing an energy dissipating material on the mount body wall.
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Described herein are ferroelectric memory cells and corresponding methods and devices. For example, in some embodiments, a ferroelectric memory cell disclosed herein includes one access transistor and one ferroelectric transistor (1T-1FE-FET cell). The access transistor is coupled to the ferroelectric transistor by sharing its source/drain terminal with that of the ferroelectric transistor and is used for both READ and WRITE access to the ferroelectric transistor.
Some embodiments include a ferroelectric transistor having an active region which includes a first source/drain region, a second source/drain region, and a body region between the first and second source/drain regions. The body region has a different semiconductor composition than at least one of the first and second source/drain regions to enable replenishment of carrier within the body region. An insulative material is along the body region. A ferroelectric material is along the insulative material. A conductive gate material is along the ferroelectric material.
According to one embodiment, a semiconductor memory device includes the following configuration. A second word line is provided above a first word line on a substrate. A third word line is provided above the second word line. A semiconductor layer includes a first part that passes through the first word line, a second part that passes through the second and the third word lines, and is provided above the first part, and a joint provided between the first and second parts. When a write operation is performed on a memory cell of the third word line, prior to applying a write voltage to the third word line, a first voltage is applied to a bit line, a second voltage is applied to the third word line, and a third voltage higher than the second voltage is applied to the second word line.
A three-dimensional semiconductor memory device may include a stack including gate electrodes sequentially stacked on a substrate and a vertical structure penetrating the stack. The vertical structure may include a vertical channel portion, a charge storing structure on an outer side surface of the vertical channel portion, and a pad. The pad may include a first pad portion disposed in an internal space surrounded by the vertical channel portion and a second pad portion provided on the first pad portion and extended onto a top surface of the charge storing structure. A portion of the first pad portion may be disposed at the same level as an uppermost electrode of the gate electrodes.
A three-dimensional memory device includes alternating stacks of insulating strips and electrically conductive strips located over a substrate and laterally spaced apart among one another by line trenches. The line trenches laterally extend along a first horizontal direction and are spaced apart along a second horizontal direction. Each line trench fill structure includes a laterally undulating dielectric rail having a laterally undulating width along the second horizontal direction and extending along the first horizontal direction and a row of memory stack structures located at neck regions of the laterally undulating dielectric rail. Each memory stack structure includes a vertical semiconductor channel, a blocking dielectric contacting an outer sidewall of the vertical semiconductor channel, and a charge storage layer contacting an outer sidewall of the blocking dielectric, vertically extending continuously through each level of the electrically conductive strips, and having a vertically undulating lateral thickness.
Methods and apparatus for forming a plurality of nonvolatile memory cells are provided herein. In some embodiments, the method, for example, includes forming a plurality of nonvolatile memory cells, comprising forming, on a substrate, a stack of alternating layers of metal including a first layer of metal and a second layer of metal different from the first layer of metal; removing the first layer of metal to form spaces between the alternating layers of the second layer of metal; and one of depositing a first layer of material to partially fill the spaces to leave air gaps therein or depositing a second layer of material to fill the spaces.
Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
A method for fabricating a vertical memory device includes: forming a memory cell array that includes a vertical thyristor and a word line over a first substrate; forming a peripheral circuit unit in a second substrate; bonding the memory cell array with the peripheral circuit unit; removing the first substrate to expose one side of the vertical thyristor; and forming a bit line that is coupled to the one side of the vertical thyristor and the peripheral circuit unit.
An embodiment method includes forming first dummy gate stack and a second dummy gate stack over a semiconductor fin. A portion of the semiconductor fin is exposed by an opening between the first dummy gate stack and the second dummy gate stack. The method further includes etching the portion of the semiconductor fin to extend the opening into the semiconductor fin. A material of the semiconductor fin encircles the opening in a top-down view of the semiconductor fin. The method further includes epitaxially growing a source/drain region in the opening on the portion of the semiconductor fin.
A semiconductor device includes at least one semiconductor fin, a gate electrode, at least one gate spacer, and a gate dielectric. The semiconductor fin includes at least one recessed portion and at least one channel portion. The gate electrode is present on at least the channel portion of the semiconductor fin. The gate spacer is present on at least one sidewall of the gate electrode. The gate dielectric is present at least between the channel portion of the semiconductor fin and the gate electrode. The gate dielectric extends farther than at least one end surface of the channel portion of the semiconductor fin.
Embodiments of the invention are directed to a method of fabricating a semiconductor device. A non-limiting example of the method includes forming a fin over a substrate. The fin includes an upper fin region and a lower fin region. The lower fin region is physically coupled to the upper fin region and the substrate. A portion of the fin is removed to form a fin tunnel configured to physically separate the upper fin region from the lower fin region. A gate structure is formed and configured to fill the fin tunnel and cover a top surface, a bottom surface, a first sidewall, and a second sidewall of the upper fin region.
A semiconductor unit includes: a plurality of transistor chips arranged in a plurality of parallel rows, each transistor chip respectively having a first main electrode on one surface and a second main electrode on another surface; a first conductor layer electrically connected to the first main electrodes of the transistor chips, both corner portions on one end of the first conductor layer being drawn out in a direction in which the rows of transistor chips run; a second conductor layer arranged between the both corner portions of the first conductor layer; and a wiring substrate that is arranged on a side of the second main electrodes of the plurality of transistor chips and includes a wiring layer electrically connected to the second main electrodes of the plurality of transistor chips and to the second conductor layer.
A semiconductor device has a protected node and a reference node, and a bi-directional ESD structure electrically coupled between the protected node and the reference node. The bi-directional ESD structure includes a main transistor electrically coupled between the protected node and the reference node, an upper control transistor with current nodes electrically coupled between the protected node and a control node of the main transistor, and a lower control transistor with current nodes electrically coupled between the reference node and a control node of the main transistor. The bi-directional ESD structure also includes an upper trigger network configured to provide a transient on-state signal to the upper control transistor from a positive electrical pulse on the protected node. The bi-directional ESD structure further includes a lower trigger network configured to provide a transient on-state signal to the lower control transistor from a negative electrical pulse on the protected node.
A conductive line structure includes two conductive lines in a layout. The two cut lines are over at least a part of the two conductive lines in the layout. The cut lines designate cut sections of the two conductive lines and the cut lines are spaced from each other within a fabrication process limit. The two cut lines are connected in the layout. The two conductive lines are patterned over a substrate in a physical integrated circuit using the two connected parallel cut lines. The two conductive lines are electrically conductive.
A chip comprises a semiconductor substrate having a first side and a second side opposite to the first side, a plurality of conductive metal patterns formed on the first side of the semiconductor substrate, a plurality of solder balls formed on the first side of the semiconductor substrate, and at least one code pattern of a first group and at least one code pattern of a second group formed on the first side of the semiconductor substrate in a space free from the plurality of conductive metal patterns and the plurality of solder balls, wherein the code patterns are visible from a backside of the chip, and wherein a tracing number of the chip is represented by the code patterns.
An electroless nickel, electroless palladium, electroless tin stack and associated methods are shown. An example method to form a solder bump may include forming a layer of a second material over a first material at a base of a trench in a solder resist layer. The first material includes nickel and the second material includes palladium. The method further includes depositing a third material that includes tin on the second material using an electroless deposition process, and forming a solder bump out of the third material using a reflow and deflux process.
A package substrate of a semiconductor package includes second and third pad bonding portions respectively located at both sides of a first pad bonding portion disposed on a substrate body. First to third via landing portions are disposed to be spaced apart from the first to third pad bonding portions. First and second connection trace portions are disposed to be parallel with each other, and a first guard trace portion is disposed to be substantially parallel with the first connection trace portion. The second connection trace portion is connected to the first guard trace portion through a first connection plane portion, and the first connection plane portion connects the second connection trace portion to the second via landing portion. The third pad bonding portion is connected to the third via landing portion through a second connection plane portion.
An electronic interposer may be formed using organic material layers, while allowing for the fabrication of high density interconnects within the electronic interposer without the use of embedded silicon bridges. This is achieved by forming the electronic interposer in three sections, i.e. an upper section, a lower section and a middle section. The middle section may be formed between the upper section and the lower section, wherein a thickness of each layer of the middle section is thinner than a thickness of any of the layers of the upper section and the lower section, and wherein conductive routes within the middle section have a higher density than conductive routes within the upper section and the lower section.
A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
Over-molded IC package assemblies including an in-mold capacitor. In some embodiments, an over-molded package assembly includes a IC chip or die coupled to one or more metal distribution layer or package substrate. A molding compound encapsulates at least the IC chip and one or more capacitors are fabricated within the molding compound. The capacitors may include two or more metal plates separated by an intervening dielectric material, all of which are embedded within a trench in the molding compound. Individual ones of the capacitor plates may physically contact a conductive land of the package redistribution layer or package substrate, for example to tie the plates to a ground plane and power plane, or two supply rails, in a decoupling capacitor application.
A circuit carrier includes a substrate, a laminar circuit structure, a metal heat slug, a first fixing piece, and a second fixing piece. The laminar circuit structure is disposed over the substrate and includes a plurality of dielectric layers and circuits in the dielectric layers. The metal heat slug is disposed in the laminar circuit structure. The first fixing piece is disposed on the first side of the upper surface of the metal heat slug. The second fixing piece is disposed on the second side of the upper surface of the metal heat slug, wherein the first side is perpendicular to the second side. A method of manufacturing a circuit carrier is also provided herein.
A semiconductor device includes a semiconductor body; an electrode provided on the semiconductor body and electrically connected to the semiconductor body; a first metal layer selectively provided on the electrode; an insulating layer surrounding the first metal layer on the electrode; and a second metal layer provided on the first metal layer. The insulating layer includes a first surface and a second surface adjacent to the first surface. The first surface contacts a top surface of the first metal layer at an outer edge of the first metal layer. The second metal layer has an outer edge contacting the second surface of the insulating layer.
A heat sink with a base defining a first side having a base planar surface, and a plurality of planar fins extending from the base planar surface in parallel disposition relative to each other. Each planar fin has a bottom fin edge, a top fin edge, and a leading fin edge. Each planar fin has a fin planar surface and one or more control surfaces. Each of the one or more control surfaces extends from the fin planar surface and is disposed relative to the fin planar surface, the bottom fin edge, and the top fin edge such that a fluid flowing from the leading fin edge is conducted toward the base planar surface.
A complementary metal-oxide-semiconductor field-effect transistor (CMOS) device includes a first source/drain (S/D) region and a second S/D region different from the first S/D region. A first epitaxy film formed of a first semiconductor material is on the first S/D region. A second epitaxy film formed of a second semiconductor material is on the second S/D region. The CMOS device further includes first and second S/D contact stacks. The first S/D contact stack includes a first contact trench liner having a first inner side wall extending from a first base portion to an upper surface of the first S/D contact stack. The second S/D contact stack includes a second contact trench liner having a second inner side wall extending from a second base portion to an upper surface of the second S/D contact stack. The first inner sidewall directly contacts the second inner sidewall.
A method of forming a fin field effect transistor (finFET) having fin(s) with reduced dimensional variations, including forming a dummy fin trench within a perimeter of a fin pattern region on a substrate, forming a dummy fin fill in the dummy fin trench, forming a plurality of vertical fins within the perimeter of the fin pattern region, including border fins at the perimeter of the fin pattern region and interior fins located within the perimeter and inside the bounds of the border fins, wherein the border fins are formed from the dummy fin fill, and removing the border fins, wherein the border fins are dummy fins and the interior fins are active vertical fins.
A device wafer is provided that includes a substrate having major and minor surfaces, and a plurality of active devices located at the major surface. A eutectic alloy composition is formed at the minor surface of the substrate. The eutectic alloy composition is removed from the minor surface of the substrate such that a portion of the eutectic alloy composition remains at an outer perimeter of the minor surface to strengthen the outer perimeter of the substrate. A bonding layer is deposited over the minor surface and over the portion of the eutectic alloy composition at the outer perimeter of the minor surface. The bonding layer is utilized for joining semiconductor components of the device wafer to secondary structures. Additional eutectic alloy composition may remain on the minor surface of the substrate at the streets to strengthen the substrate during device wafer separation.
The present disclosure provides a method for forming a semiconductor device. The method includes providing a substrate having a metal pattern, and forming an etch stop layer over the substrate. The etch stop layer includes a first material. The method also includes forming a diffused area in the etch stop layer by diffusing a second material from the metal pattern to the etch stop layer, and forming an insulative layer over the etch stop layer. The diffused area includes a lower etch rate to a first etchant than the insulative layer. A semiconductor device is also provided.
In a semiconductor fabrication apparatus composed of a plurality of components, such as fluid control devices, a manager is to be enabled to identify components by intuition. Information on the identified component is to be provided to the manager in an easy-to-understand manner. In a system in which a manager terminal 3 and an information processor 2 are communicably configured via networks NW1 and NW2, the manager terminal 3 receives component information on a semiconductor fabrication apparatus 1 from the information processor 2. Upon the identification of the position of a component constituting the semiconductor fabrication apparatus 1 on the captured image of the semiconductor fabrication apparatus 1 using an identification processing unit 32, a compositing processing unit 33 creates a composite image in which component information is composited with the captured image at the position of the component identified, and an image display unit 34 displays the composite image. On the other hand, the information processor 2 makes reference to the component information storage unit 2A to extract the component information using an extraction processing unit 21, and transmits the component information to the manager terminal 3.
A configuration that maintains productivity and can automatically execute and control recipes includes a process chamber that processes a substrate, a first transfer chamber in which the substrate is transferred in a vacuum state, a second transfer chamber in which the substrate is transferred in an atmospheric pressure state, a depressurizable preparatory chamber connecting the first transfer chamber and the second transfer chamber, and a controller that executes a maintenance recipe in the preparatory chamber and a production recipe in the process chamber, respectively, in which, when the controller receives an instruction for executing the production recipe during execution of the maintenance recipe, the controller temporarily stops the maintenance recipe and preferentially executes the production recipe, and continuously executes the temporarily stopped maintenance recipe, after completion of the production recipe.
A substrate processing device includes a holding member for holding a substrate, and an opposed member having a body portion and an extended portion extending from at least a part of a peripheral edge part of the body portion. A protrusion is provided on one part of a tip side part of the extended portion and a side surface part of the holding member, and the other part is provided with a restricting structure disposed opposite to the protrusion and restricting relative motion of the protrusion. The relative motion between the holding member and the opposed member is restricted, and the substrate processing device further includes a rotating mechanism, and a nozzle for discharging a processing solution and the protrusion and the restricting structure are disposed below an upper surface of the holding member.
A semiconductor package includes a die and an encapsulant. The die has an active surface and an opposite backside surface. The encapsulant wraps around the die and has a recess reaching the backside surface. A span of the recess differs from a span of the backside surface and a span of the encapsulant. A manufacturing method includes at least the following steps. A blanket die attach film is spin-coated. A light exposure process is performed to the blanket die attach film. Blanket die attach film is developed to form a patterned die adhesive. A die is disposed over the patterned die adhesive with a backside surface closer to the patterned die adhesive. The patterned die adhesive is cured to affix the die. The die and the cured die adhesive are encapsulated in an encapsulant. The cured die adhesive is removed.
Provided is a semiconductor encapsulation structure, including: a device base (1) and a cover plate (2). The device base is provided with a cavity (11) for accommodating a chip (3). The device base is further provided with a cover-plate sintered layer (12). The cover-plate sintered layer is metallized. The cover plate matches the device base. The cover plate is provided with a base sintered layer (22). The base sintered layer is also metallized. The cover plate is connected to the base by sintering. The cover plate is connected to the base by sintering, so that low-temperature connection is achieved, thereby avoiding damage to the chip and electronic components in the base caused by high connection temperature. Furthermore, encapsulating costs are greatly reduced while ensuring connection reliability.
The present invention provides an imprint apparatus that performs an imprint process of forming a pattern of an imprint material on a processing target region on a substrate by using a mold, including a digital mirror device including two-dimensionally arrayed mirror elements and configured to irradiate the substrate with light reflected by the mirror elements, a measurement unit configured to measure, for each of a plurality of segments obtained by dividing a region in which the mirror elements are arrayed so as to include a plurality of the mirror elements, a light amount of light emitted from each segment, and a control unit configured to control the mirror elements included in each segment based on a measurement result of the measurement unit.
A laser annealing process of a drive backplane includes: providing a mask, which has a light transmission area; and sequentially moving the mask to cover different areas of an amorphous silicon layer of the drive backplane, and annealing the amorphous silicon layer exposed in the light transmission area to form a poly-silicon pattern.
Methods and systems for delivering a liquid sample to an ion source for the generation of ions and subsequent analysis by mass spectrometry are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which the flow of desorption solvent within a sampling probe fluidly coupled to an ion source can be selectively controlled such that one or more analyte species can be desorbed from a sample substrate inserted within the sampling probe within a decreased volume of desorption solvent for subsequently delivery to the ion source. In various aspects, sensitivity can be increased due to higher desorption efficiency (e.g., due to increased desorption time) and/or decreased dilution of the desorbed analytes. The methods and systems described herein can additionally or alternatively provide for the selective control of the flow rate of the desorption solvent within the sampling interface so as to enable additional processing steps to occur within the sampling probe (e.g., multiple samplings, reactions).
The present embodiment relates to an ion detector provided with a structure for suppressing degradation over time in an electron multiplication mechanism in a multi-mode ion detector. The ion detector includes a dynode unit, a first electron detection portion including a semiconductor detector having an electron multiplication function, a second electron detection portion including an electrode, and a gate part. The first and second electron detection portions are capable of ion detection at different multiplication factors. The gate part includes at least a final-stage dynode as a gate electrode, and controls switching between passage and interruption of secondary electrons which are directed toward the first electron detection portion by adjusting a set potential of the gate electrode.
Various embodiments herein relate to methods and apparatus for etching feature on a substrate. In a number of embodiments, no substrate rotation or tilting is used. While conventional etching processes rely on substrate rotation to even out the distribution of ions over the substrate surface, various embodiments herein achieve this purpose by moving the ion beams relative to the ion source. Movement of the ion beams can be achieved in a number of ways including electrostatic techniques, mechanical techniques, magnetic techniques, and combinations thereof.
A charged-particle beam (CPB) is aligned to a primary axis of a CPB microscope by determining a first beam deflection drive to a beam deflector for directing the CPB passing a reference location displaced from the primary axis. The beam deflector is provided with a second beam deflection drive during the working mode of the CPB microscope to propagate the beam along the primary axis. The second beam deflection drive is determined based on the first beam deflection drive.
Variable-focus solenoidal lenses for charged particle beams with integrated emittance filtering are disclosed. The emittance may be controlled via selection of collimating irises. The focal length may be changed by altering the spacing between two permanent ring magnets.
A contactor includes a housing having an outer wall defining a cavity, fixed contacts and a movable contact within the cavity, and a coil assembly in the cavity operated to move the movable contact between an unmated position and a mating position with the fixed contacts. The contactor includes an arc suppressor in the cavity including a first magnet located in the cavity on a first side of the movable contact and a second magnet located in the cavity on a second side of the movable contact. The first magnet is arranged in the cavity such that a north B-field of the first magnet faces outward toward the outer wall of the housing. The second magnet is arranged in the cavity such that a north B-field of the second magnet faces outward toward the outer wall of the housing.
A push-button switch may include a housing, a plunger, an operation unit, a transmission mechanism, a contact mechanism, and a biasing portion. The plunger may have a first plunger that is disposed in series with the first plunger. The first plunger and the second plunger may be movable independently of each other. The contact mechanism may be configured to be opened/closed by movement of the second plunger.
A toggle lever connection for connecting at least two toggle levers is disclosed. The toggle levers each include two grooves arranged opposite each other. The toggle lever connection includes a frame and a slider with one hook per toggle lever. The frame and the slider run into each other and can be displaced in relation to each other between a first, open position, in which the toggle lever connection can be placed onto the at least two toggle levers or removed therefrom, and a second, closed position, in which the hooks grip into the grooves of the at least two toggle levers, thereby locking the toggle lever connection to the toggle levers.
A capacitor includes an electrically insulating housing that encloses an interior volume, first and second conductive connection pads that are each configured as externally accessible points of electrical contact to internal electrodes of the capacitor that are disposed within the housing, and an active capacitor dielectric material disposed within the housing and being configured as a dielectric medium between the internal electrodes, the first conductive connection pad having a first planar contact surface that is substantially parallel to a first sidewall of the housing, the second conductive connection pad having a second planar contact surface that is substantially parallel to the first sidewall, the first and second planar contact surfaces being offset from one another in a direction that is orthogonal to the first sidewall.
In a coil component and a method for manufacturing the same, a winding part of a coil is grown by plating so as to extend between resin walls of a resin body provided before the coil is grown by plating. The resin wall is interposed between adjacent turns of the winding part of the coil during the plating growth, and therefore contact between adjacent turns of the winding part of the coil cannot occur.
An example actuator assembly includes an actuator configured to move a rod. A variable differential transformer (VDT) is situated adjacent to the actuator. The VDT includes a core coupled to the rod such that movement of the rod causes a corresponding movement of the core. A plurality of windings surround the core for measuring displacement of the core. A shield surrounds the plurality of windings and shields the plurality of windings from a magnetic field of the actuator. The shield having a maximum permeability of 50,000-500,000. A LVDT configuration method is also disclosed.
Provided are embodiments for a resistor array. The resistor array includes a plurality of resistor elements, where the plurality of resistor elements includes a redundancy region for a most significant bit of an expected value. The resistor array also includes one or more switches coupled to the plurality of resistor elements, and a first terminal and a second terminal coupled to the plurality of resistor elements. Also provided are embodiments for trimming the resistor array where the resistor array includes a redundancy region for a most significant bit for an expected value.
One cable shielding has a first metal shielding braided along a length of a cable, a CNT paper shielding surrounding the first metal shielding along the length of the cable, and a second metal shielding braided about the CNT paper shielding along the length of the cable.
Embodiments in the present disclosure relate generally to computer network architectures for machine learning, artificial intelligence, and automated insight generation. Embodiments of computer network architecture automatically identify, measure, and generate insight reports of underperformance and over performance in healthcare practices. Embodiments may generate the insight reports of performance either occasionally on demand, or periodically, or as triggered by events such as an update of available data. Embodiments may include a combination of system databases with data provided by system users, and third-party databases to generate the insight reports, including social media data, financial data, socio-economic data, medical data, search engine data, e-commerce site data, and other databases.
A method, apparatus and computer program product for using machine learning to evaluate medical risks are described. A graphical user interface is provided for entering a set of patient symptoms for a first patient. A query is sent to a medical system containing the set of patient symptoms. A set of causal factors related to the patient symptoms and a set of association link strengths are received in response. Each association link strength is representative of a strength of a relationship between a respective patient symptom and a respective causal factor. The graphical user interface displays the set of patient symptoms and the set of causal factors according to the respective association link strength to show which causal factors have likely caused the patient symptoms for the first patient and are relevant for selecting among different treatment regimens. The association link strengths are calculated by a set of association link formulas learned by a machine learning system using a set of symptoms and a set of causal factors.
A method includes capturing continuously vital signs and motion data from one or more sensors adapted to be coupled to a user; capturing food consumption of the user; predicting a predetermined health condition of the user based on the vital signs; generating a plan for the predetermined health condition; and prompting the user to execute the plan with a closed-loop feedback based on sensor data.
A system has a measuring device providing a quantitative output of a physiological condition of a subject, a non-transitory identifier affixed to a surface proximal to the measuring device, an imaging apparatus having an Internet connection, and an internet-connected server coupled to a data repository, the Internet-connected server executing coded instructions on a processor. The physiological measuring device is engaged, providing a quantitative indication of the physiological condition of the subject, an image capture of the readout and the non-transitory identifier is captured by the imaging apparatus in a single image, and the captured image is transmitted to the internet-connected server.
A method includes identifying drugs to be dispensed from medication containers within filling cabinets in a pharmacy dispensing system. The drugs are automatically dispensed from the medication containers into pill containers. The method also includes determining a distribution parameter for the medication containers. The distribution parameter represents one or more of a quantity of the drugs that is dispensed or a limit on dispensing the drugs. The method also includes determining at least one allocation of the drugs in the medication containers that differs from a current allocation of the drugs in the medication containers, and changing the current allocation of the drugs in the medication containers to increase a distribution velocity at which the drugs are dispensed from the pharmacy dispensing system.
Adherence monitors are disclosed, incorporating cap removal sensors together with a determined time period in order to determine that a dose of medicament has been dispensed. In another form, cap removal data is combined with acoustic data to determine that a dose of medicament has been dispensed. Several specific structural arrangements are also disclosed.
A dispenser apparatus is presented, the dispenser apparatus including a central opening, a display, an advancing mechanism configured to advance at least one prescription tray vertically through the central opening of the dispenser apparatus, and an ejection mechanism configured to eject one prescription tray from the dispenser apparatus. The dispenser apparatus may be configured to interface with a personal care system including a personal care combination display/mirror device comprising a surface operating as a reflective surface and a plurality of connection ports, each connection port configured to receive a hardware personal care module, each hardware personal care module including software facilitating performance of at least one personal care function and configured to interact with the personal care combination display/mirror device to facilitate personal care of a user, wherein personal care comprises at least one of health, fitness, wellness, fashion, cosmetics, and pharmaceuticals.
A sequencing data analysis method, a device and a computer-readable medium for microsatellite instability. The present invention can use NGS sequencing results to determine whether the microsatellite instability is present. The sequencing data analysis method can significantly improve detection sensitivity without reducing specificity, and can quickly and automatically evaluate a stable or unstable status of each MSI locus with high throughput, high sensitivity, and high specificity. By combining the statuses for all MSI loci in each sample, the samples can be comprehensively evaluated as MSS, MSI-L, or MSI-H.
A non-limiting example includes data storage circuitry. The data storage circuitry includes a built-in self-test (BIST) engine. The data storage circuitry includes a memory array including memory cells. The memory array is configured to store data based on a read-write vector associated with an address vector that includes memory addresses and according to a bit-write vector that defines bit-write enablement for the memory addresses. The memory array is configured to output a stored data vector. The data storage circuitry includes a selector configured to receive the bit-write vector, and to output a selected vector based on an initialization vector and a comparison vector based at least in part on the bit-write vector. The data storage circuitry includes a comparator configured to receive the stored data vector and the selected vector, and to output an error based on discrepancies between the stored data vector and the selected vector.
The present disclosure discloses a memory access interface device. A clock generation circuit generates a command reference clock signal. Each of the access signal transmission circuits adjusts a phase and a duty cycle of one of access signals from a memory access controller according to the command reference clock signal to generate one of output access signal including an output external read enable signal to activate a memory device and an output internal read enable signal. The data reading circuit samples a data signal from the activated memory device according to a sampling signal to generate and transmit a read data signal to the memory access controller. The multiplexer generates the sampling signal according to the output internal read enable signal under a SDR mode and generates the sampling signal according to a data strobe signal from the activated memory device under a DDR mode.
The present disclosure describes an adjustment circuit that can be used, for example, in a memory system with partitioned memory blocks. The adjustment circuit can include a controller circuit, a timer circuit, and a temperature adaptive reference (TAR) generator. The controller circuit can be configured to output a control signal that indicates a memory type (e.g., code memory or data memory) associated with a partitioned memory block. The timer circuit can be configured to output a timing signal for a read memory operation based on the control signal. And, the TAR generator can be configured to adjust a verify reference current for a verify memory operation based on temperature, where the verify reference current is set based on the control signal.
Embodiments are provided that include a memory device having a memory array including a plurality of access lines and data lines. The memory device further includes a circuit coupled to the plurality of access lines and configured to provide consecutive pulses to a selected one of the plurality of access lines. Each pulse of the consecutive pulses includes a first voltage and a second voltage. The first voltage is greater in magnitude than the second voltage, and the first voltage is applied for a shorter duration than the second voltage.
In a method of reading initialization information from a non-volatile memory device, when power-up is detected, the non-volatile memory device divides a source voltage to generate a low read pass voltage which is to be provided to unselected word lines in an initialization information read operation. The low read pass voltage is set as at least one voltage between a ground voltage and the source voltage. The non-volatile memory device allows the source voltage not to be pumped in the initialization information read operation, based on the power-up. In the initialization information read operation, the non-volatile memory device provides the low read pass voltage to the unselected word lines and provides a read voltage to a selected word line to read initialization information stored in the memory cells.
Systems are methods are provided for implementing an analog content addressable memory (analog CAM), which is particularly structured to allow for an amount of variance (fuzziness) in its search operations. The analog CAM may search for approximate matches with the data stored therein, or matches within a defined variance. Circuitry of the analog CAM may include transistor-source lines that receive search-variance parameters, and/or data lines that receive search-variance parameters explicitly within the search input data. The search-variance parameters may include an upper bound and a lower bound that define a range of values within the allotted amount of fuzziness (e.g., deviation from the stored value). The search-variance parameters may program (using analog approaches) the analog CAM to perform searches having a modifiable restrictiveness that is tuned dynamically, as defined by the input search-variance. Thus, highly efficient hardware for complex applications involving fuzziness are enabled.
One or more blocks of dynamic random access memory are embedded together with a processor and a data bus on an integrated circuit. The data bus has a bandwidth b for general operation including memory access, the block of dynamic random access memory further requiring data refresh at a refresh rate r. The block thus forms an eDRAM on the integrated circuit, typically an ASIC. A refresh controller embedded with the eDRAM may control refresh by clocking the data bus at a rate higher than the rate of the data bus to accommodate both the required memory access and the required data refresh.
In some examples, an inactive word line voltage control (IWVC) circuit may be configured to provide a respective subword driver associated with a memory bank of a plurality of memory banks a non-active potential from a default off-state word line voltage (VNWL) to a reduced voltage VNWL lower than the default VNWL following a time duration after activating the memory bank. The IWVC circuit may also be configured to provide the respective subword driver with the default VNWL responsive to precharging the memory bank. The IWVC circuit may include a multiplexer coupled to the subword driver and configured to provide the default VNWL or the reduced voltage VNWL to the respective subword driver responsive to a VNWL control signal. The IWVC circuit may also include a time control circuit configured to provide the VNWL control signal responsive to a clock signal and a time control signal.
A recording medium includes a video stream of a standard-luminance range and a video stream of high-luminance range, which are used selectively in accordance with a playback environment. The recording medium also includes a subtitle stream of the standard-luminance range and a subtitle stream of the high-luminance range, which are used selectively in accordance with the playback environment. A playlist file includes a management region where playback control information relating to a main stream is stored, and includes an extended region. The management region stores first playback control information specifying playing of the video stream of the high-luminance range and the subtitle stream of the high-luminance range in combination. The extended region stores second playback control information specifying playing of the video stream of the standard-luminance range and the subtitle stream of the standard-luminance range in combination.
The present disclosure generally relates to tape heads for use in a tape drive system. The tape head includes a plurality of servo elements and a plurality of data elements disposed between the servo elements. An electrostrictive material is present in the tape head. Electrodes are coupled to the electrostrictive material to permit a voltage to be distributed across the electrostrictive material. The voltage causes the electrostrictive material to expand, and thus expand the tape head. By expanding the tape head by adding voltage, or contracting the tape head by lowering voltage, the spacing between adjacent data elements can be adjusted to match the spacing between adjacent data tracks on a tape.
A magnetic recording head is disclosed having a main pole, a shield hot seed layer positioned at a first side of the main pole, a first material positioned at both a second side and a third side of the main pole, the first material connected to the main pole, a second material positioned adjacent to the first material on the second side and the third side of the main pole, the second material comprised of a spin torque layer, a third material positioned adjacent to the second material on the second side and the third side of the main pole, a fourth material positioned adjacent to the third material on the second side and the third side of the main pole and a side shield connected on an exterior side of the fourth material.
Embodiments allow for an auto-mixer to gate microphones on and off based on speech detection, without losing or discarding the speech received during the speech recognition period. An example method includes receiving and storing an input audio signal. The method also includes determining, based on a first segment of the input audio signal, that the input audio signal comprises speech, and determining a delay between the input audio signal and a corresponding output audio signal provided to a speaker. The method also includes reducing the delay, wherein reducing the delay comprises removing one or more segments of the stored input audio signal to create a time-compressed audio signal and providing the time-compressed audio signal as the corresponding output audio signal. The method also includes determining that the delay is less than a threshold duration, and responsively providing the input audio signal as the corresponding output audio signal.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining voice characteristics are provided. One of the methods includes: obtaining speech data of a speaker; inputting the speech data into a model trained at least by jointly minimizing a first loss function and a second loss function, wherein the first loss function comprises a non-sampling-based loss function and the second function comprises a Gaussian mixture loss function with non-unit multi-variant covariance matrix; and obtaining from the trained model one or more voice characteristics of the speaker.
A system and method include reception, from a remote system, of a trained natural language processing model implementing a dialog flow-based application, reception of input parameters from an operator while not in communication with the remote system, input of the input parameters to the model to initiate a transaction, storing of transaction data associated with the transaction in a local memory, determination that the mobile device is in communication with the remote system, transmission, in response to the determination, of the stored transaction data to the remote system, and reception, from the remote system, of an updated trained model based on the transmitted transaction data.
An apparatus for facilitating control of midi-sequence generation is disclosed. The apparatus may include a midi-sequence module configured to store a plurality of main midi sequences, store a plurality of fill midi sequences, and playback a plurality of main midi sequences and the plurality of fill midi sequences. The apparatus can also include a first foot-operable switch configured to operate the midi-sequence module, an instrument input, and a looping means configured to record a plurality of signals received from the instrument input, generate a plurality of recorded loops associated with the plurality of recorded signals, store the plurality of recorded loops, and playback each of the plurality of recorded loops. The apparatus can also include a second foot-operable switch configured to operate the looping means.
A display panel and a driving method thereof, and a display device are disclosed. The display panel includes: a pixel region, including a first pixel region and a second pixel region located around the first pixel region, the first pixel region and the second pixel region each including a plurality of pixels; a photosensitive layer, located at least in the second pixel region; a cover plate, on a side of the pixel region for displaying, and the cover plate including a light transmission region and a light shielding layer surrounding the light transmission region. The light shielding layer coincides with at least a portion of the second pixel region in a direction perpendicular to the cover plate, and the photosensitive layer is configured to determine a position of the light transmission region.
A head-mounted device may include a display that generates content and an optical system through which the content is viewable. The head-mounted device may include a lighting system that illuminates a periphery of the optical system. When the user places the device on his or her head in a brightly lit environment, control circuitry may operate the lighting system to provide bright illumination to the user's peripheral vision. The lighting system may gradually decrease in brightness until the user transitions from a bright-adapted state to a dark-adapted state. When the user is partially or fully dark-adapted, the lighting system may be turned off and the display may be turned on. In some arrangements, an ambient light sensor may measure ambient light conditions outside of the electronic device and the control circuitry may control the lighting system based on the ambient lighting conditions.
An electronic device is provided. The electronic device includes a storage; and a processor configured to: identify, based on a luminance value of each pixel included in a global area of an image stored in the storage, a first cumulative distribution of the global area, identify, based on a luminance value of each pixel included in a local area of the image, a second cumulative distribution of the local area, correct the luminance value of each pixel included in the local area based on the first cumulative distribution and the second cumulative distribution to generate a corrected luminance value of each pixel included in the local area, and generate a corrected image signal based on the corrected luminance value of each pixel included in the local area.
A switching device includes multimedia input interfaces for respectively receiving multiple multimedia signals, a switching unit electrically connected to the multimedia input interfaces, a multimedia output interface, an electrical characteristics modulator, and a controller. The switching unit outputs a selected multimedia signal according to a first control signal. The multimedia output interface includes a multimedia signal terminal for outputting the selected multimedia signals and a non-signal terminal. The electrical characteristics modulator changes an electrical characteristic of the non-signal terminal according to a second control signal. The controller is controlled to generate the first and the second control signals through a video switching method whereby the electrical characteristics modulator changes the electrical characteristic of the non-signal terminal thereby increasing compatibility between the switching device and a multimedia output device.
A display panel driving apparatus includes a data driving part, a data driving part and an off voltage controlling part. The data driving part is configured to output a data signal to a data line of a display panel. The gate driving part is configured to output a gate signal to a gate line of the display panel. The off voltage controlling part is configured to receive a first off voltage and a second off voltage applied to the gate driving part to generate the gate signal, measure a leakage current of the gate driving part, and control the first off voltage based on the leakage current. Thus, display quality of a display apparatus including the gate driving part may be improved.
A shift register unit, a gate drive circuit and a display device are disclosed. The shift register unit includes an input circuit, an output circuit, a reset circuit, a control circuit and a reset stabilizing circuit. The input circuit is configured to write an input signal into a first node in response to an input start signal. The output circuit is configured to output a preparatory output signal to an output terminal under control of an electric level of the first node. The reset circuit is configured to reset the output terminal under control of an electric level of a second node. The control circuit is configured to apply a first voltage signal to the second node in response to a control signal. The reset stabilizing circuit is configured to apply a second voltage signal to the first node in response to a reset stabilizing signal.
A display device is provided and includes sub-pixels each including a sub-pixel electrode, and a first and second memory; a clock signal output circuit configured to, based on a reference clock signal, output a plurality of clock signals having different frequencies; a selection circuit configured to select one of the clock signals as a selected clock signal; a memory selection circuit configured to select all of the first memories included in all the sub-pixels or all of the second memories included in all the sub-pixels in synchronization with the selected clock signal; a common electrode facing all of the sub-pixel electrodes; and a common-electrode driving circuit configured to provide a common potential to the common electrode, wherein the common potential is inverted in synchronization with the reference clock signal, wherein the sub-pixel electrode is driven based on sub-pixel data stored in the selected one of the memories to display an image.
A display device is operated by using several iterations of a scan phase followed by a global drive phase. In the scan phase, the state of each pixel in the display device is set to either “enabled” or “disabled”, during which time a global drive generator is inactive. Then, in the global drive phase, a global drive signal is sent to the display device. Only the subset of enabled pixels is affected by the global drive signal, which causes the enabled pixels to perform a transition to a desired display state. The sequence of the scan phase followed by the global drive phase is then repeated up to the number of unique transitions required to update the display device.
A pixel drive circuit includes a drive unit, a boost sub-circuit and a light-emitting unit. The drive unit is configured to output a voltage; the boost sub-circuit is coupled to the drive unit and configured to receive and boost the voltage, and output a boosted voltage; and the light-emitting unit is coupled to the boost sub-circuit and configured to receive the boosted voltage.
A display device includes a display area of various shapes, has a reduced dead space, and displays an image. Further, the display device includes a display unit including a rounded corner portion, a first driving voltage supply line arranged in a first direction in a non-display area on one side of the display unit, a plurality of first driving voltage lines which supplies a driving voltage to a plurality of pixels and is arranged in a second direction that intersects with the first direction and being connected to the first driving voltage supply line, and a plurality of second driving voltage lines disconnected from the first driving voltage supply line.
There is provided a method for setting black data of a display device and a display device employing the same. In the method for setting black data of the display device including a display unit for displaying an image corresponding to data, the method includes: applying data having a test voltage to the display unit; measuring a luminance of a test image displayed in the display unit; and when the measured luminance is a reference luminance or less, setting first black data, based on the test voltage.
An electronic device having a display and a sensor and methods for operating the same are provided. The electronic device includes a housing, a display disposed on a surface of the housing, a sensor mounted under the display inside the housing to detect light received through the display, and a processor electrically connected with the display and the sensor, wherein the processor is configured to determine an illuminance of an outside of the housing using detection data obtained by the sensor while the display displays an image and relevant information between the display and the sensor.
The disclosure discloses a line structure for a display screen including a display substrate, a main power supply line and two branch lines. The display substrate includes a display area and a non-display area. The main power supply line is used to transmit a negative signal power supply (VSS) signal, and a length of the main power supply line is less than a length of a long side of the display area, and two branch lines are electrically connected to an end of the main power supply line and extend toward opposite directions along a signal input side of the display area, respectively.
An electronic display includes emission clock routing without the use of repeaters. This may be accomplished by providing row drivers for each emission clock signal on opposing edges of the display panel, so that each set of row drivers may provide the emission clock signal to only a portion of the micro-drivers in each row. The array of micro-drivers may be further segmented (e.g., into four or more sections, an alternating pattern, uneven sections, etc.) to provide similar advantages. Furthermore, rather than using multiplexors to provide the emission clock signals to the row drivers, the emission clock may be hardwired to the row drivers. This may reduce the number of pins and support the provision of more phases.
An electronic device is provided that includes a display panel including a plurality of source line groups including a plurality of source lines and a plurality of panel switches for each of the plurality of source lines; and a display driver integrated circuit (DDI) configured to drive the display panel, wherein the DDI includes the plurality of source amplifiers, decoders respectively connected to the plurality of source amplifiers, and at least one switch between source amplifier channels, wherein an operation of the at least one switch causes the number of the source line groups corresponding to a source amplifier to be changed.
A display panel, a method for driving a display panel and a display apparatus are provided. The display panel includes a plurality of pixels, a plurality of gate lines and a plurality of data lines; a multiplexer including a plurality of selectors; a plurality of control lines electrically connected to the plurality of selectors, and a plurality of shift register groups. Each of the plurality of control lines is used to control an output terminal of the selector to output a data signal to the data line. Each shift register group includes a plurality of cascaded shift registers and each shift register is electrically connected to at most two of the plurality of gate lines. There are N rows of pixels between pixels corresponding to two of the plurality of gate lines electrically connected to a same shift register and N is a positive integer.
A crack detector may include a plurality of crack detection switches for connecting and disconnecting data lines of a display panel to one another. A signal supply may supply a detection control signal for controlling opening/closing of the crack detection switches and supply a crack detection signal to a first data line. A crack determiner may be configured to determine a crack of the display panel by comparing an output signal supplied from a second data line connected to the first data line through one of the crack detection switches, with a preset reference value.
A dissolvable produce washing label includes a dissolvable substrate impregnated with a produce cleanser; an adhesive layer; and a coating to seal and protect from water and humidity. When rubbed and washed with water by the end user the top coating wears and breaks to expose the dissolvable substrate, thereby dissolving the substrate and releasing the produce wash.
Methods of preparing extended content labels from prefabricated adhesive assemblies are described. The methods do not require delamination or relamination of the prefabricated adhesive assemblies. The prefabricated adhesive assemblies include a transparent face layer and an adhesive layer sensitive to radiant energy. Extended content printing is applied to a front face of the face layer. A mask is positioned between the adhesive layer and a radiant energy source. Radiant energy not blocked by the mask reduces the adhesion of irradiated portions of the adhesive layer. A floodcoat is applied over the extended content indicia, and front side indicia is applied over the floodcoat and is visible through the face layer and adhesive layer from a back side of the face layer.
Exemplary embodiments provide systems, devices and methods for simultaneously measuring mechanical and electrophysiological tissue responses (e.g., contractile function, or the like).
Provided is an airspace controller for creating and managing dynamic airspace for different users. The airspace controller may produce different dynamic airspace for each user by continually updating static controlled airspace maps with user-specific flight information including user-planned flights, authorization status of the user's flights, waivers, controlled airspace restrictions, and real-time flight telemetry. The airspace controller may generate a static airspace map for all users with different airspace user interface (“UI”) elements at different regions that correspond to different airspace restrictions in effect at those regions. The airspace controller may create dynamic airspace for each user by modifying the static airspace map to include flight UE elements over regions of the static airspace map where user-defined flights are to occur. The flight UE element may include shapes that correspond to flight areas defined for a flight plan, and one of several graphical representations to identify authorization status of the flight.
A parking lot information service system and method provide position information of an available parking space in a parking lot. The system includes an electronic device that outputs parking lot information in a vehicle that is waiting to park in a parking lot associated with a multi-use facility. The system further includes a facility server that manages facility usage information of a user corresponding to a parked vehicle in the parking lot. The system also includes a parking lot server that predicts departure time of the parked vehicle by analyzing the facility usage information and generates the parking lot information based on the predicted departure time.
The Service Animal Emergency Alert Apparatus is a device for providing a triggering means to a trained animal to send an alert signal by triggering a remote activation device connectively attached to an alert service, monitored service, or emergency response service comprising a box having a door providing access to an interior of said box wherein a configurable remote device position tray is connectively attached to a plurality of triggering buttons and a triggering pull cord configured to enable a trained animal to send an alert by pushing upon said triggering buttons or grasping and pulling upon said triggering pull cord thereby activating said remote activation device sending an alert signal through an alert service, monitored service, or emergency response service to summon responsive human assistance to render aid.
The invention generally provides devices and methods for particle detection for minimizing human-caused contamination in manufacturing environments requiring low levels of microbes, such as cleanroom environments for electronics manufacturing and aseptic environments for manufacturing pharmaceutical and biological products, such as sterile medicinal products. Methods of the invention may incorporate wirelessly transmitting an alarm signal from a particle detector to a remote device, replicating a graphical user interface of the particle detector on an electronic display of the remote device, and passing one or more user instructions from the remote device to the particle detector via the replicate graphical interface of the remote device.
An image forming apparatus includes a memory that stores evacuation information for use in an event of a disaster, a printer that prints the evacuation information stored in the memory in the event of a disaster, and a display controller that performs, if the printer is unable to print the evacuation information, control to display information on an installation place of a different image forming apparatus that is able to print the evacuation information in place of the image forming apparatus.
Systems and methods for operating a marker. The methods comprise: storing energy collected by an energy harvesting element of the marker; using the stored energy to enable operations of the marker's communications element; receiving, by the marker's communications element, a marker deactivation signal transmitted from an external device; and causing either a resonator to be prevented from receiving transmit bursts emitted from an EAS system, a bias element's magnetic field to be normalized, or a resonator to be physically prevented from vibrating, in response to the marker deactivation signal's reception.
A method and/or system for assessing the security situation in a building through an evaluation of sensor values provided by activity sensors situated in the building, in particular, in the accommodation region, an estimate of the number of persons actually present in the building, determining the number of persons to be expected in the building by an evaluation of administrative data (HR, Outlook, events, occupancies, etc.). Based upon a comparison of the number of persons to be expected with the number of actual persons, an indicator is determined for assessing the actual security situation in the building or in the accommodation region.
The augmented reality system described herein calculates a personalized escape plan from a location for a user. A participant is registered to an emergency direction system that employs an augmented reality system to provide instructions to the participant to exit a data center. The emergency direction system receives a floor plan. The emergency direction system may also detect a hazard, and determine a hazard growth score. The emergency direction system can also compute a dynamic escape plan using hazard growth score and the hazard location. In some embodiments, the emergency direction system can also recalculate the dynamic escape plan to account for the person to carry an asset during exiting the structure corresponding to the floor plan in response to the hazard. Instructions for the person to exit the data center in response to the hazard carrying the asset are forwarded to the participant.
An aircraft emergency exit door indication system may comprise a first plurality of light sources, a controller, and a first sensor associated with a first exit door. The first sensor feedback signal indicates an availability for egress through the first exit door. The first plurality of light sources is operated by the controller based upon the first sensor feedback signal. The light sources may be lights that already exist in an aircraft such as ceiling wash lights, sidewall wash lights, floor path lights, dome lights, or passenger service unit lights. The system may include a second plurality of light sources logically separated from the first plurality of light sources based upon its location relative to the first exit door and a second exit door.
A gaming machine provides a spinning reel game having a base game, from which a hold and spin feature game is triggered when a determined number of configurable symbols are displayed in a base game outcome. When the feature game is triggered, the configurable symbols are held in place on the display and the player is provided one or more spins during the feature game in which to collect additional configurable symbols. Any additional configurable symbols are retained on the display during subsequent spins until the feature game is completed. Each reel on the game display includes a respective multiplier meter that is adjusted when a multiplier symbol is displayed on the reel in a base game outcome. The multiplier symbols include dynamic multiplier symbols that increment the multiplier meters by a defined amount and static multiplier symbols that lock a meter at a defined multiplier value. At the end of the hold and spin feature game, the multiplier values carried by the meters are applied to the values of the held symbols in a respective reel to determine the amount to be awarded to the player. Following completion of the feature game, the multiplier meters are reset to a default value.
A gaming system includes a frame, a gaming machine coupled to the frame, and an interactive device extending about at least a portion of a periphery of the frame. The gaming machine includes a presentation device configured to present a message associated with an interaction of a player with the gaming system. The interactive device is configured to detect the interaction of the player with the interactive device, and present feedback to the player based on the detection of the interaction of the player with the interactive device.
An electronic gaming system includes a game controller configured to control a display device to present a game area, where the game area is configured to display a plurality of reel strips. Further, the game controller may select a reel layout for at least one reel strip, where the selected reel layout specifies a size of at least one oversized symbol and a location of the at least one oversized symbol on the symbol display positions of the at least one reel strip. In addition, the game controller may select a first oversized symbol corresponding to the size of the at least one oversized symbol specified by the selected reel layout, and/or add the first oversized symbol to the at least one reel strip at the location specified by the reel layout.
Systems and methods are provided for controlling access to a building or other restricted physical spaces using at least a facial recognition module, an access control panel and electronically lockable doors or other means of controlling access. The facial recognition module comprises visible light and IR detection. The facial recognition module may also comprise a badge reader, or a badge reader may be a separate component connected to the access control panel. The facial recognition module learns to recognize authorized entrants by associating badge numbers with the facial images of authorized entrants.
An optical measuring system for fitting spectacles to a subject and/or for diagnosing and/or monitoring ocular diseases and/or disorder in the subject, and methods of use thereof. The system includes at least one image capturing device for capturing at least one image of at least part of the face of the subject. The system also includes at least one movable mount for mounting the image capturing device in front of the subject and moving the image capturing device relative to the subject; and at least one processor operatively connected to the image capturing device for generating a three dimensional (3D) model of the at least part of the face of the subject. The at least one processor is also configured to determine, from the 3D model generated, one or more optical measurements of the subject.
Systems and methods for image based location estimation are described. In one example embodiment, a first positioning system is used to generate a first position estimate. Point cloud data describing an environment is then accessed. A two-dimensional surface of an image of an environment is captured, and a portion of the image is matched to a portion of key points in the point cloud data. An augmented reality object is then aligned within one or more images of the environment based on the match of the point cloud with the image. In some embodiments, building façade data may additionally be used to determine a device location and place the augmented reality object within an image.
Position-based rendering apparatus and method for multi-die/GPU graphics processing. For example, one embodiment of a method comprises: distributing a plurality of graphics draws to a plurality of graphics processors; performing position-only shading using vertex data associated with tiles of a first draw on a first graphics processor, the first graphics processor responsively generating visibility data for each of the tiles; distributing subsets of the visibility data associated with different subsets of the tiles to different graphics processors; limiting geometry work to be performed on each tile by each graphics processor using the visibility data, each graphics processor to responsively generate rendered tiles; and wherein the rendered tiles are combined to generate a complete image frame.
The present invention provides an image display system which can simplify an operation of an operator for displaying images appropriate for diagnosis. An image display system according to the present invention includes a first obtaining unit configured to obtain first image data piece, a second obtaining unit configured to obtain a first meta-information piece regarding the first image data piece, a third obtaining unit configured to obtain a second image data piece, a fourth obtaining unit configured to obtain a second meta-information piece regarding the second image data piece, and a display control unit configured to determine a superimposition style corresponding to a combination of the first and second meta-information pieces based on the first and second meta-information pieces and display a superimposition image of the first and second image data pieces in the superimposition style on a display unit.
Embodiments of the present disclosure relate generally to systems for enhancing a first media item through the addition of a supplemental second media item. A user may provide a request to enhance a selected media item, and in response, an enhancement system retrieves and presents a curated collection of supplemental content to be added to the media, to the user. The user may review the curated collection of supplemental content, for example by providing a tactile input to scroll through the curated collection of content.
A user interface apparatus for a vehicle includes: an interface unit; a display unit configured to project an augmented reality (AR) graphic object onto a screen; at least one processor; and a computer-readable medium coupled to the at least one processor having stored thereon instructions which, when executed by the at least one processor, causes the at least one processor to perform operations including: acquiring, through the interface unit, front view image information and vehicle motion information; based on the front view image information, generating the AR graphic object; and based on the vehicle motion information, warping the AR graphic object.
Systems and methods are presented that provide for receiving, at a media overlay publication system from a first client device, content to generate a media overlay, and generating the media overlay using the content received from the client device. The generated media overlay is stored in a database associated with the media overlay publication system and associated with a first characteristic of the content received from the first client device. The media overlay is provided to a second client device when a second characteristic of context data associated with the second client device correlates to the first characteristic for the media overlay, causing a display of the media overlay on a user interface of the second client device.
The computer-implemented tool generates radial organization charts by ingesting hierarchical structured data, with associated performance attributes, and populating a virtual reporting tree that stores tree structure and radial structure information. The graphing server populates the virtual reporting tree while adding ghost nodes to ensure symmetry. The graphing server calculates and assigns radial and angular positional information to each node and uses that positional information to generate the radial organizer chart, applying coloring information to selected nodes and graphically represented radial relationship lines based on the structure and associated performance attributes from the ingested data.
A wearable electronic device displays an impact location that shows where a projectile fired from a weapon will hit a target and displays a bullseye location that shows a desired location where to hit the target. The wearable electronic device indicates firing the weapon when the impact location overlaps with the bullseye location.
An information processing apparatus includes a unit that obtains one or more pairs, each of which is constituted by images before and after correction, a unit that obtains changes in color, caused by the correction, of points in an image for the one or more pairs, a unit that obtains a distribution of the changes for the obtained pairs, and an extracting unit. When an interval having a frequency equal to or larger than a threshold determined for each interval exists at a distance of a tolerance width or more from an interval having a maximum frequency in the distribution, the extracting unit extracts, as learning data to learn a color change caused by the correction, the changes that are included in the interval having the maximum frequency but are not included in the interval having a frequency equal to or larger than the threshold determined for each interval.
A Position and Orientation Measurement Engine (POME) is a mobile camera system that can be used for accurate indoor measurement (e.g., at a construction site). The POME uses a plurality of cameras to acquire images of a plurality of targets. If locations of the plurality of targets are precisely known, images of the targets can be used to determine a position of the POME in relation to the plurality of targets. However, to precisely determine locations of the plurality of targets can be time consuming and/or use expensive equipment. This disclosure discusses how to use the POME itself to determine locations of the plurality of targets.
A decision part decides a representative edge direction using a predetermined angle range as a unit for each pixel area of a plurality of pixel areas of a photographic image photographed by a camera based on an edge angle of each pixel contained in the pixel area. An extractor extracts two of the pixel areas that are adjacent to each other as a pair area among the pixel areas of the photographic image, when the two pixel areas that are adjacent to each other have opposite representative edge directions. A determination part determines whether or not there is an attachable matter on a lens of the camera based on at least one of (1) a number of the pair areas extracted by the extractor and (2) a total sum of edge intensities of the pixel areas contained in the pair areas.
A system for determining the absolute position of a first object with respect to a second object includes a scalar element attached to the first object and a measuring device attached to the second object. The scalar element comprises a series of coded regions. The coded region represents a number designating a position along an axis of the scalar element. The measuring device includes a two-dimensional optical sensor array configured to capture an image of a portion of the scalar element. The system also includes a processor configured to receive the image and determine an absolute position of the first object with respect to the second object based on at least one coded region of the series of coded regions.
Embodiments relate to a normalized cross correlation (NCC) circuit that can perform a normalized cross correlation between input patch data and kernel data. An interface circuit of an image signal processor receives input patch data from a source. Input patch data is data that represents a portion of a frame of image data from the source. The NCC circuit includes a filtering circuit and a normalization circuit. The filtering circuit receives the input patch data from the interface circuit and performs a convolution on the received input patch data or processed patch data derived from the input patch data with kernel data to produce convolution output data. The normalization circuit computes a normalized score output based on the convolution output data and the kernel data. The normalized score output includes normalization scores for each location of the convolution output data.
Rigid body configuration method, apparatus, terminal device, and computer storage medium are provided. The method includes: initializing the positions of reflective markers of each rigid body; selecting a reflective marker from the reflective markers with undetermined target positions as a target reflective marker, fixing other reflective markers except for the target reflective marker, and successively moving the target reflective marker through each vacant position in the three-dimensional space of the rigid body to which the target reflective marker belongs; respectively calculating the degree of rigid-body difference when the target reflective marker is at each position based on the position information of each reflective marker; determining the position corresponding to the maximum value of the degree of rigid-body difference as the target position of the target reflective marker; using the same method to determine the target positions of all reflective markers in the system, and completing a rigid-body configuration.
A system and method. The system may include a display, an image generator configured to output a stream of image data, an aircraft state sensor configured to output aircraft state data, and at least one processor. The at least one processor may be configured to: receive the stream of image data; compute an optical flow on the stream of the image data resulting in image-based motion vectors (MVs); receive the aircraft state data; compute expected MVs based on the aircraft state data; compare the expected MVs with the image-based MVs; determine whether at least some of the stream of the image data fails a predetermined assurance level based on a comparison of the expected MVs with the image-based MVs; and upon a determination that at least a portion of the stream of the image data fails the predetermined assurance level, transmit or implement a system response.
In one embodiment, a method includes receiving a machine-learning model trained to detect a specified motion using multiple videos, wherein each video has at least one frame labeled as a moment of perception of the specified motion, identifying an object-of-interest depicted in an input video, detecting a motion of the object-of-interest, determining that the detected motion is the specified motion, and classifying one of the frames of the input video as the moment of perception of the specified motion.
In one embodiment, a method, apparatus, and system may predict behavior of environmental objects using machine learning at an autonomous driving vehicle (ADV). A data processing architecture comprising at least a first neural network and a second neural network is generated, the first and the second neural networks having been trained with a training data set. Behavior of one or more objects in the ADV's environment is predicted using the data processing architecture comprising the trained neural networks. Driving signals are generated based at least in part on the predicted behavior of the one or more objects in the ADV's environment to control operations of the ADV.
A method of training neural network for obtaining medical sagittal image includes: using a first neural network on a 3-D medical image to generate a prediction sagittal mask; generating a prediction result according to the 3-D medical image and the prediction sagittal mask; generating a ground truth result according to the 3-D medical image and a ground truth sagittal mask; using a second neural network on the prediction result and the ground truth result; generating a loss function data according to an output of the second neural network; and adjusting parameters of the first neural network or the second neural network according to the loss function data.
A disclosed system for providing wood-cultivated ginseng age information includes a background sheet made of paper or plastic, a consumer terminal configured to obtain a wood-cultivated ginseng image of a wood-cultivated ginseng placed on the background sheet by a user, receive the start line of a wood-cultivated ginseng rhizome and the end line of the wood-cultivated ginseng rhizome by the user, calculate a wood-cultivated ginseng rhizome length using the obtained wood-cultivated ginseng image and the obtained start line and end line of the wood-cultivated ginseng rhizome, and transmit the calculated wood-cultivated ginseng rhizome length, and a server configured to previously store wood-cultivated ginseng age information corresponding to a wood-cultivated ginseng rhizome length, search for wood-cultivated ginseng age information corresponding to the wood-cultivated ginseng rhizome length received from the consumer terminal, and transmit the retrieved wood-cultivated ginseng age information to the consumer terminal.
In a system and method for analyzing images, an input image is provided to a computer and is processed therein with a first deep learning model so as to generate an output result for the input image; and applying a second deep learning model is applied to the input image to generate an output confidence score that is indicative of the reliability of any output result from the first deep learning model for the input image.
The present disclosure describes methods, systems, and articles of manufacture for performing a defect inspection of a die image using adaptive care areas (ACAs). The use of ACAs solve the problem of handling rotations of components that require rotating care areas; handling the situation where each care area requires its own rotation, translation, or affine transformation; and the situation of decoupling intensity differences caused by defects or process variation from intensity differences caused by size variations.
An improved leak detection system for oil and gas pipelines and the like, including submerged or buried structures, the system including an aerial- or space-based platform with GPS and Attitude Determination and Control System (ADCS) capability, the platform connected to a hyperspectral imaging sensor, the system including processor and memory structured with a vegetative index such that chemical and hydrocarbon leaks are detected within regulatorily-approved time limits based on changes in the vegetative index.
An inspection apparatus includes a memory for storing shape information including a plurality of line segments representing a shape of an object; and a processor coupled to the memory and the processor that detects a plurality of feature lines from an image of the object, generates a plurality of combinations obtained by correlating each of the plurality of line segments and each of the plurality of feature lines with each other, generates a plurality of projection lines by projecting each of the plurality of line segments onto the image, sets a threshold value with respect to an error between a position of the projection lines and a position of the feature lines of the line segments included in each of the plurality of combinations based on a statistical value of the error, and classifies the plurality of combinations using the threshold value.
A viewer may zoom in on an image to see a portion of the image. The image may be analyzed to determine if zoom enhancement is necessary. The zoomed region may be matched to a replacement texture. The replacement texture may be used to enhance the image by replacing some or all of the image data.
A publicly accessible urban beach entertainment complex is disclosed, with a man-made tropical, pristine-clear lagoon as the centerpiece of the complex, with surrounding entertainment, educational, sports, and commercial facilities, the complex having controlled public access and providing the look and feel of a tropical beach with clear waters and sandy beaches. In addition a method for efficiently utilizing facilities and land that are vacant, underutilized, have limited uses, or that are contiguous to or nearby recreational, educational, sports, or commercial venues is disclosed. The method providing a publicly accessible urban beach entertainment complex with a centerpiece man-made tropical-style pristine-clear lagoon. The method allows for generating revenue and increasing efficiency by pairing vacant sites, underutilized sites, limited use land, or sites that are contiguous to entertainment, educational, sports, and/or commercial venues with urban beach entertainment complexes. The complex preferably has a controlled public access, thereby allowing entrance upon payment of a fee.
A device for hailing a vehicle includes a location sensor outputting location information indicative of a location of the device. The device further includes a device interface configured to receive an input from a user of the device. Responsive to the input, a transmitter of the device transmits the location information, input information, and identification information for the device to a dispatch server system. The transmitter is further configured to route the location information, the input information, and the identification information for the device to only the dispatch server system. The identification information is used by the dispatch server system to set a predefined location associated with the identification information as a destination for a trip for the user in the vehicle. The predefined location is defined in an account corresponding to the identification information of the device maintained by the dispatch server system prior to receipt of the input.
A patent map display device of the present invention is a patent map display device that displays a patent map on a user terminal that can be operated by a user and includes an information acquisition unit that acquires instruction information input to the user terminal by the user, a bibliographic DB that stores prior patent information, an analysis unit including a comparison section that compares the instruction information with the patent information and an evaluation section that performs patent evaluation of the instruction information by comparing the instruction information with the patent information on the basis of the comparison section, a patent map generation unit including a generation section that generates a map and a character representing an attribute related to an analysis result of the instruction information on the basis of attribute information including the patent evaluation and a disposition section that disposes the character in the map, and a display unit that displays a patent map generated by the patent map generation unit.
An automated valuation model that uses condition and quality variables. In response to user queries, the model ranks and displays comparables for a subject property. The comparables are selected based on their similarity to the subject. Data on quality and condition of properties is incorporated into the model and corresponding comparable assessments. For example, the quality and condition inputs may be used in a hedonic adjustment factor model, comparable selection exclusion rules, economic distance calculations, and adjustments for differences between the subject and comparables at comparable selection stage. The comparables may be displayed in ranked order based on the calculated similarities between the properties, with indications of the quality and condition categories, to provide an overall assessment of the comparables as well as displayable indications of the underlying quality and condition categories and related information. The model may also use other ordinal variables and may perform any type of valuation.
A charging device 10 of a circulating-water utilization system 1 to be constructed in a specific area includes: a wastewater amount measuring unit 18a configured to individually measure an amount of wastewater discharged from each of water consuming members; a water-quality measuring unit 18b configured to individually measure a water-quality index related to a water quality of the wastewater discharged from each of the water consuming members; and a circulating-water fee calculating part 10A configured to calculate a circulating-water fee of each of the water consuming members on the basis of the amount and the water quality of the wastewater discharged from each of the water consuming members.
Embodiments of the present disclosure provide methods, systems, apparatuses, and computer program products for programmatically predicting policy transactions using machine learning.
Method and systems generate optimized and online targeted messages. Various campaign criteria are provided having different advertising or marketing goals that cause the delivery of targeted messages. Messages may be generated based upon customer data, customer preferences, life events, marketing campaigns, predictive models, and/or propensity scores. For instance, messages may be sent when a propensity threshold score is exceeded indicating a high likelihood of a milestone event, which may be indicative of customer behavior or an event that is relevant to the campaign goal, thereby sending more relevant messages to customers. A milestone propensity score may be calculated using a predictive modeling algorithm having weighted data variables, which may include data provided by the customer or accessed through various sources, such as monitoring customer online interactions with their permission. Aspects also include identifying customers that match campaign criteria by comparing propensity scores to thresholds to assist marketing and advertising efforts.
Various embodiments relate to intelligently activating and deactivating a trading tool element of a trading tool to improve a user's confidence in the trading tool. By dynamically activating and deactivating elements on the trading screen, the trading tool effectively increases a user's confidence in placing a trading order, canceling a trade order, or both, for example, by eliminating or reducing undesirable options. Undesirable options might include those that are risky, contrary to a particular trading strategy, would result in a loss of money, and so on. Such an embodiment can improve the overall speed at which a user places or cancels a trade order by, among other things, effectively increasing the user's overall confidence in the trading tool.
The disclosed embodiments relate to an exchange computing system which selectively prematurely expires financial instruments in order to finally settle them and remove them from the computing system. In particular, the disclosed embodiments recognize that during the pendency of a futures contract between first available trade date and the expiration, the exchange computing system must facilitate trading thereof by tracking traders positions, providing regular pricing data as well as transacting trades therefore. This consumes exchange resource especially given the number of products offered and the extended length of term for some. Accordingly where contracts can be settled early and thereby removed from being transacted, exchange resources may be conserved.
Methods and systems for allocating cells of a sorting apparatus include associating, in a database, an identifier of the sorting apparatus with an identifier of a first container storing a first item of the purchase order, the purchase order including a second item stored in a second container; before associating the sorting apparatus with the second container, receiving an identifier of the first item; determining, in the database using the identifier of the first item, whether any cell of the sorting apparatus is associated with the purchase order; when no cell of the sorting apparatus is associated with the purchase order, associating, in the database, an identifier of a cell of the sorting apparatus with the identifier of the purchase order; and transmitting a first signal to a computer associated with a worker instructing placement of the first item in the cell.
Systems, apparatus, methods, and non-transitory media for providing multiple items for purchase to consumers are discussed herein. Some embodiments may include a system including circuitry configured to initiate an add-to-order session timer subsequent to the primary purchase of a first item using transaction data of the consumer. The add-to-order session timer may indicate a period of time in which one or more additional items may selected for purchase using the same transaction data as the primary purchase. In some embodiments, the system may be further configured to provide incentives to the consumer for selecting an additional item prior to expiration of the add-to-order session timer.
A method implemented for managing a merchant queue includes receiving order data associated with a placed order and user data for a user from a user device. User characteristics are determined based on historical data associated with the user. A placement of the placed order in a production queue is determined based on the order data and the user characteristics. A time at which the placed order is estimated to be ready is permitted to change based on changes to the user data.
An electronic system and method for online searching by a customer for currently available service providers in their geographical area for a specific needed service. The system is programmed to permit service providers to input into the system that they are currently available to provide service. The system can also permit the service provider to also enter later times that they will also be available to provide their services. The system is programmed to preferably only list service providers who are available to provide the desired service at the time requested by the customer as opposed to listing all service providers who can provide the requested service that are registered with the electronic system.
Disclosed embodiments relate to performing an advertisement campaign filtering process while protecting the privacy of both an advertiser and a user of a personal computing device. Techniques include maintaining a plurality of sets of advertising competition rules, the plurality of sets of advertising competition rules being associated with a plurality of discrete advertising campaigns; for a set of advertising competition rules from the plurality of sets of advertising competition rules: identifying advertisement targeting criteria associated with the set of advertising competition rules, differentiating, from within the advertisement targeting criteria, between advertisement-sensitive targeting criteria and advertiser-insensitive criteria, and transforming the advertisement-sensitive sensitive targeting criteria; and transmitting, to the personal computing device, at least a portion of the transformed advertisement-sensitive targeting criteria.
Methods, systems, and apparatus, including computer programs encoded on a computer-readable storage medium, for providing content. A method includes receiving a request for an advertisement to be displayed in a slot associated with a third-party content site; identifying a relevant advertisement to be provided in the slot; determining information to be included in an annotation associated with the advertisement, the annotation including customized information to be presented along with the advertisement; providing the advertisement responsive to the request including providing the annotation along with a control for re-publishing the advertisement along with the relevant advertisement; receiving user input selecting the control and designating the advertisement for re-publishing to a group, the group being designated by the user; and targeting additional content to the group based on the received user input.
Pre-paid transaction card systems and methods are described. A transaction system can include a transaction database to store transaction objects that represent characteristics of a pre-paid transaction card. A deal engine communicatively coupled with the transaction database can receive an image of a marker-less portion of the transaction card and derive a set of image descriptors from the marker-less portion. The deal engine can also identify transaction characteristics associated with the card from the transaction database using the image descriptors. In addition, the deal engine can construct a deal recommendation based on the transaction characteristics previously identified. The deal recommendation can be transmitted to a user, and in some cases, displayed to the user as an augmented reality image.
A system selects a set of advertisement media associated with a product. A set of persistent advertisement media from the set of advertisement media is identified based on one or more tests. A Gaussian Bayesian (GB) network based on the set of advertisement media. A net persistence rate for each of the set of persistent advertisement media is determined based on the GB network. a competitor factor associated with another vendor of the product is computed based on one or more marketing parameters associated with the another vendor. A predicted sales (PS) value associated with each of the set of persistent advertisement media is determined. A persistent advertisement medium is selected in real time based on corresponding PS value. An advertisement is rendered on the selected persistent advertisement medium in real time for marketing the product.
A digital media content classification, discovery, and management system includes a computerized database storing content representative identifiers corresponding to content items. Each of the content representative identifiers is keyed to a plurality of author-based, content-centered criteria elements, wherein an input selection field of a user GUI has a plurality of selectable fields which matches at least one of the plurality of author-based, content-centered criteria elements. management of the digital media content may include valuation management where the digital content items are ranked into valuation tiers. The ranking is analyzed to designate the digital content items to have a valuation value within at least one of the plurality of valuation tiers. The digital content items axe graphically displayed on a GUI of a remotely-located user computing device and download requests are received from the user computing device. Valuation of the digital content items may be adjusted based on the download requests.
A system and method are disclosed for interactive product assortment planning and visualization by receiving product attribute values for items of a product assortment is disclosed. Embodiments include displaying icons on an interactive visualization, connecting the icons with transferable demand links, identifying items to be removed from a product assortment, and transporting items among one or more supply chain entities.
There is provided a generating apparatus that generates an estimation model for estimating an attribute of an unknown target, the generating apparatus including a training-data acquiring unit acquiring training data including an attribute of a known target, attributes of other targets related to the known target, and a plurality of sets of types of relations between the known target and the other targets and a training processing unit training, using the training data, on the basis of the attribute of the known target and a type of a relation between the known target and the unknown target related to the known target, an estimation model for estimating the attribute of the unknown target, a generating method using the generating apparatus, and a program used in the generating apparatus.
To detect a risk of insurance fraud in a vehicle insurance claim for physical injuries, injury data may be retrieved from previous crashes involving similar type vehicles as the damaged vehicle, and having similar crash characteristics. One or several likelihoods that the claimant suffered physical injuries from the crash may be determined based on the percentage of people who suffered similar types of injuries or similar severity according to the injury data. If the one or several likelihoods are very small, the claim for physical injuries may be flagged as a risk of fraud and a suspicious loss indicator may be transmitted to a mobile computing device for display.
Systems and methods for enabling a non-custodial parent to purchase goods and service directly from merchants for a child while getting acknowledgement and consideration under a child support program for the purchased goods and services from the merchant. The method includes receiving an obligation file from an entity associated with a child support case. The obligation file includes information related to obligation agreement and obligation amount between a custodial parent and the non-custodial parent of the child. A unique ID is generated for both the custodial parent and the non-custodial parent, and a common account is created for both the custodial parent and the non-custodial parent with a merchant using the unique ID. The method facilitates delivery of an item or service to the custodial parent, via the merchant using the common account, and payment of the item or service is performed by the non-custodial parent using the common account.
A system generates at least one of a customer token or device token configured to facilitate a mobile wallet transaction, transmits the customer token or device token to a server system for verification of the mobile wallet transaction, receives a screen display to present to the user, the screen display including the account balance information for the account held by the user at the financial institution, receives determination of rewards information regarding rewards available to the user if the user uses the account to perform the transaction, wherein the screen display comprises the rewards information, and provides an indication from the user that the user wishes to perform the mobile wallet transaction to transfer funds to a recipient, wherein the funds are transmitted to the recipient responsive to the provision of the indication from the user.
Disclosed herein are system, method, and computer program product embodiments for creating a personalized barcode for an account holder at an Automated Teller Machine (ATM). An embodiment operates by storing account holder unique data and a first rule for generating a personalized barcode unique to the account holder based on the account holder unique data. After receiving a request for completion of a transaction from the first account holder, placing the account holder unique data and the first rule in a pairing service. Thereafter, the ATM is configured to retrieve the account holder unique data and the first rule from the pairing service, generate the first personalized barcode based on the first rule and the account holder unique data, and present the first personalized barcode to the first account holder.
Techniques for displaying a payment page based on the proximity of a payment device to a client computing device are described. One example method includes receiving, at a client computing device, a signal when the client computing device is within a predetermined range of a source of the signal; determining, by the client computing device, that the signal is a predetermined characteristic signal sent by an electronic device of a payee; and in response to determining that the received signal is the predetermined characteristic signal, displaying, by the client computing device, a payment page configured to be read by the electronic device of the payee to perform an electronic payment.
A self-service checkout apparatus includes dispensers each configured to dispense an article, first sensors each configured to detect a presence of the article in the corresponding dispenser, first indicators each configured to indicate that the presence of the article in the corresponding dispenser, a second sensor configured to detect whether a user is present, and a processor configured to, when one or more articles are detected by the first sensors and the user is detected by the second sensor, perform first notification using the respective one or more of the first indicators, and when one or more articles are detected by the first sensors and the user is not detected by the second sensor, perform second notification according to a priority order predetermined for each article, using at least one of a second indicator of the self-service checkout apparatus and a third indicator of another apparatus.
The present invention provides a system for receiving electronic messages from a financial institution, the system comprising a plurality of switches configured to communicate with one another and to process the received electronic messages, wherein each switch includes processing circuitry that is configured to receive an electronic message that includes a unique identifier and, in dependence upon the unique identifier, either process the electronic message or forward the electronic message to another one of the switches for processing.
Techniques for processing calendar availability and consolidating appointments are described herein. In some implementations, the techniques may monitor scheduling interactions of a merchant with a calendar to schedule a merchant as unavailable in the calendar at a particular time and/or to reschedule the merchant as available at a time that is designated as unavailable. Additionally, or alternatively, the techniques may consolidate a merchant's schedule by rescheduling appointments when particular criteria are satisfied. Further, the techniques may include other features to manage a calendar and/or enhance a merchant's experience in scheduling appointments.
A communication system, and method for creating a collaborative virtual session, including a first coupler agent connected to a first entity, a second coupler agent connected to a second entity, and a first client, coupled to the first coupler agent and a server. The first client is configured to initiate a virtual session with the server, receive metadata representing a second virtual representation of the second entity, and instantiate the second virtual representation in a first collaborative virtual room. The communication system includes a second client, coupled to the second coupler agent and the server, configured to join the virtual session with the server, receive metadata representing a first virtual representation of the first entity, and instantiate the first virtual representation in a second collaborative virtual room.
A computer-implemented system for dynamic inventory balancing including at a processor and a memory device comprising instructions that when executed configure the processor to perform operations. The operations including receiving an inventory data feed from at least one fulfillment center, storing (in a database) a plurality of virtual bundles with associated grouping numbers and quantities—the plurality of virtual bundles having item bundles grouping two or more of a same item in the inventory data. The operations also include exposing the database to queries from a seller portal through at least one of RESTful service, a queue based system, an index, or an object table and receiving a client order, the client order comprising a bundle selection from the plurality of virtual bundles, and updating the plurality of virtual bundles by rebalancing the plurality of virtual bundles and corresponding associated quantities based on the bundle selection.
Apparatus and associated methods relate to an online ordering/takeout system for customers to place orders with a variety of merchants, where a customer can let a merchant know that the customer is on their way, and in response, the status of the order is updated in a locker-tracking system. In an illustrative example, a customer device may allow for customers to communicate an in-transit status to the merchant. A merchant device may, for example, allow a customer to gain access to a locker that stores the customer's order. In response to milestone events, such as placing a food item in a locker or the customer indicating they are “on their way,” the system may update a status of the locker to reflect a current status of the locker/order. Some embodiments may advantageously provide confirmation to the merchant that the customer is in route to the merchant's location.
The present disclosure provides systems and methods for delivering packages to customers, comprising a memory storing instructions and a processor configured to execute the instructions to receive, from a first user device in a fulfillment center, a package identifier associated with a package for delivery to a customer, modify a database to assign the package identifier to a group, among a plurality of groups, based on a delivery address associated with the package identifier and a location of a camp to which the package is routed, generate a map of the plurality of groups, send the map for display on a second user device in the camp, and send for display an activatable icon on a location on the map, wherein the location of the activatable icon on the map is associated with the delivery address of the package.
Data processing systems and methods, according to various embodiments, are adapted for mapping various questions regarding a data breach from a master questionnaire to a plurality of territory-specific data breach disclosure questionnaires. The answers to the questions in the master questionnaire are used to populate the territory-specific data breach disclosure questionnaires and determine whether disclosure is required in territory. The system can automatically notify the appropriate regulatory bodies for each territory where it is determined that data breach disclosure is required.
Resources are required to satisfy various needs and wants of people, businesses, and machines. Resources come in the forms of time, talents, money, materials, energy, services, people, knowledge, communication, and other tangible and intangible assets. When both the capacities and the needs of multiple resources are stored in a way that allows for them to be connected together using computers, they can be efficiently and effectively matched. This matching creates shared value, which has potential academic, economic, societal and philanthropic benefits. Connected computer system(s) can query and match resources together in a way that is mutually beneficial. While a common lexicon is the simplest way to perform the matching, natural language processing, machine translation, or use of similar technologies may be optimal. Any method of collecting these inputs should be able to handle one or multiple capacities, and one or multiple needs.
A system for assessing and optimizing master data maturity for an enterprise master data architecture. The master data maturity analysis system generates a master data maturity matrix for individual master data users. Each unique master data user's master data maturity matrix is used to generate master data matrices for other hierarchical entities for an enterprise such as lines of business and/or the enterprise as a whole. Master data maturity matrices are stored over time and tracked to assess and optimize the master data maturity and improvement of the master data technology vertically and horizontally across all enterprise hierarchies and business components.
Systems and methods for multi-resource scheduling are disclosed and described. An example apparatus includes a scheduler engine configured to enable clinical system(s) to operate with the scheduler engine in an analytical mode and an operating mode. When in the analytical mode, the scheduler engine is to dynamically calculate one or more binding constraints on the one or more clinical systems for scheduling. When in the operating mode, the scheduler engine is to manage and output a schedule for the one or more clinical systems based on the one or more binding constraints calculated in the analytical mode. The example scheduler engine is to dynamically switch between the analytical mode and the operating mode based at least in part on a probabilistic determination of delay associated with the schedule.
One or more processors receive one or more variations to one or more first instruction elements in a first instruction set that indicate one or more second instruction elements of a second instruction set. One or more processors determine whether the one or more first instruction elements exceed a threshold of variability. One or more processors determine whether the one or more first instruction elements and the one or more second instruction elements are substantially equivalent. One or more processors determine whether a first outcome of the first instruction set is substantially similar to a second outcome of the second instruction set.
Systems and methods for inferring user traits based on indirect questions. Indirect questions may be generated based on one or more triggers. The answers to the indirect questions provide cues to a system as to whether a user has one or more attributes associated with a trait. This information may be used to personalize a computing device.
Certain aspects involve optimizing neural networks or other models for assessing risks and generating explanatory data regarding predictor variables used in the model. In one example, a system identifies predictor variables. The system generates a neural network for determining a relationship between each predictor variable and a risk indicator. The system performs a factor analysis on the predictor variables to determine common factors. The system iteratively adjusts the neural network so that (i) a monotonic relationship exists between each common factor and the risk indicator and (ii) a respective variance inflation factor for each common factor is sufficiently low. Each variance inflation factor indicates multicollinearity among the common factors. The adjusted neural network can be used to generate explanatory indicating relationships between (i) changes in the risk indicator and (ii) changes in at least some common factors.