US10090605B2
An active phased array antenna system with hierarchical modularized architecture is introduced, which includes an array antenna and a beamforming circuit. The array antenna includes a plurality of antenna units, number of which is N and which are arranged in array form. The beamforming circuit is for receiving a plurality of input signals and a plurality of phase control signals, and includes a hierarchical circuit structure based on phase shifters, for outputting a plurality of output signals based on the input signals according to phase values corresponding to the phase control signals and combinations of the phase values; the output signals are respectively coupled to the antenna units so as to generate a radiation pattern, wherein number of the phase control signals is T, T
US10090601B2
Aspects of the subject disclosure may include, for example, a system for generating first electromagnetic waves and directing instances of the first electromagnetic waves to an interface of a transmission medium to induce propagation of second electromagnetic waves substantially having a non-fundamental wave mode. Other embodiments are disclosed.
US10090591B2
An antenna system comprises first and second support structures, and a plurality of first, second and third antenna elements. Each of the first and second support structures has four sides. Two adjacent sides are perpendicular to each other so that both the first and second support structures form a closed loop. The first support structure is disposed outside of and surrounds the second support structure. Some first antenna elements are disposed on two symmetric sides of the first support structure, and other first antenna elements are disposed on two symmetric sides of the second support structure. Some second antenna elements are disposed on another two symmetric sides of the first support structure, and the other first antenna elements are disposed on another two symmetric sides of the second support structure. The third antenna elements are disposed on the four sides of the second support structure.
US10090583B1
A third brake light antenna adapter includes an antenna base attached to a spacer that is installed between the vehicle third brake light and the third brake light opening. The spacer is provided with gaskets, substantially identical to the OEM third brake light gaskets, which provide weatherproof seals between the spacer and the vehicle and between the spacer and the third brake light. Special support brackets enable the spacer to grip the inside of the vehicle passenger compartment to hold it securely to the vehicle without extensive modifications to the vehicle structure itself.
US10090576B2
A switchless combiner includes a circuit having a delay line consisting of a constant-impedance transmission line and a device adapted to vary the electric length of said transmission line, the device including a metallic body with walls defining a cavity, the walls being interrupted to define a slot, the cavity and the slot extending along at least a portion of the length of the device, the cavity including a first portion having a first cross-section and a second portion having a second cross-section which is greater than the first cross-section, the second portion having a dielectric element with a cutout corresponding to the slot, the first and second portions extending in the longitudinal direction of the device and the transmission line being positioned, inside the first and second portion, in the cutout, the dielectric element occupying the cavity of the second portion, and having an element to translate the dielectric element on the circuit in the longitudinal direction of the device.
US10090572B1
The present invention relates to a radio frequency filter having a cavity structure, comprising: a container which has a hollow inner portion and a cavity that is cut off from the outside, and a resonance element which is placed in the hollow inner portion of the container, wherein the container has a wrinkled structure for adjusting the intervals between a longitudinal front end surface of the resonance element and the inner surfaces of the container facing the longitudinal front end surface using external pressure. Thus, the invention can be further miniaturized and is lightweight, and the design of the invention enables frequency tuning without employing a coupling structure of a tuning screw and a fastening nut, thereby obtaining a convenient and simplified structure.
US10090567B2
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors.
US10090556B2
Provided is a flexible battery. A flexible battery according to an exemplary embodiment of the present invention includes: an electrode assembly; and an exterior material in which the electrode assembly is encapsulated together with an electrolyte, in which the electrode assembly and the exterior material are formed such that patterns for contraction and extension in a longitudinal direction have the same directionality when the flexible battery is bent. As such, the patterns for contraction and extension in the longitudinal direction are formed on both of the exterior material and the electrode assembly, thereby preventing or minimizing deterioration in the required physical properties even though the flexible battery is bent.
US10090555B2
The invention relates to a positive electrode for a lithium-sulfur electrochemical accumulator comprising an electrically conductive substrate selectively coated, over at least one of its faces, with carbon nanotubes so as to create a zone coated with carbon nanotubes within which a plurality of separate zones without carbon nanotubes are arranged, these separate zones being qualified as empty.
US10090553B2
An electrode assembly includes a cell stack part having (a) a structure in which one kind of radical unit is repeatedly disposed, or (b) a structure in which at least two kinds of radical units are disposed in a predetermined order, the one kind or the at least two kinds of radical units having same number of electrodes and separators alternately disposed. The one kind of radical unit has four-layered structure in which first electrode, first separator, second electrode and second separator are sequentially stacked or repeating structure of the four-layered structure. Each of the at least two kinds of radical units are stacked by ones to form the four-layered structure or the repeating structure. An outer separator that is a separator among separators of a radical unit positioned at the outermost part of the cell stack part is extended from a side of the cell stack part.
US10090551B2
A structure for mounting a fuel cell stack in an enclosure or a frame includes a first mounting mechanism for fastening and mounting a first mounting part located at a first side of the fuel cell stack in a longitudinal direction of the stack, which is a cell stacking direction, to the enclosure or the frame in a completely fixing fashion, and a second mounting mechanism for mounting a second mounting part located at a second side of the fuel cell stack in the longitudinal direction of the stack to the enclosure or the frame in a state of being movable in the longitudinal direction of the stack.
US10090549B2
The invention relates to a method of fabricating a contact element in an electrochemical device (9) such as an SOFC or an EHT which comprises the following steps: a) use is made of: at least one cell (8) consisting of an assemblage made up of an electrode to be hydrogenated (5)-electrolyte (4)-electrode to be oxygenated (3); at least one first interconnector (1); and at least one second interconnector (7); b) at least one layer of a conducting material is deposited on the first interconnector (1) and/or the second interconnector (7); c) an electrochemical device (9) is assembled; said method being characterized in that: d) a thermomechanical treatment is carried out on the electrochemical device obtained on completion of step c). The invention also relates to an electrochemical device (9) equipped with at least one contact element (2) obtained according to this fabrication method.
US10090542B2
An electrode element and fuel cell and a new method of manufacturing a fuel cell, particularly for use in a breath alcohol detector. This new element includes a reservoir for extra electrolyte that can allow near perfect capillary action to keep the electrode substrate full of electrolyte for long periods of time, increasing its useful life, especially under harsh conditions. Further, the capillary action need not work through a layer of electrode and can be integrally formed with the electrode element to eliminate or reduce loss due to connective surfaces. Wire connections and arrangements are generally of no concern in this design as the reservoirs for electrolyte connect directly to the substrate and electrolyte does not need to pass through an electrode.
US10090538B2
The purpose is to suppress positional misalignment between the diffusion layer and the frame. The manufacturing method of an electrode frame assembly for fuel cell comprises the steps of: (a) placing a frame and a diffusion layer to be stacked on each other; and (b) punching out the diffusion layer and the frame in the stacked state to form in the frame an opening in a shape matching with the punched-out diffusion layer.
US10090536B2
In a fuel battery seal structure, a gasket has a base portion fitted in a non-bonded manner to a seal installation groove of a separator, and a seal protrusion brought into close contact with a seal groove of a separator. Presser projections and clearance grooves are formed in both sides in a width direction of the seal groove. The presser projections are brought into contact with the base portion of the gasket, and the clearance grooves are positioned in an opposite side to the seal groove as seen from the presser projections. Sum of widths of the seal groove and the presser projections in both sides thereof is smaller than a width of the seal installation groove, and sum of widths of the seal groove, and the presser projections and the clearance grooves in both sides thereof is larger than the width of the seal installation groove.
US10090528B2
The invention relates to a cathode unit for an alkaline metal/sulphur battery, containing a cathode arrester, which comprises a carbon substrate, and an electrochemically active component, which is selected from sulphur or an alkaline metal sulphide and is in electrically conductive contact with the carbon substrate.
US10090527B2
A binder composition for a secondary battery includes: a water-soluble thickener (A) having a hydroxy group or a carboxy group; a cross-linking agent (B) having a functional group reacting with the hydroxy group or the carboxy group of the water-soluble thickener (A); and a particulate polymer (C). The particulate polymer (C) has a functional group reacting with the cross-linking agent (B) and includes an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit. The binder composition contains 0.001 part by mass or more and less than 100 parts by mass of the cross-linking agent (B) and 10 parts by mass or more and less than 500 parts by mass of the particulate polymer (C), each per 100 parts by mass of the water-soluble thickener (A).
US10090523B2
Provided is a lithium cobalt composite oxide for a lithium secondary battery represented by Formula 1 below and having a polycrystalline state, a method of preparing the same, a positive electrode for a lithium battery including the lithium cobalt composite oxide, and a lithium secondary battery including a positive electrode, which includes the lithium cobalt composite oxide. LiaCobOc Formula 1 In Formula 1, a is an integer from 0.9 to 1.1, b is an integer from 0.980 to 1.0000, and c is an integer from 1.9 to 2.1. Also included is a method of manufacture therefor.
US10090514B2
Provided is a positive-electrode material for nonaqueous-electrolyte secondary batteries, the positive-electrode material being capable of achieving both high capacity and high output when used for a positive electrode for nonaqueous-electrolyte secondary batteries. Also, provided is a method for manufacturing the positive-electrode material for nonaqueous-electrolyte secondary batteries, wherein a lithium metal composite oxide powder is mixed with lithium tungstate, the lithium metal composite oxide powder being represented by a general formula LizNi1−x−yCoxMyO2 (wherein 0.10≤x≤0.35, 0≤y≤0.35, 0.97≤z≤1.20, and M is an addition element and at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and comprising primary particles and secondary particles composed of aggregation of the primary particles.
US10090510B2
An object is to improve the safety of a non-aqueous electrolyte secondary battery at the time of the internal short circuit. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The positive electrode includes a current collector and a positive electrode active material layer formed on the current collector. The current collector includes a metal foil having a roughened surface. The negative electrode includes a silicon-containing negative electrode active material. The metal foil is preferably a metal foil containing aluminum. The metal foil preferably has a surface roughness Ra of 0.1 to 2.0 μm.
US10090509B2
The present invention provides a protection device which includes: a PTC laminar element which is formed of an insulation resin and has at least one throughhole; electrically conductive metal thin layers which are positioned on each of main surfaces of the laminar element, and a fuse layer which is positioned on a side surface defining at least one of said at least one throughhole and electrically connects the electrically conductive metal thin layers which are positioned on each of main surfaces of the laminar element. The protection device of the present invention allows a larger amount of a current to flow therethrough and can provide a protection from an excessive current.
US10090505B2
A secondary battery includes an electrode assembly including a positive electrode plate and a negative electrode plate; a can accommodating the electrode assembly; and a cap assembly having a cap plate sealing the opening of the can, a terminal plate on one side of the cap plate and being electrically connected to the negative electrode plate, and an insulation plate located between the cap plate and the terminal plate, the insulation plate including a bottom plate, and first and second long side walls and first and second short side walls extending from the bottom plate and respectively encompassing opposing long sides and opposing short sides of the terminal plate, wherein the first and second long side walls have recessed regions, and wherein the terminal plate is configured to contact the can at the recessed regions when the can is deformed by compression.
US10090504B2
An apparatus is provided that includes a two or more cell elements stacked internally to create a single cell with a non-uniform height. A first bus bar may electrically couple to a first side or first end of the cell elements in order to connect the terminals of the battery elements. A second bus bar may electrically couple to a second side or second end of the cell elements in order to connect the terminals of the battery elements.
US10090498B2
Intelligent modular battery pack assemblies and associated charging and docking systems are disclosed. In one embodiment a modular battery pack assembly may include an outer casing assembly, a thermally conductive structural housing element configured to house a battery assembly in an interior volume, a lid element configured to cover the opening in the thermally conductive structural housing element and mechanically strengthen the thermally conductive structural housing element, and a circuit element disposed to electrically couple the battery cell to a battery-powered device and provide viral data transfer between the battery and a coupled device.
US10090493B2
A cell module includes: a cylindrical cell; a fixing member having a through-hole in which one end of the cylindrical cell is held; and a solidified adhesive bonding together the cylindrical cell and the fixing member. The through-hole has an outer part and an inner part. A shape of the outer part is partially enlarged compared with a shape of the inner part so as to form a liquid pocket, and matches the shape of the inner part on the side opposite from the liquid pocket. Relative to the fixing member, the cylindrical cell is held in an inclined state, such that another end of the cylindrical cell is located closer to the liquid pocket side than the one end of the cylindrical cell is.
US10090486B2
A frameless display device includes a conductive connection body formed on a substrate. A first via is formed in a protective layer and located above the conductive connection body. A second via hole is formed in the substrate and located under the conductive connection body. A circuit layout layer is connected through the first via with the conductive connection body and a flexible connection circuit connected to a drive circuit board is connected through the second via with the conductive connection body thereby achieving electrical connection between the drive circuit board and the circuit layout layer. The flexible connection circuit and the drive circuit board are both arranged at a back side of the substrate without occupying an effective display zone.
US10090475B2
An organic electroluminescent device including an anode; an emission layer; an anode-side hole transport layer between the anode and the emission layer, the anode-side hole transport layer including an anode-side hole transport material, and being doped with an electron accepting material; an intermediate hole transport material layer between the anode-side hole transport layer and the emission layer, the intermediate hole transport material layer including an intermediate hole transport material; and an emission layer-side hole transport layer between the intermediate hole transport material layer and the emission layer and adjacent to the emission layer, the emission layer-side hole transport layer including an emission layer-side hole transport material represented by the following General Formula (1):
US10090474B2
A condensed-cyclic compound and an organic light-emitting device including the same, the compound being represented by Formula 1
US10090468B2
According to one embodiment, a photoelectric conversion element includes a first electrode, a second electrode, a photoelectric conversion layer and a first layer. The photoelectric conversion layer is provided between the first electrode and the second electrode. The first layer is provided between the first electrode and the photoelectric conversion layer. The first layer includes at least a first metal oxide. The first layer has a plurality of orientation planes. At least one of the orientation planes satisfies the relationship L1>L2, where L1 is a length of the one of the plurality of orientation planes, and L2 is a thickness of the first layer along a first direction. The first direction is from the first electrode toward the second electrode.
US10090453B2
A system and method for jetting a viscous material includes an electronic controller and a jetting dispenser operatively coupled with the electronic controller. The jetting dispenser includes an outlet orifice and a piezoelectric actuator operatively coupled with a movable shaft. The jetting dispenser is under control of the electronic controller for causing said piezoelectric actuator to move the shaft and jet an amount of the viscous material from the outlet orifice. The electronic controller sends a waveform to the piezoelectric actuator to optimize control of the jetting operation.
US10090448B2
A light-emitting module is provided with a light-emitting element, a base, and a wiring pattern. The base includes an installation surface facing in a first direction and a mounting surface facing in a second direction which is at right angles to the first direction. The light-emitting element is installed on the installation surface. The wiring pattern is formed on the base and is in electrical contact with the light-emitting element. The base includes a pair of mounting recesses recessed from the mounting surface and spaced from each other in a third direction which is at right angles to both the first direction and the second direction. The wiring pattern includes a pair of mounting-surface electrodes respectively covering at least a part of the pair of mounting recesses.
US10090445B2
A package method includes steps of providing a light emitting module, a mold and a molding compound, wherein the light emitting module includes a substrate and at least one light emitting unit disposed on the substrate, the mold has at least one recess, and a side wall of the recess is parallel to a side surface of the light emitting unit; filling the recess with the molding compound; placing the substrate on the mold reversely, so that the light emitting unit is immersed into the recess and the molding compound directly encapsulates the light emitting unit; and heating and pressing the substrate and the mold, so as to solidify the molding compound.
US10090436B2
Embodiments of the invention include a substrate (10) and a semiconductor structure (12) grown on the substrate. The semiconductor structure includes a light emitting layer (18) disposed between an n-type region (16) and a p-type region (20). The substrate includes a first sidewall (30) and a second sidewall (32). The first sidewall and second sidewall are disposed at different angles relative to a major surface of the semiconductor structure. A reflective layer (34) is disposed over the first sidewall (30).
US10090429B2
A semiconductor structure for use in single molecule real time DNA sequencing technology is provided. The structure includes a semiconductor substrate including a first region and an adjoining second region. A photodetector is present in the first region and a plurality of semiconductor devices is present in the second region. A contact wire is located on a surface of a dielectric material that surrounds the photodetector and contacts a topmost surface of the photodetector and a portion of one of the semiconductor devices. An interconnect structure is located above the first region and the second region, and a metal layer is located atop the interconnect structure. The metal layer has a zero waveguide module located above the first region of the semiconductor substrate. A DNA polymerase can be present at the bottom of the zero waveguide module.
US10090428B2
A solar cell and a method for manufacturing the same are disclosed. The solar cell may include a substrate, an emitter layer positioned at a first surface of the substrate, a first anti-reflection layer that is positioned on a surface of the emitter layer and may include a plurality of first contact lines exposing a portion of the emitter layer, a first electrode that is electrically connected to the emitter layer exposed through the plurality of first contact lines and may include a plating layer directly contacting the emitter layer, and a second electrode positioned on a second surface of the substrate.
US10090424B1
A method for fabricating a solar cell commences by bonding a first metal-coated substrate to a second metal-coated substrate to provide a bonded substrate. The bonded substrate is then coated with a first precursor solution to provide a coated bonded substrate. Finally, the procedure de-bonds the coated bonded substrate to provide a first solar cell device and a second solar cell device. A system for fabricating the solar cell comprises a first precursor solution deposition system containing a first precursor solution for deposition on a substrate, a first heating element for heating the substrate after deposition of the first precursor solution, a second precursor solution deposition system containing a second precursor solution for deposition on the substrate, and a second heating element for heating the substrate after deposition of the second precursor solution.
US10090414B2
The present invention provides a TFT (Thin Film Transistor) substrate manufacture method, which includes forming a TFT gate electrode on a substrate, sequentially forming a first insulation layer, an active layer, a source electrode, and a drain electrode, and then forming a second insulation layer and coating a photoresist thereon, defining a pixel electrode pattern, forming a drain VIA hole on the second insulation layer, depositing a pixel electrode layer after preparing suede on the photoresist, and permeating the suede with a stripping liquid to remove the photoresist and the pixel electrode layer on the photoresist so as to form a pixel electrode connecting to the drain electrode via the drain VIA hole.
US10090410B1
A method of forming a vertical transport fin field effect transistor and a long-channel field effect transistor on the same substrate, including, forming a recessed region in a substrate and a fin region adjacent to the recessed region, forming one or more vertical fins on the fin region, forming a long-channel pillar from the substrate in the recessed region, where the long-channel pillar is at a different elevation than the one or more vertical fins, forming two or more long-channel source/drain plugs on the long-channel pillar, forming a bottom source/drain plug in the fin region, where the bottom source/drain plug is below the one or more vertical fins, forming a gate structure on the long-channel pillar and a gate structure on the one or more vertical fins, and forming a top source/drain on the top surface of the one or more vertical fins.
US10090400B2
A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
US10090392B2
A semiconductor device includes a metal oxide semiconductor device disposed over a substrate and an interconnect plug. The metal oxide semiconductor device includes a gate structure located on the substrate and a raised source/drain region disposed adjacent to the gate structure. The raised source/drain region includes a top surface above a surface of the substrate by a distance. The interconnect plug connects to the raised source/drain region. The interconnect plug includes a doped region contacting the top surface of the raised source/drain region, a metal silicide region located on the doped region, and a metal region located on the metal silicide region.
US10090391B2
A tunable breakdown voltage RF MESFET and/or MOSFET and methods of manufacture are disclosed. The method includes forming a first line and a second line on an underlying gate dielectric material. The second line has a width tuned to a breakdown voltage. The method further includes forming sidewall spacers on sidewalls of the first and second line such that the space between first and second line is pinched-off by the dielectric spacers. The method further includes forming source and drain regions adjacent outer edges of the first line and the second line, and removing at least the second line to form an opening between the sidewall spacers of the second line and to expose the underlying gate dielectric material. The method further includes depositing a layer of material on the underlying gate dielectric material within the opening, and forming contacts to a gate structure and the source and drain regions.
US10090386B2
Provided are a graphene-metal bonding structure, a method of manufacturing the graphene-metal bonding structure, and a semiconductor device including the graphene-metal bonding structure. According to example embodiments, a graphene-metal bonding structure includes: a graphene layer; a metal layer on the graphene layer; and an intermediate material layer between the graphene layer and the metal layer. The intermediate material layer forms an edge-contact with the metal layer from boundary portions of a material contained in the intermediate material layer that contact the metal layer.
US10090376B2
A method of forming a semiconductor device structure comprises forming a mold template comprising trenches within a mold material. Structures are formed within the trenches of the mold template. A wet removal process is performed to remove the mold template, a liquid material of the wet removal process remaining at least in spaces between adjacent pairs of the structures following the wet removal process. A polymer material is formed at least in the spaces between the adjacent pairs of the structures. At least one dry removal process is performed to remove the polymer material from at least the spaces between the adjacent pairs of the structures. Additional methods of forming a semiconductor device structure, and methods of forming capacitor structures are also described.
US10090375B2
The invention provides a semiconductor structure. The semiconductor structure includes a substrate. A first passivation layer is disposed on the substrate. A conductive pad is disposed on the first passivation layer. A second passivation layer is disposed on the first passivation layer. A conductive structure is disposed on the conductive pad, and a passive device is also disposed on the conductive pad, wherein the passive device has a first portion located above the second passivation layer and a second portion passing through the second passivation layer. A solderability preservative film covers the first portion of the passive device, and an under bump metallurgy (UBM) layer covers the second portion of the passive device and a portion of the conductive structure.
US10090369B2
An organic light emitting diode display including a first connection line connected to an organic light emitting diode; a repair line intersecting the first connection line, the repair line being insulated from the first connection line; and a first welding part that is integrally formed with the first connection line or the repair line, the first welding part being aligned with an intersecting portion of the repair line and the first connecting line, and having a closed loop shape in plan view.
US10090368B2
The present invention provides an array substrate and a manufacturing method thereof, and a display apparatus; and it relates to the field of display. The array substrate includes a first thin film transistor and a first electrode which are formed on a substrate. The first thin film transistor includes a gate, a gate insulating layer, an active layer, and an etch stop layer. The etch stop layer is formed with first via holes, and the etch stop layer and the gate insulating layer are formed with a second via hole at a position corresponding to the first electrode. A maximal diameter of the first via holes is not greater than a minimal diameter of the second via hole.
US10090366B2
An organic light-emitting display device, including a substrate that includes a plurality of first emission portions that realize a first color and a plurality of second emission portions that realize a second color; a pixel-defining film that defines the plurality of first emission portions and the plurality of second emission portions; a plurality of pixel electrodes that are separate from each other and respectively correspond to the plurality of first emission portions; and a first stacked structure that includes an intermediate layer and a counter electrode on the intermediate layer, the intermediate layer including an organic emission layer emitting light of the first color, the first stacked structure further including first emission pattern portions respectively corresponding to the plurality of first emission portions, and first connection pattern portions on the pixel-defining film, the first connection pattern portions connecting the first emission pattern portions.
US10090365B2
An organic device is disclosed. In an embodiment the organic device includes an organic component designed to emit and/or detect radiation, wherein the organic component has a first layer stack and a radiation passage surface and an organic protection diode having a second layer stack, wherein the organic protection diode is arranged directly after the organic component in a stacking direction (Z), and wherein the organic protection diode is designed to protect the organic component from an electrostatic discharge and/or from a polarity reversal of the organic component.
US10090364B2
An organic EL device includes an organic light-emitting layer provided above a first substrate; a protective layer provided above the organic light-emitting layer; a color filter provided on the protective layer; and a second substrate adhered to the color filter via an adhesive, in which a colored layer includes a first colored layer, a second colored layer, and a third colored layer, the color filter includes a first region in which the first colored layer, the second colored layer, and the third colored layer are respectively arranged as single colors and a second region in which the first colored layer, the second colored layer, and the third colored layer are arranged in a layered manner, and a height difference-relieving layer is provided between the color filter and the adhesive.
US10090361B2
The present invention discloses a mobile terminal, comprising a bottom frame; a glass cover; a screen module covering the bottom frame; wherein the glass cover covers the screen module and two edges of both sides of the glass cover connect to the bottom frame; both the screen module and the glass cover have an arch opposite to the bottom frame; two edges of both sides of the screen module extend over both sides of the glass cover and are covered by the bottom frame. The beneficial effect of the above technical solution is: by utilizing the arch of the screen module and the glass cover opposite to the bottom frame, the front surface of the screen module and two sides of screen module do not have black edge, so that the display effect is excellent.
US10090357B2
A first photoresist pattern and a second photoresist pattern are formed over a substrate. The first photoresist pattern is separated from the second photoresist pattern by a gap. A chemical mixture is coated on the first and second photoresist patterns. The chemical mixture contains a chemical material and surfactant particles mixed into the chemical material. The chemical mixture fills the gap. A baking process is performed on the first and second photoresist patterns, the baking process causing the gap to shrink. At least some surfactant particles are disposed at sidewall boundaries of the gap. A developing process is performed on the first and second photoresist patterns. The developing process removes the chemical mixture in the gap and over the photoresist patterns. The surfactant particles disposed at sidewall boundaries of the gap reduce a capillary effect during the developing process.
US10090346B2
A pixel cell with a photosensitive region formed in association with a substrate, a color filter formed over the photosensitive region, the color filter comprising a first material layer and a second material layer formed in association with the first shaping material layer.
US10090336B2
A TFT substrate, a display device and a manufacturing method are disclosed. The TFT substrate includes a substrate and a first TFT structure and a second TFT structure formed on the substrate. The first TFT structure includes a first gate pattern and a first semiconductor pattern. The first semiconductor pattern is divided into a first channel region, and a first doping region and a second doping region located at two sides of the first channel region. The first channel region is disposed corresponding to the first gate pattern to form a first conductive channel under the function of first gate pattern. The first doping region is extended inside the second TFT structure as a second gate pattern of the second TFT structure. The present invention uses doping drain of a switching TFT as gate of a driving TFT to save layout space, and beneficial for realization of higher PPI.
US10090332B2
According to one embodiment, a semiconductor device includes a first insulating film, a first semiconductor layer formed of polycrystalline silicon, a second semiconductor layer formed of an oxide semiconductor, a second insulating film, a first gate electrode, a second gate electrode, a third insulating film formed of silicon nitride, and a protection layer. The protection layer is located between the second insulating film and the third insulating film, is opposed to the second semiconductor layer, and is formed of either an aluminum oxide or fluorinated silicon nitride.
US10090330B2
A method for fabricating a fully depleted silicon on insulator (FDSOI) device is described. A charge trapping layer in a buried oxide layer is provided on a semiconductor substrate. A backgate well in the semiconductor substrate is provided under the charge trapping layer. A device structure including a gate structure, source and drain regions is disposed over the buried oxide layer. A charge is trapped in the charge trapping layer. The threshold voltage of the device is partially established by the charge trapped in the charge trapping layer. Different aspects of the invention include the structure of the FDSOI device and a method of tuning the charge trapped in the charge trapping layer of the FDSOI device.
US10090325B1
A device includes first circuit cells. Each of the first circuit cells includes isolation transistors, a first type transistor, a second type transistor, and a first gate contact. The isolation transistors are arranged adjacent to another one circuit cell of the plurality of first circuit cells. The first type transistor includes a first gate electrode. The second type transistor includes a second gate electrode, in which the second gate electrode is disposed with respect to the first gate electrode. The first gate contact is coupled between the first gate electrode and the second gate electrode.
US10090322B2
A method of manufacturing a semiconductor device, includes: loading a substrate including a laminated film including an insulating film and a sacrificial film, a channel hole formed in the laminated film, a charge trapping film formed on a surface in the channel hole, a first channel film formed on a surface of the charge trapping film, and a common source line exposed on the bottom of the channel hole; receiving information on a distribution of hole diameter of the channel hole; and forming a second channel film on a surface of the first channel film by supplying a first processing gas and a second processing gas to a center side and an outer peripheral side of the substrate, respectively, so as to correct the distribution of the hole diameter based on the information.
US10090320B2
A semiconductor device according to an embodiment, includes a stacked body, a plurality of first terraces, a second terrace, a plurality of interconnects, a plurality of conductive bodies. The stacked body includes a plurality of electrode layers. The stacked body includes a stairstep portion at an end portion of the stacked body. The plurality of first terraces are provided in the stairstep portion. The second terrace is provided in the stairstep portion. The plurality of interconnects are provided from the second terrace to the plurality of first terraces. The plurality of interconnects contact one of the plurality of electrode layers at the stairstep portion. The plurality of conductive bodies are provided above the second terrace. The plurality of conductive bodies extend in a stacking direction of the stacked body. The conductive bodies contact the interconnects above the second terrace.
US10090319B2
According to one embodiment, a semiconductor device includes a first semiconductor region of a first conductivity type; a stacked body; a plurality of columnar portions; a plurality of first insulating portions having a wall configuration; and a plurality of second insulating portions having a columnar configuration. The columnar portions extend in a stacking direction of the stacked body. The columnar portions include a semiconductor body and a charge storage film. The first insulating portions extend in the stacking direction and in a first direction crossing the stacking direction. The second insulating portions extend in the stacking direction. A wide of the second insulating portions along a second direction crossing the first direction in a plane is wider than a wide of the first insulating portions along the second direction. The second insulating portions are disposed in a staggered lattice configuration.
US10090316B2
In 3D stacked multilayer semiconductor memories including NAND and NOR flash memories, a lightly boron-doped layer is formed on top of a heavily boron-doped layer to form a select transistor, wherein the former serves as a channel of the select transistor and the latter serves as an isolation region which isolates the select transistor from a memory transistor.
US10090300B2
A FinFET device and method for fabricating a FinFET device is disclosed. An exemplary method includes providing a semiconductor substrate; forming a first fin structure and a second fin structure over the semiconductor substrate; forming a gate structure over a portion of the first and second fin structures, such that the gate structure traverses the first and second fin structures; epitaxially growing a first semiconductor material on exposed portions of the first and second fin structures, such that the exposed portions of the first and second fin structures are merged together; and epitaxially growing a second semiconductor material over the first semiconductor material.
US10090298B2
An integrated packaging structure is provided. In the package structure, an integrated component body has a first source region, a second source region, a first setting region, and a second setting region, which are separated from each other. A first MOSFET die and a second MOSFET die are located on the first setting region and the second setting region respectively, and have a top surface, a source electrode pad and a gate electrode pad. The source electrode pad and the gate electrode pad are exposed from the top surface and spaced apart from each other. A first source connection element is connected to the source electrode pad of the first MOSFET die and the first source region. A second source connection element is connected to the source electrode pad of the second MOSFET die and the second source region. A gate connection element is connected to the gate electrode pad and a gate region of the integrated component body.
US10090288B2
A semiconductor system includes a first semiconductor device suitable for outputting an external command and a termination control signal and being inputted with a data signal; and a second semiconductor device suitable for generating a termination enable signal in response to the external command and the termination control signal, generating a pull-up signal in response to the termination enable signal, and generating a pull-down signal in response to the termination enable signal and a test mode signal.
US10090286B2
Package structures and methods are provided to integrate optoelectronic and CMOS devices using SOI semiconductor substrates for photonics applications. For example, a package structure includes an integrated circuit (IC) chip, and an optoelectronics device and interposer mounted to the IC chip. The IC chip includes a SOI substrate having a buried oxide layer, an active silicon layer disposed adjacent to the buried oxide layer, and a BEOL structure formed over the active silicon layer. An optical waveguide structure is patterned from the active silicon layer of the IC chip. The optoelectronics device is mounted on the buried oxide layer in alignment with a portion of the optical waveguide structure to enable direct or adiabatic coupling between the optoelectronics device and the optical waveguide structure. The interposer is bonded to the BEOL structure, and includes at least one substrate having conductive vias and wiring to provide electrical connections to the BEOL structure.
US10090280B2
A microelectronic assembly (300) or system (1500) includes at least one microelectronic package (100) having a microelectronic element (130) mounted face up above a first surface (108) of a substrate (102), one or more columns (138, 140) of contacts (132) extending in a first direction (142) along the microelectronic element front face. Columns (104A, 105B, 107A, 107B) of terminals (105 107) exposed at a second surface (110) of the substrate extend in the first direction. First terminals (105) exposed at surface (110) in a central region (112) thereof having width (152) not more than three and one-half times a minimum pitch (150) of the columns of terminals can be configured to carry address information usable to determine an addressable memory location. An axial plane of the microelectronic element can intersect the central region.
US10090271B1
The present invention provides a structure. In an exemplary embodiment, the structure includes a base material, at least one metal pad, where a first surface of the metal pad is in contact with the base material, and a metal pedestal, where the metal pedestal is in contact with the metal pad, where a radial alignment of the metal pad is shifted by an offset distance, with respect to the metal pedestal, such that the metal pad is shifted towards a center axis of the base material, where a first dimension of the metal pad is smaller than a second dimension of the metal pad, where the second dimension is orthogonal to a line running from a center of the metal pad to the center axis of the base material, where the first dimension is parallel to the line.
US10090270B2
A metal pillar with cushioned tip is disclosed. The cushioned tip offsets height difference among metal pillars. So that the height difference among metal pillars gives no significant effect to electrical coupling. The cushioned tip is a metal sponge. Additional one embodiment shows a second metal is plated on a tip of the metal sponge. A hardness of the second metal is greater than a hardness of a metal of the metal sponge, so that the second metal can stab into a corresponding metal sponge for electrical coupling.
US10090258B1
One illustrative crack-stop structure disclosed herein may include a first crack-stop metallization layer comprising a first metal line layer that has a plurality of openings formed therein and a second crack-stop metallization layer positioned above and adjacent the first crack-stop metallization layer, wherein the second crack-stop metallization layer has a second metal line layer and a via layer, and wherein the via layer comprises a plurality of vias having a portion that extends at least partially into the openings in the first metal line layer of the first crack-stop metallization layer so as to thereby form a stepped, non-planar interface between the first metal line layer of the first crack-stop metallization layer and the via layer of the second crack-stop metallization layer.
US10090255B2
The present disclosure relates to semiconductor structures and, more particularly, to dicing channels used in the singulatation process of interposers and methods of manufacture. The structure includes: one or more redistribution layers; a glass interposer connected to the one or more redistribution layers; a channel formed through the one or more redistribution layers and the glass interposer core, forming a dicing channel; and polymer material conformally filling the channel.
US10090247B1
A method for forming a conductive structure for a semiconductor device includes depositing a barrier layer in a trench formed in a dielectric material and forming an interface layer over the barrier layer. A main conductor is formed over the interface layer, and the main conductor is recessed selectively to the interface layer and the barrier layer to a position below a top surface of the dielectric layer. The interface layer is selectively wet etched to the main conductor and the barrier layer using a chemical composition having an oxidizer, wherein the chemical composition is buffered to include a pH above 7. The barrier layer is selectively etching to the main conductor and the interface layer.
US10090245B2
A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a first conductive structure over the substrate. The semiconductor device structure includes a first dielectric layer over the substrate and the first conductive structure. The semiconductor device structure includes a second conductive structure over the first conductive structure and extending into the first dielectric layer. The second conductive structure is electrically connected to the first conductive structure. The semiconductor device structure includes a cover layer between the second conductive structure and the first dielectric layer. The cover layer surrounds the second conductive structure, the second conductive structure passes through the cover layer and is partially between the cover layer and the first conductive structure, and the cover layer includes a metal oxide.
US10090235B2
According to one embodiment, a semiconductor device includes a board, a sealing portion, a controller, a semiconductor chip, and solder balls. The board includes a first surface and a second surface opposite to the first surface. The controller and the semiconductor chip are covered with the sealing portion. The solder balls are on the second surface of the board. The solder balls include a plurality of solder ball sets each corresponding to a pair of differential input and differential output signals, and the plurality of solder ball sets are arranged substantially parallel to a side of the board.
US10090228B1
A semiconductor package or device includes a leadframe defining a plurality of leads which are arranged and partially etched in a manner facilitating a substantial reduction in burr formation resulting from a saw singulation process used to complete the fabrication of the semiconductor device. In one embodiment, the semiconductor device includes a die pad defining multiple peripheral edge segments. In addition, the semiconductor device includes a plurality of leads that are provided in a prescribed arrangement. At least one semiconductor die is connected to the top surface of the die pad and further electrically connected to at least some of the leads. At least portions of the die pad, the leads, the lands, and the semiconductor die are encapsulated by the package body, with at least portions of the bottom surfaces of the die pad and the leads being exposed in a common exterior surface of the package body.
US10090223B2
A semiconductor device includes a heat-dissipating base, a first conductive layer bonded to the top surface of the heat-dissipating base, an AlN insulating substrate bonded to the top surface of the first conductive layer, and an electrode terminal having one edge bending to form a bonding edge whose bottom surface faces the top surface of the second conductive layer and is solid-state bonded to a portion of the top surface of the second conductive layer. The crystal grain diameter at the bonded interface of the second conductive layer and electrode terminal is less than or equal to 1 μm, and indentations from the ultrasonic horn are left in the top surface of the bonding edge.
US10090219B2
The present application relates to a cured product and the use thereof. When the cured product, for example, is applied to a semiconductor device such as an LED or the like, the decrease in brightness may be minimized even upon the long-term use of the device, and since the cured product has excellent cracking resistance, the device having high long-term reliability may be provided. The cured product has excellent processability, workability, and adhesive properties or the like, and does not cause whitening and surface stickiness, etc. Further, the cured product exhibits excellent heat resistance at high temperature, gas barrier properties, etc. The cured product may be, for example, applied as an encapsulant or an adhesive material of a semiconductor device.
US10090218B2
A placement base (100) of a semiconductor device (90) comprises a body (10), to which a radiation agent (80) having viscosity is applied and on which a semiconductor device (90) is disposed, and a protrusion (20), which is placed in an outer periphery of the body (10) and on which the semiconductor device (90) is not disposed. A detective groove (30) for introducing the radiation agent (80) is provided on a surface of the protrusion (20).
US10090217B2
A chip packaging method and package structure, the package structure including a substrate, a sensing chip coupled to the substrate, a plastic package layer located on the substrate, and a covering layer located on the plastic package layer and a first surface of the sensing chip; the sensing chip including the first surface and a second surface opposite to the first surface, and further including a sensing area located on the first surface; the second surface of the sensing chip faces towards the substrate; and the plastic package layer encloses the sensing chip, and the surface of the plastic package layer is flush with the first surface of the sensing chip.
US10090216B2
A semiconductor package includes a block having opposing first and second main surfaces and sides between the first and second main surfaces, and an encapsulation material at least partly covering the block. One or both of the main surfaces of the block has recessed regions. The recessed regions do not extend completely through the block from one main surface to the other main surface. The encapsulation material fills the recessed regions to form an interlocked connection between the block and the encapsulation material. Additional semiconductor package embodiments are provided.
US10090210B2
A metal-organic chemical vapor deposition (MOCVD) growth with temperature controlled layer is described. A substrate or susceptor can have a temperature controlled layer formed thereon to adjust the temperature uniformity of a MOCVD growth process used to epitaxially grow semiconductor layers. In one embodiment, the substrate and/or the susceptor can be profiled with a shape that improves temperature uniformity during the MOCVD growth process. The profiled shape can be formed with material that provides a desired temperature distribution to the substrate that is in accordance with a predetermined temperature profile for the substrate for a particular MOCVD process.
US10090205B2
A finFET semiconductor device and method for fabricating such a device are presented. The semiconductor device includes a first fin formed in a first semiconducting layer, a second fin formed in a second semiconducting layer, and an insulating layer disposed between the first fin and the second fin. The first fin, the second fin, and the insulating layer form a stacked structure above a substrate.
US10090200B2
A bipolar junction semiconductor device and associated method of manufacturing, the bipolar junction semiconductor device has a P type substrate, a N type buried layer formed in the substrate, a P− type first epitaxial layer formed on the buried layer, a P− type second epitaxial layer formed on the first epitaxial layer, a PNP BJT unit formed in the first and second epitaxial layers at a first active area, a NPN BJT unit formed in the first and second epitaxial layers at a second active area and a first isolation structure of N type formed in the first and second epitaxial layers at an isolation area. The isolation area is located between the first active area and the second active area, the first isolation structure connected with the buried layer forms an isolation barrier.
US10090198B2
Disclosed is a method for separating a substrate (1) along a separation pattern (4), in which method a substrate (1) is provided and an auxiliary layer (3) is applied to the substrate, said layer covering the substrate at least along the separation pattern. The substrate comprising the auxiliary layer is irradiated, such that the material of the auxiliary layer penetrates the substrate along the separation pattern in the form of an impurity. The substrate is broken along the separation pattern. A semiconductor chip (15) is also disclosed.
US10090192B2
A method for producing a rounded conductor line of a semiconductor component is disclosed. In that method, a partially completed semiconductor component is provided. The partially completed semiconductor component has a bottom side and a top side spaced distant from the bottom side in a vertical direction. Also provided is an etchant. On the top side, a dielectric layer is arranged. The dielectric layer has at least two different regions that show different etch rates when they are etched with the etchant. Subsequently, a trench is formed in the dielectric layer such that the trench intersects each of the different regions. Then, the trench is widened by etching the trench with the etchant at different etch rates. By filling the widened trench with an electrically conductive material, a conductor line is formed.
US10090189B2
A substrate cleaning apparatus capable of removing particles that exist in minute recesses formed on a substrate surface is disclosed. The substrate cleaning apparatus includes a substrate holder configured to hold a substrate; and a two-fluid nozzle configured to deliver a two-fluid jet onto a surface of the substrate. The two-fluid nozzle includes a first jet nozzle configured to emit a first two-fluid jet and a second jet nozzle configured to emit a second two-fluid jet at a velocity higher than a velocity of the first two-fluid jet, and the second jet nozzle surrounds the first jet nozzle.
US10090187B2
A method and apparatus for a heated pedestal is provided. In one embodiment, the heated pedestal includes a body comprising a ceramic material, a plurality of heating elements encapsulated within the body, and one or more grooves formed in a surface of the body adjacent each of the plurality of heating elements, at least one side of the grooves being bounded by a ceramic plate.
US10090186B2
A chuck table holds under suction a front side of a wafer which includes a device region including a plurality of devices, each having a plurality of electrode bumps, formed in a plurality of areas demarcated in a grid pattern, and an outer peripheral extra region surrounding the device region. The chuck table includes a holding surface for facing the electrode bumps and holding under suction the device region of the wafer, and an outer peripheral extra region support surrounding the holding surface and including an elastic member projecting beyond the holding surface for supporting the outer peripheral extra region of the wafer. The outer peripheral extra region support projects from the holding surface by a distance corresponding to the height of the electrode bumps.
US10090184B2
A carrier substrate includes: a base substrate; a first coating layer on a first surface of the base substrate; and a second coating layer on a second surface of the base substrate. The thermal expansion coefficients of the first coating layer and the second coating layer are greater than a thermal expansion coefficient of the base substrate, and a thickness of the first coating layer is different from a thickness of the second coating layer.
US10090182B2
A load port device includes an installation stand, an opening and closing part, a gas introduction part, and a gas discharge part. The installation stand installs a container whose side surface has a main opening for taking in and out a wafer. The opening and closing part opens and closes the main opening. The gas introduction part introduces a cleaning gas from the main opening into the container. The gas discharge part has a bottom nozzle capable of communicating with a bottom hole formed at a position distant from the main opening more than a bottom surface middle on a bottom surface of the container. The gas discharge part is capable of discharging a gas in the container to an outside of the container.
US10090181B2
Embodiments of the present invention provide an apparatus for transferring substrates and confining a processing environment in a chamber. One embodiment of the present invention provides a hoop assembly for using a processing chamber. The hoop assembly includes a confinement ring defining a confinement region therein, and three or more lifting fingers attached to the hoop. The three or more lifting fingers are configured to support a substrate outside the inner volume of the confinement ring.
US10090179B2
In an embodiment, the present invention discloses cleaned storage processes and systems for high level cleanliness articles, such as extreme ultraviolet (EUV) reticle carriers. A decontamination chamber can be used to clean the stored workpieces. A purge gas system can be used to prevent contamination of the articles stored within the workpieces. A robot can be used to detect the condition of the storage compartment before delivering the workpiece. A monitor device can be used to monitor the conditions of the stocker.
US10090177B1
Systems and methods for releasing semiconductor dies during pick and place operations are disclosed. In one embodiment, a system for handling semiconductor dies comprises a support member positioned to carry at least one semiconductor die releasably attached to a support substrate. The system further includes a picking device having a pick head coupleable to a vacuum source and positioned to releasably attach to the semiconductor die at a pick station. The system still further includes a cooling member coupleable to a cold fluid source and configured to direct a cold fluid supplied by the cold fluid source toward the support substrate at the pick station. The cold fluid cools a die attach region of the substrate where the semiconductor die is attached to the substrate to facilitate removal of the semiconductor die.
US10090175B2
An apparatus for manufacturing a semiconductor wafer comprises: a wafer chuck which holds the rear surface of a wafer having a via hole; a cap which is installed in such a way as to move up and down above the wafer chuck and has a sealed lip which forms a liquid reservoir by sealing the outer peripheral portion of the upper surface of the wafer; and a nozzle which injects and recovers processing liquids to and from a reaction chamber.
US10090161B2
A plasma etching apparatus performs plasma etching on a substrate having a resist pattern formed thereon and an outer edge portion where the substrate surface is exposed. The plasma etching apparatus includes a support part that supports the substrate, a cover member that covers the outer edge portion of the substrate and prevents plasma from coming around the outer edge portion, and a control unit that generates plasma by controlling high frequency power application and supply of a processing gas for etching, and uses the generated plasma to etch the substrate that is supported by the support part and has the outer edge portion covered by the cover member. After etching the substrate, the control unit generates plasma by controlling high frequency power application and supply of a processing gas for ashing, and uses the generated plasma to perform ashing on the resist pattern on the etched substrate.
US10090154B1
The present disclosure provide a method for preparing a semiconductor structure. The semiconductor structure includes a substrate having a memory array region and a peripheral circuit region; a plurality of first line patterns positioned in the memory array region and extending along a first direction; a plurality of second line patterns positioned over the first line patterns in the memory array region; and a plurality of linear features positioned in the peripheral circuit region. The plurality of second line patterns extend along a second direction different from the first direction. The plurality of second line patterns and the plurality of linear features are positioned at substantially the same level in the substrate.
US10090143B2
The present invention provides a mass spectrometer comprising a sample inlet, an ionization source, a mass analyzer, and an ion detector, wherein the ionization source comprises a photoionization detector lamp. The invention also provides mass spectrometers comprising two photoionization detector lamps. The use of a photoionization detector lamp can provide an increase in the signal of detected compounds as compared to the signal of detected compounds obtained using a comparable mass spectrometer with a conventional electron pumped beam lamp.
US10090142B2
In various embodiments of the invention, a cargo container can be monitored at appropriate time intervals to determine that no controlled substances have been shipped with the cargo in the container. The monitoring utilizes reactive species produced from an atmospheric analyzer to ionize analyte molecules present in the container which are then analyzed by an appropriate spectroscopy system. In an embodiment of the invention, a sorbent surface can be used to absorb, adsorb or condense analyte molecules within the container whereafter the sorbent surface can be interrogated with the reactive species to generate analyte species characteristic of the contents of the container.
US10090140B2
A sample introduction system for a spectrometer comprises a desolvation region that receives or generates sample ions from a solvent matrix and removes at least some of the solvent matrix from the sample ions. A separation chamber downstream of the desolvation region has a separation chamber inlet communicating with the desolvation region, for receiving the desolvated sample ions along with non-ionized solvent and solvent ion vapors. The separation chamber has electrodes for generating an electric field within the separation chamber, defining a first flow path for sample ions between the separation chamber inlet and a separation chamber outlet. Unwanted solvent ions and non-ionized solvent vapors are directed away from the separation chamber outlet. The sample introduction system has a reaction chamber with an inlet communicating with the separation chamber outlet, for receiving the sample ions from the separation chamber and for decomposing the received ions into smaller products.
US10090137B2
[Object] To provide: an In—Ce—O-based sputtering target capable of suppressing nodules and abnormal discharge over a long period, even though the Ce content based on an atomic ratio of Ce/(In+Ce) is 0.16 to 0.40, at which a high-refractive-index film can be obtained; and a method for producing the In—Ce—O-based sputtering target. [Solving Means] The sputtering target is an In—Ce—O-based sputtering target which is made of an In—Ce—O-based oxide sintered body containing indium oxide as a main component and cerium, and which is used in producing a transparent conductive film having a refractive index of 2.1 or more. The target is characterized in that the Ce content based on the atomic ratio of Ce/(In+Ce) is 0.16 to 0.40, and that cerium oxide particles having a particle diameter of 5 μm or less are dispersed in the In—Ce—O-based oxide sintered body.
US10090133B2
A novel composition, system and method for improving beam current during boron ion implantation are provided. In a preferred aspect, the boron ion implant process involves utilizing B2H6, 11BF3 and H2 at specific ranges of concentrations. The B2H6 is selected to have an ionization cross-section higher than that of the BF3 at an operating arc voltage of an ion source utilized during generation and implantation of active hydrogen ions species. The hydrogen allows higher levels of B2H6 to be introduced into the BF3 without reduction in F ion scavenging. The active boron ions produce an improved beam current characterized by maintaining or increasing the beam current level without incurring degradation of the ion source when compared to a beam current generated from conventional boron precursor materials.
US10090128B2
A high frequency switch is provided. The high frequency switch comprises a first high frequency connector, comprising a first inner conductor, integrally formed with a first strip conductor. Moreover, the high frequency switch comprises a second strip conductor arranged orthogonally in a first plane relative to the first strip conductor, a third strip conductor, arranged orthogonally in the first plane relative to the first strip conductor, a first switching conductor, having an orthogonally angled shape relative to the first plane, a second switching conductor, having an orthogonally angled shape relative to the first plane. A switching actuator is mechanically connected to the first switching conductor and to the second switching conductor adapted to move vertically relative to the first plane, to a first position and to a second position.
US10090126B2
A switchgear includes a stationary contact, a movable contact able to be shifted between a closed position and an opened position, an electromagnetic actuator able to generate power for shifting the movable contact, the electromagnetic actuator including a stator and a movable element, and a power transmission unit able to shift the movable contact, and to press the movable contact against the stationary contact. The power transmission unit includes a drive unit-side spring bearing portion able to be shifted together with the movable element, a contact-side spring bearing portion to be opposed to the drive unit-side spring bearing portion, and able to be shifted together with the movable contact, and a spring member provided between the drive unit-side spring bearing portion and the contact-side spring bearing portion.
US10090124B2
[Object] To enable to visually recognizing information displayed on an outer circumferential surface of a member from an axial direction of the member and capable of switching selection elements while viewing the device from the axial direction.[Solution] A rotary switching device includes: a cylindrical first member that includes an outer circumferential surface on which predetermined information is displayed; a second member that is rotatable relative to the first member; a plurality of selection elements among which a selection target is switched in accordance with relative positions of the first member and the second member; a mirror surface part that is formed by a surface disposed around the outer circumferential surface of the first member and intersecting an axial direction of the first member, and that is configured to specularly reflect the information displayed on the outer circumferential surface of the first member to enable the information to be visually recognized from the axial direction of the first member; and an indicating part configured to indicate the selection element that is selected.
US10090120B2
A door locking device of a distribution board of an air circuit breaker, including a transmission shaft transmitting power for drawing in and out a circuit breaker body, a shaft link rotatably coupled to one end of the transmission shaft, a link rod having one end rotatably coupled to a portion of the shaft link, a cam plate rotatably coupled to the other end of the link rod and pushing or pulling the circuit breaker boy, and a constraint plate installed in a distribution board door, further includes a pressing part protruding from a portion of the link road, and a hook plate rotatably coupled to a side of the cradle and having one end in contact with the pressing part to receive rotational force and the other end restricting or releasing the constraint plate, wherein the hook plate releases the constraint plate in a disconnection position.
US10090115B2
An energy storage device before pre-doping includes positive electrodes, negative electrodes, separators, a cover, an electrolyte solution, a positive terminal, a negative terminal, and pre-doping metal foil. Each of the positive electrodes and the negative electrodes respectively include: positive collector foil and negative collector foil each having holes; and a positive active-material layer and a negative active-material layer arranged on at least one side of the collector foil. Either one or both of the positive electrodes and the negative electrodes include a pre-doping-targeted electrode, in which the pre-doping metal foil is arranged in direct contact with the surface of the active-material layer, and a non-arrangement part, in which the pre-doping metal foil is not arranged, is formed in at least part of the outer periphery of the active-material layer.
US10090113B2
Presented herein is a voltaic cell containing light harvesting antennae or other biologically-based electron generating structures optionally in a microbial population, an electron siphon population having electron conductive properties with individual siphons configured to accept electrons from the light harvesting antennae and transport the electrons to a current collector, an optional light directing system (e.g., a mirror), and a regulator having sensing and regulatory feedback properties for the conversion of photobiochemical energy and biochemical energy to electricity. Also presented herein is a voltaic cell having electricity-generating abilities in the absence of light. Also presented herein is the use of the voltaic cell in a solar panel.
US10090111B2
The present invention discloses a method for manufacturing a high-voltage solid electrolyte aluminum-electrolytic capacitor, including: (1) Welding a capacitor core onto an iron bar, applying a voltage for chemical treatment, and after the chemical treatment, washing and drying the capacitor core; (2) impregnating the dried capacitor core in a dispersion A for 1˜30 minutes; (3) removing the capacitor core out of the dispersion A, creating a vacuum and then impregnating the capacitor core in the dispersion A for 1˜10 minutes; (4) keeping the capacitor core in the dispersion A, breaking the vacuum and then performing pressurization, and keeping the pressurized state for 1˜10 minutes; (5) keeping the capacitor core in the dispersion A, performing depressurization to an atmospheric pressure, and keeping the atmospheric pressure for 1˜10 minutes; (6) taking the capacitor core out, placing the capacitor core in a temperature of 65˜100° C. and drying it for 20˜60 minutes, and then placing the capacitor core in a temperature of 135˜165° C. and drying it for 20˜60 minutes; (7) repeating steps (3) to (6) at least once; and (8) putting the capacitor core in an aluminum cover and sealing it, and performing aging treatment, where the dispersion A is a dispersion that includes conductive polymers. This manufacturing method may be performed to obtain a solid capacitor of a lower ESR value and a higher withstand voltage, and obtain a lower leakage current.
US10090110B2
A crystal unit includes: a capacitor in which a plurality of dielectrics and a plurality of internal electrodes are alternately stacked; a crystal piece arranged above the capacitor and having excitation electrodes on both surfaces thereof; an external electrode formed on a surface of the capacitor; and a first conductor portion formed within the capacitor, and including one end electrically coupled to a first internal electrode among the plurality of internal electrodes, the other end electrically coupled to the external electrode, and a first exposed portion exposed on the surface of the capacitor between the one end and the other end.
US10090107B2
A multilayer electronic component and a method of manufacturing the same are provided. The multilayer electronic component includes a body including a multilayer structure in which first internal electrode patterns and second internal electrode patterns different from the first internal electrode patterns are alternately stacked and containing a dielectric material. First and second side parts are disposed on respective outer surfaces of a first pair of opposing outer surfaces of the body. First and second external electrodes are disposed on respective outer surfaces of a second pair of opposing outer surfaces of the body, and the first and second external electrodes are electrically connected to the first and second internal electrode patterns, respectively. The first internal electrode patterns are exposed to the outer surfaces of the first pair of outer surfaces of the body on which the first and second side parts are disposed.
US10090105B2
Disclosed is an electrical transformer for improved transformer power capacity and efficiency designed by the application of disclosed design considerations. One embodiment design consideration is a method to configure power transformer windings wherein the minimum distance of the primary windings from the winding axis/core center is greater (the primary windings are more distal) from the winding axis than the minimum distance of the secondary windings, which are wound around the minimum interior core diameter. This design consideration is extended from single bobbin transformer designs to split bobbin designs, with the requisite distal increase of the primary windings (from the core axis) geometrically provided by an enlarged core bobbin center leg (axial) dimension beneath the primary winding window. Another disclosed design consideration is to fix the primary winding length relationship to the core weight for given transformer specifications in accordance with the disclosed unexpected experimental results and formula.
US10090094B2
A transformer can include a flexible substrate having at least a first conductive layer and a dielectric layer. The transformer can further include an unbroken toroidal core of a magnetic material. The magnetic material can include material with a relative magnetic permeability greater than unity. The substrate can include a plurality of planar extensions arranged to provide respective windings encircling the core when the planar extensions are folded and attached back to another region of the substrate. Adjacent windings can be conductively isolated from each other. The flexible substrate can further include a second conductive layer separated from the first conductive layer by the dielectric layer. The first conductive layer and the second conductive layer can be coupled via a plurality of interconnects so that the respective windings are formed when the planar extensions are folded and attached back to the another region of the substrate.
US10090093B2
A system includes a sensor configured to detect an electrical leakage current associated with an operation of an industrial machine. The sensor includes a core and a first winding encircling a first portion of the core. The first winding includes a first number of turns. The first winding is configured to obtain a set of electrical current measurements associated with the operation of the industrial machine. The sensor includes a second winding encircling a second portion of the core. The second winding includes a second number of turns. The second winding is configured to obtain the set of electrical current measurements associated with the operation of the industrial machine. The first winding and the second winding are each configured to generate respective outputs based on the set of electrical current measurements. The respective outputs are configured to be used to reduce the occurrence of a distortion of the set of electrical current measurements based on a temperature of the core.
US10090091B2
The invention relates to a magnet assembly for a solenoid valve, comprising a magnetic core (3), composed of at least two core elements (1, 2), and a magnetic coil (4), said magnetic core being connected in an annular recess (5) of a core element (1). According to the invention, the recess (5) on the side of a terminal surface (6) which forms the core element (1), is closed in a media-tight manner via a web portion (7). The invention further relates to a solenoid valve comprising such a magnet assembly.
US10090089B2
One object is to provide an electronic component in which a standoff for filling solder is maintained. An electronic component according to an embodiment of the present invention is configured to be surface-mountable on a circuit board. The electronic component includes: an insulating base member; an internal conductor provided in the base member; a first external electrode provided on the mounting surface of the base member so as to be electrically connected to the internal conductor; and a second external electrode provided on the mounting surface of the base member so as to be electrically connected to the internal conductor. The first external electrode has a first protrusion, and the second external electrode has a second protrusion. The first protrusion and the second protrusion enables a standoff for filling solder to be maintained within a region defined by the mounting surface of the base member and the circuit board.
US10090082B2
A shielded electrical cable includes conductor sets extending along a length of the cable and spaced apart from each other along a width of the cable. First and second shielding films are disposed on opposite sides of the cable and include cover portions and pinched portions arranged such that, in transverse cross section, the cover portions of the films in combination substantially surround each conductor set. An adhesive layer bonds the shielding films together in the pinched portions of the cable. A transverse bending of the cable at a cable location of no more than 180 degrees over an inner radius of at most 2 mm causes a cable impedance of the selected insulated conductor proximate the cable location to vary by no more than 2 percent from an initial cable impedance measured at the cable location in an unbent configuration.
US10090080B2
The invention relates to an electrical cable (200) intended to be used in a harness (1) to supply power to pieces of electrical equipment, comprising at least: a conductive core (210) comprising at least one conductive strand (211), and an insulating jacket (220) placed around the conductive core. The insulating jacket of the cable has a relative dielectric permittivity lower than or equal to 2 and comprises: a first layer (221) comprising a polymer aerogel, and a second layer (222), covering the first layer, comprising a fluoropolymer. The invention also relates to a harness comprising such an electrical cable.
US10090078B2
Nanocomposite films comprising carbon nanotubes dispersed throughout a polymer matrix and further comprising at least two surfaces with differing amounts of carbon nanotubes and differing electrical resistivity values are provided. Nanocomposite films comprising a polymer layer, a conductive nanofiller layer, and a polysaccharide layer having antistatic properties are provided. In particular, nanocomposites comprising polyvinyl alcohol as the polymer, graphene as the conductive nanofiller and starch as the polysaccharide are provided. In addition, processes for forming the nanocomposites, methods for characterizing the nanocomposites as well as applications in or on electrical and/or electronic devices are provided.
US10090075B2
A display device connected by an anisotropic conductive film, wherein the anisotropic conductive film includes conductive particles and has a minimum melt viscosity of 900 Pa·s to 90,000 Pa·s at 80° C. to 140° C.
US10090073B2
Disclosed is a method for measuring an external parameter by atomic interferometry using two sets of atoms that belong to different species. Two measurements are taken simultaneously at the same location, but independently from one another, in order to obtain two measurement results. Constant phase shifts that appear in the atomic interferences for the two atom sets are quadrature-adjusted in order to ensure that one of the two measurements provides a value for the external parameter with satisfactory accuracy.
US10090065B1
A calibration controller tests an electronic circuit to identify an initial read check with a read delay, an initial write check with a write delay, and an initial command, address, control (CAC) check with a CAC delay indicated as passing. Responsive to the initial read check, the initial write check, and the initial CAC check indicated as passing, for each setting of the read delay, the write delay, and the CAC delay, the calibration controller iteratively performs concurrently, a write test with the write delay, a read test with the read delay, and a CAC test with the CAC delay on the electronic circuit over the range of conditions while simultaneously adjusting the write delay, the read delay, and the CAC delay for each iteration until one or more of a read edge, a write edge, and a CAC edge are detected.
US10090055B2
Provided herein is a voltage generating circuit including: a negative voltage pump configured to generate a first negative voltage; and a negative voltage regulator configured to generate a second negative voltage using the first negative voltage and output the second negative voltage through an output terminal. The negative voltage regulator includes a first amplifier circuit configured to be controlled by a voltage of the output terminal, and a voltage booster configured to increase a voltage of the output terminal depending on an output voltage of the first amplifier circuit.
US10090043B2
A quantum mechanical radio frequency (RF) signaling system includes a transmission line that receives and conducts an RF pulse signal operating at a radio frequency, a first qubit having a quantum mechanical state that is a linear combination of at least two quantum mechanical eigenstates, and a first network of reactive electrical components having an input that is coupled to the transmission line for receiving the RF pulse signal and an output that is coupled to the first qubit. The first network of reactive electrical components attenuates the amplitude of the RF pulse signal and produces a first attenuated RF pulse signal that is applied to the first qubit. The first attenuated RF pulse signal operates at the radio frequency and has a first attenuated amplitude that causes a predefined change in the linear combination of at least two quantum mechanical eigenstates within the first qubit.
US10090041B2
Apparatuses and methods related to performing logical operations using sensing circuitry are provided. One apparatus comprises an array of memory cells, sensing circuitry coupled to the array of memory cells via a sense line, and a controller coupled to the array of memory cells and the sensing circuitry. The sensing circuitry includes a sense amplifier and does not include an accumulator. The controller is configured to perform logical operations using the array of memory cells as an accumulator without transferring data out of the memory array and sensing circuitry.
US10090027B2
A memory system includes a first memory bank, a first path selector, a second memory bank, a second path selector, and a sensing device. The first memory bank includes a plurality of first memory cells. The second memory bank includes a plurality of second memory cells. The first path selector includes a plurality of input terminals coupled to the first memory cells through a plurality of first bit lines, and two output terminals. The second path selector includes a plurality of input terminals coupled to the second memory cells through a plurality of second bit lines, and two output terminals. The sensing device is coupled to the output terminals of the first bank selector and the second bank selector, and senses the difference between currents outputted from two of the reference current source, and the terminals of the two bank selectors according to the required operations.
US10090024B2
Some embodiments include an apparatus and methods using a first conductive material located in a first level of an apparatus (e.g., a memory device); a second conductive material located in a second level of the apparatus; pillars extending between the first and second levels and contacting the first and second conductive materials; memory cells located along the pillars; first select gates located in a third level of the apparatus between the first and second levels, with each of the first select gates being located along a segment of a respective pillar among the pillars; second select gates located in a fourth level of the apparatus between the first and third levels; and a conductive plate located in a fifth level of the apparatus between the first and fourth levels, with each of the pillars extending through the conductive plate.
US10090022B2
To provide a semiconductor device with a high output voltage. A gate of a first transistor is electrically connected to a first terminal through a first capacitor. A gate of a second transistor is electrically connected to a second terminal through a second capacitor. One of a source and a drain of a third transistor is electrically connected to the gate of the first transistor through a third capacitor. One of a source and a drain of a fourth transistor is electrically connected to the gate of the second transistor through a fourth capacitor. The other of the source and the drain of the third transistor and the other of the source and the drain of the fourth transistor are electrically connected to a high potential power source. A third terminal is electrically connected to one of a source and a drain of the second transistor.
US10090006B2
A motion inducing system for playing sounds over a gramophone is provided. An electrical signal such as that from a digital music player is converted to lateral movement of a surface using a linear motion transducer. The lateral movement moves the stylus of a gramophone, and the music from the digital music source is played through the horn of the gramophone.
US10090001B2
Method of speech enhancement using Neural Network-based combined signal starts with training neural network offline which includes: (i) exciting at least one accelerometer and at least one microphone using training accelerometer signal and training acoustic signal, respectively. The training accelerometer signal and the training acoustic signal are correlated during clean speech segments. Training neural network offline further includes(ii) selecting speech included in the training accelerometer signal and in the training acoustic signal, and (iii) spatially localizing the speech by setting a weight parameter in the neural network based on the selected speech included in the training accelerometer signal and in the training acoustic signal. The neural network that is trained offline is then used to generate a speech reference signal based on an accelerometer signal from the at least one accelerometer and an acoustic signal received from the at least one microphone. Other embodiments are described.
US10089996B2
The present technology relates to a signal processing apparatus, a signal processing method, and a program by which, in reproducing transmitted encoded data in real time, buffer overflow can be prevented from occurring on a reception apparatus side even if it is transmitted with a compression rate of the encoded data being varied in a manner that depends on communication condition. Encoded data including transmitted audio data is buffered by a reception buffer. At this time, the quantity of encoded data buffered by the reception buffer is managed in units of processing according to an encoding method. The present technology is applicable to a real-time content reproduction system utilizing a communication system.
US10089995B2
A vector joint encoding/decoding method and a vector joint encoder/decoder are provided, more than two vectors are jointly encoded, and an encoding index of at least one vector is split and then combined between different vectors, so that encoding idle spaces of different vectors can be recombined, thereby facilitating saving of encoding bits, and because an encoding index of a vector is split and then shorter split indexes are recombined, thereby facilitating reduction of requirements for the bit width of operating parts in encoding/decoding calculation.
US10089993B2
An apparatus for encoding audio information is provided. The apparatus for encoding audio information includes a selector for selecting a comfort noise generation mode from two or more comfort noise generation modes depending on a background noise characteristic of an audio input signal, and an encoding unit for encoding the audio information, wherein the audio information includes mode information indicating the selected comfort noise generation mode.
US10089992B2
A method for compressing a HOA signal being an input HOA representation with input time frames (C(k)) of HOA coefficient sequences comprises spatial HOA encoding of the input time frames and subsequent perceptual encoding and source encoding. Each input time frame is decomposed (802) into a frame of predominant sound signals (XPS(k−1)) and a frame of an ambient HOA component ({tilde over (C)}AMB(k−1)). The ambient HOA component ({tilde over (C)}AMB(k−1)) comprises, in a layered mode, first HOA coefficient sequences of the input HOA representation (cn(k−1)) in lower positions and second HOA coefficient sequences (cAMB,n(k−1)) in remaining higher positions. The second HOA coefficient sequences are part of an HOA representation of a residual between the input HOA representation and the HOA representation of the predominant sound signals.
US10089979B2
Provided are a signal processing algorithm-integrated deep neural network (DNN)-based speech recognition apparatus and a learning method thereof. A model parameter learning method in a deep neural network (DNN)-based speech recognition apparatus implementable by a computer includes converting a signal processing algorithm for extracting a feature parameter from a speech input signal of a time domain into signal processing deep neural network (DNN), fusing the signal processing DNN and a classification DNN, and learning a model parameter in a deep learning model in which the signal processing DNN and the classification DNN are fused.
US10089965B1
Disclosed are methods and systems for moving and manipulating graphical objects on a device that may include one or more pointing device, such as a mouse, a touchpad, or a touch screen, some of which may be multi-touch enabled. In some embodiments, a method may include, concurrent with and in response to user input from a pointing device: moving a first graphical object, determining a plurality of alternative target orientations for that first graphical object, selecting one of the target orientations, and gradually changing certain display characteristics of the first object based on characteristics of the selected target orientation.
US10089963B2
A screen adaptation method and apparatus. A client obtains a user interface data package from a server end and parses the user interface data packet to obtaining drawing information about each module and component; the modules of the user interface are arranged vertically and each module contains one or more components. According to the screen direction of the device where the client is located, the client acquires the display attributes of each component, and draws each component in the user interface according to said attributes and to a resource file required to be filled into each component.
US10089962B2
Various embodiments are generally directed to techniques to partition a display interface such that pixel data associated with display data having indications of an image to be displayed may be transmitted to multiple timing controller and driver (TCON-DR) sets over the display interface without necessitating each TCON-DR set receive all the pixel data. In some examples, the display interface may be partitioned such that each TCON-DR set receives only the pixel data for which the respective TCON-DR set corresponds to.
US10089961B2
An image display device having a display panel, the device being utilized to form an image display system in which a plurality of the image display devices are arrayed in one or both of vertical and horizontal directions to display one image as a whole while an image allocated to each device is displayed via the corresponding display panel, the image display device includes a reading processing unit that reads out image information and delays start of output of this image information by a predetermined period of time determined based on the number of the image display devices which forms the image display system and a row to which the present device belongs in the vertical arrangement.
US10089955B2
A data processing apparatus has a first compressor, a second compressor, a first output interface, and a second output interface. The first compressor performs compression upon a first portion of an input display data of a frame to generate a first compressed display data, wherein the compression performed upon the first portion of the input display data has a first compression configuration. The second compressor performs compression upon a second portion of the input display data of the frame to generate a second compressed display data, wherein the compression performed upon the second portion of the input display data has a second compression configuration. The first output interface transmits the first compressed display data over a first display port of a display interface. The second output interface transmits the second compressed display data over a second display port of the display inter face.
US10089950B2
An electro-optical device includes a data line driving circuit that supplies a video signal, in which a data voltage having magnitude of voltage applied to the data lines in the amount of k (k>1) in accordance with an input video divided into frames is subjected to time division multiplexing, to a signal line, a selection circuit that selects at least one data line which becomes a supply destination of the video signal supplied to the signal line, a scanning line driving circuit that selects at least one scanning line, a control circuit that controls a predetermined precharge voltage to be applied to the data lines in the amount of k in the precharge time period, and a correction circuit that corrects a gradation level difference between the pixel applied with the precharge voltage and the pixel applied with no precharge voltage.
US10089946B2
To reduce power consumption of a display device with the use of a simple structure and a simple operation. The display device includes an input device. Input of an image signal to a driver circuit is controlled in accordance with an image operation signal output from the input device. Specifically, input of image signals at the time when the input device is not operated is less frequent than that at the time when the input device is operated. Accordingly, display degradation (deterioration of display quality) caused when the display device is used can be prevented and power consumed when the display device is not used can be reduced.
US10089928B2
The sensing method for an organic light-emitting display comprises: defining a pixel group comprising a reference pixel and two or more valid pixels, among a plurality of pixels arranged on a horizontal line; obtaining a black level current sensing value by applying a black level data voltage to the reference pixel; obtaining a current sensing value for a given gray level by applying a data voltage for the given gray level higher than the black level to each of the valid pixels; and obtaining a pixel current sensing value by subtracting the black level current sensing value from the current sensing value for the given gray level to eliminate common noise.
US10089924B2
A system for compensating for non-uniformities in an array of solid state devices in a display panel displays images in the panel, and extracts the outputs of a pattern based on structural non-uniformities of the panel, across the panel, for each area of the structural non-uniformities. Then the structural non-uniformities are quantified, based on the values of the extracted outputs, and input signals to the display panel are modified to compensate for the structural non-uniformities. Random non-uniformities are compensated by extracting low-frequency non-uniformities across the panel by applying patterns, and taking images of the pattern. The area and resolution of the image are adjusted to match the panel by creating values for pixels in the display, and then low-frequency non-uniformities across the panel are compensated, based on the created values.
US10089922B2
A flexible display device includes a flexible substrate includes first and second portions that overlap each other, and a bending portion connecting the first portion with the second portion. A first display having a first organic light emitting diode is on the first portion, the first display configured to display an image in a first direction, and a second display having a second organic light emitting diode is on the second portion, the second display configured to display an image in a second direction. A gate driver is on the bending portion, and is configured to drive gate lines in each of the first and second displays.
US10089912B2
A display panel includes a first substrate, and at least one data driver integrated circuit. The data driver integrated circuit is electrically connected to the first substrate, wherein the data driver integrated circuit receives a first set signal and a second set signal, the first set signal includes a first data transmission interface, the second set signal includes a second data transmission interface, and the first data transmission interface and the second data transmission interface are different.
US10089904B2
A greeting card having mechanically actuated moving portions is provided. The greeting card may include a panel having one or more folds, one or more flexible drive shafts coupled to the panel and having a flipping or moving portion, and a decorative portion coupled to at least one of the panel and the flipping or moving portion. Each flexible drive shaft may be coupled to the panel such that a portion is positioned on a first side of the fold and a portion is positioned on a second side of the fold. When the greeting card is opened, a moment arm is created in the flexible drive shaft which causes the flipping or moving portion to move from a first position to a second position. The decorative portion may move in response to the flipping or moving portion moving from the first position to the second position.
US10089902B2
In one embodiment, a resettable injection training device is provided herein. The injection training device includes an outer shell comprising a proximal end and a distal end, the outer shell defining a chamber there within, and a plunger slidable within the chamber, the plunger comprising a plunger feature and one or more rail portions. The injection training device further includes a locking safety shield disposed and slidable within the chamber, the safety shield comprising a proximal end and a distal end, the distal end for interfacing with a target surface to actuate the injection training device, the safety shield comprising an extended locked position, an extended unlocked position, and a retracted position. The injection training device further includes a rotatable plunger collar comprising a plunger collar tab for interfacing with the plunger feature and with the safety shield, wherein the plunger collar is rotated in a first direction to release the plunger from a pre-fired position to a fired position, a rotatable safety shield collar comprising a locking tab, the locking tab for interfacing with the safety shield to lock the safety shield in an extended, locked position in the fired position, and a reset component disposed within the chamber, said reset component configured to interface with the safety shield collar to unlock the safety shield during reset of the device.
US10089898B2
To provide an information processing apparatus for allowing a learner to enjoy viewing and listening of the content and to perform linguistic learning, and to check the effect of learning. A Dictionary DB 101 associates a vocabulary with a difficulty level determined for each vocabulary, and stores the vocabulary and the difficulty level, the vocabulary including a word, an idiom, or a phrase consisting of two or more words in a language to learn. A registration unit 102 registers a degree of learning of the language to learn of a learner as a learning level. A calculating unit 104 calculates the number of the vocabularies to learn used in the content as a frequency in use. A specifying unit 106 specifies, according to the calculated frequency in use and the registered learning level, and among the vocabularies of the language to learn used in the content, a vocabulary which is an object to learn as a vocabulary to learn. A main control unit 113 causes an input operation received by an input unit 111 during the output of the content to be registered as an input operation in response to the output of the vocabulary to learn.
US10089897B2
A system and method are provided for treating excessive or problematic computer use. In at least one embodiment, a method is employed to treat excessive or problematic computer use by acquiring information about the unwanted user activity, monitoring user activity for the unwanted behavior, controlling the behavior when it occurs, enabling the user to record self-observations and evaluating the results. This method may employ a computer based system to treat excessive or problematic computer use which includes configuring a user activity monitor with constraints, programmatically enforcing those constraints, reporting the activities monitored and restricted, and enabling a user to input self-observations. Potential constraints include a complete bar on the user activity, as well as, progressively decreasing the amount of time the user may engage in the activity, i.e. titrating the user activity.
US10089891B2
A system for monitoring scheduled turnaround activities and alerting on time deviation from the scheduled turnaround activities is disclosed. The system includes a ground computing station system, an aircraft on-board system, a cloud, and user interface. The cloud is communicatively coupled to the ground station computing system and the aircraft on-board system. The cloud includes processor and memory. The memory includes an analytics module to obtain actual start and end time stamps associated with scheduled turnaround activities, from touchdown to takeoff of an aircraft, from aircraft on-board systems and a ground station system. The analytics module to determine time deviation of scheduled turnaround activities by analyzing the obtained actual start and end time stamps. The user interface to present each scheduled turnaround activity and determined time deviation of the scheduled turnaround activities.
US10089889B2
A device, and method, for situational awareness of an emergency scene for first responders uses an unmanned aerial vehicle equipped with a sensor package in populated or otherwise restricted areas. The unmanned aerial vehicle is assigned to a control center for a designated incident while automatically tasking the unmanned aerial vehicle with the initiation of the incident response to autonomously proceed to the incident prior the control center taking active control of the unmanned aerial vehicle.
US10089885B1
Disclosed are systems and methods for storing path data for all vehicles of a service area in a path data store and representing each path with a unique hash value, generated based on the path data. Rather than controllers and/or aerial vehicles exchanging the full path data for each path, a common hash function may be used to generate unique hash values for each path and the unique hash values may be exchanged and used to lookup the full path data.
US10089877B2
A method for warning other road users in response to a vehicle traveling in a wrong direction, the method including advance detection, setting-up, detection, and provision. In the step of advance detection, a potential of a possible instance of wrong-way travel of the vehicle is detected in advance. In the step of setting-up, a communication path to at least one road user endangered by the instance of wrong-way travel is set up, if the wrong-way travel potential is greater than an advance warning value. In the step of detection, the instance of wrong-way travel of the vehicle is detected. In the step of provision, an information item about the instance of wrong-way travel is provided for the endangered road user via the communication path set up, when the possible instance of wrong-way travel is detected as an actual instance of wrong-way travel.
US10089873B2
To provide a technology that enables dump trucks to travel smoothly even in a mine where electromagnetic wave conditions are bad. The invention is a vehicle travel system in which haulage vehicles 20 traveling in a premise of a mine along predetermined travel routes 60 and a fleet management server for managing operations of haulage vehicles are connected in communication together via wireless communication network and that sets a travel-permitted segment n+1 so that difference between a communication timing at which the haulage vehicle 20-1 transmits permission request information to the fleet management server from a provisional permission-requesting point RP and communication timing at which other haulage vehicle transmits the permission request information to the same wireless base station may become more than or equal to a predetermined threshold value.
US10089872B1
Embodiments include apparatus and methods for defining vehicle boarding areas. Data indicative of boarding a first vehicle is received. A boarding area requirement associated with the first vehicle is calculated. A boarding area message in response to the boarding area requirement is generated. The boarding area message for the boarding area of the first vehicle is provided to a second vehicle or to a user.
US10089865B2
An onboard system installed in a vehicle that performs traffic processing for the vehicle, the onboard system comprising an onboard unit that communicates with an external device to perform charge processing; and a notification device that outputs a notification signal to an external device according to whether an expected onboard unit is connected or the expected onboard unit is disconnected via a connection unit connectable to the onboard unit.
US10089853B2
Companion and accessory devices can be wirelessly leashed together in a manner that enables the devices to estimate their proximities to each other. One device can periodically attempt to detect a signal from the other device. For each attempt, the attempting device can store an indication of whether the signal was detected. If a number of times that the signal was undetected exceeds a threshold, then the attempting device can perform specified operations, such as alerting a user that the wireless leash was broken. As another example, one device can detect that a strength of a signal from the other device exceeds a threshold. In response, the detecting device can measure signal strengths more frequently. If the measuring device then detects that the signal strength exceeds another threshold, then the measuring device can cause specified operations to be performed, such as data synchronization between the devices or unlocking a device.
US10089842B2
Security keypad device for detecting tampering includes a keypad, a high power wireless module for communicating data via a local area network, a low power wireless module communicating data via a personal area network, and a cellular module for communicating data via a wide area network. The device further includes an active infrared position sensor comprising of a light source for emitting infrared light and an infrared sensor for detecting reflected infrared light. The active infrared position sensor is configured to sense the position of the device based on detecting the reflected infrared light. The device further includes an accelerometer configured to measure acceleration forces and a processor. The processor is configured to determine that the position of the device changed based on positional data from the active infrared position sensor or acceleration data from the accelerometer.
US10089841B2
The present document describes a device and method for synchronizing a motion signal corresponding to a media content with a media signal for the media content, the motion signal being for controlling a motion feedback system. The method comprises: receiving a portion of the media signal; obtaining a fingerprint corresponding to the received portion of the media signal; from reference fingerprints associated with time positions of at least one reference media content, identifying a reference time position of the media content corresponding to the obtained fingerprint; obtaining the motion signal associated with the identified reference time position of the media content; and outputting the motion signal synchronized with the media signal using the identified reference time position of the media content for controlling the motion feedback system.
US10089837B2
A system for audibly communicating a status of at least one operably connected device or system, includes a status module configured to receive a signal representative of a status of the at least one operably connected device or system and a transceiver operably connected to the status module, wherein the transceiver is configured to receive signals from the status module and to transmit a sound.
US10089834B2
A delivery method for providing supplemental slot machine output content through a slot machine has been developed. The method includes offering slot machine output content that has been tested by a gaming commission and offering supplemental slot machine output content that has not been tested by the gaming commission. A separation is maintained between the tested content and the untested content with a software construct that prevents the untested content from changing the tested content.
US10089827B2
An electronic gaming machine is provided. The computer device comprises at least one data storage unit storing game data for a game, a display unit to display graphical game components to a player of the game, at least one data capture unit, such as a camera, to collect data about the player's gaze, and a processor to process the player gaze data, determine if a player gaze condition is satisfied, determine whether a game condition is satisfied. If both the player gaze condition and the game condition are satisfied, the processor modifies at least some of the graphical game components based on the player gaze condition and the game condition.
US10089826B2
A record display system includes an interactive controller configured to: communicate, to an application controller, application telemetry; receive application resources; display initial results of a user interaction; receive a record indicating an official result of wagering associated with the user interaction; and display the record; a wager controller constructed to: receive a wager request; determine a wager outcome; communicate the wager outcome; and communicate the record; and the application controller operatively connecting the interactive controller and the wager controller, and constructed to: receive the application telemetry; communicate the wager request; receive the wager outcome; communicate application resources; receive the record; communicate the record, wherein the record comprises the official wager outcome.
US10089814B2
A parking meter assembly (10) including a base (11) that is to be fixed to or embedded in a ground surface, typically adjacent the curb that which a car is to be parked. The assembly (10) also includes a parking meter (13) having a front face (17) that includes a coin slot (25) a card slot (20) and a control panel (21). The parking meter (13) further includes a rear face (27) having a window aperture (28) that provides for the transmission of light to a solar panel (29) behind the aperture (28).
US10089807B2
An electronic access control device (1) includes a radio communication module (11) for wireless data exchange in a first radio frequency band with a mobile device (2) over a direct wireless communication link (3). The access control device has a controller (12) connected to the wireless radio communication module for generating an access control signal using an access key received from the mobile device. The electronic access control device further includes a proximity detector (13) for detecting a mobile device in defined proximity (P), using a radio frequency in a second radio frequency band, different from the first radio frequency band. The controller is connected to the proximity detector and controls the radio communication module to establish the direct wireless communication link with the mobile device, only if the mobile device is detected in defined proximity of the electronic access control device.
US10089804B2
The disclosure relates to a technology for allowing access to an area having a blocked entrance, wherein the blocking of the entrance is controlled by an access controller arranged to unblock the entrance upon receipt of an authorized credential. The technology is implemented to repeatedly updating an override credential in the access controller, sending updated override credential the access controller to a remote node, repeatedly checking the connectivity between the remote node and the access controller, detecting failure of connectivity between the access controller and the remote node, setting the override credential as an authorized credential in the access controller in response to the detection of failure of connectivity, and allowing access through the blocked entrance upon receipt of the override credential in an access request to the area received by the access controller.
US10089803B2
An integrated security system which seamlessly assimilates with current generation logical security systems. The integrated security system incorporates a security controller having standard network interface capabilities including IEEE 802.x and takes advantage of the convenience and security offered by smart cards and related devices for both physical and logical security purposes. The invention is based on standard remote authentication dial-in service (RADIUS) protocols or TCP/IP using SSL, TLS, PCT or IPsec and stores a shared secret required by the secure communication protocols in a secure access module coupled to the security controller. The security controller is intended to be a networked client or embedded intelligent device controlled remotely by to an authentication server. In another embodiment of the invention one or more life cycle management transactions are performed with the secure access module. These transactions allow for the updating, replacement, deletion and creation of critical security parameters, cryptographic keys, user data and applications used by the secure access module and/or security token. In another embodiment of the invention a security access module associated with the security controller locally performs local authentication transactions which are recorded in a local access list used to update a master access list maintained by the authentication server.
US10089800B2
A keyless entry system for remotely controlling a door and a window of a vehicle includes: a remote control key that stores a plurality of function codes, selects a function code corresponding to an on-duration time of a lock switch or an on-duration time of an unlock switch, modulates the selected function code to a wireless signal, and transmits the wireless signal; and a receiving device that receives the wireless signal, demodulates the wireless signal into the function code, and outputs a door control signal or a window control signal according to the modulated function code, where the function code is divided into a basic function code field and a window function code field.
US10089799B2
A driving behavior monitoring device having a data processor and a geographic positioning module in which the processor will make a determination, based on monitored driving behavior, whether a vehicle is likely to have been involved in an accident, and record a geographical location associated with the data, and to further determine whether the device has changed its geographical position by more than a predetermined distance within a predetermined time. Driving data collected may also be used to calculate or adjust insurance premiums and/or to provide safety feedback.
US10089796B1
In one general aspect, a method can include combining a partition polygon and a generated texture map to form a model of a scene for rendering in three dimensions in a virtual reality space. The generating of the texture map can include projecting a Layered Depth Image sample in a partition polygon to a point in a source camera window space, projecting the point back into the partition polygon as a surface element (surfel), projecting the surfel to a surfel footprint in a target camera window space, projecting from the target camera window space to the partition polygon, sub-pixel samples included in pixels covered by the surfel footprint, projecting the sub-pixel samples from the partition polygon and into the source camera window space, and applying a color weight to each sub-pixel sample based on the location of the sample in the source camera window space.
US10089789B2
A method of combining 2D images into a 3D image includes providing a coordinate measurement device and a six-DOF probe having an integral camera associated therewith, the six-DOF probe being separate from the coordinate measurement device. In a first instance, the coordinate measurement device determines the position and orientation of the six-DOF probe and the integral camera captures a first 2D image. In a second instance, the six-DOF probe is moved, the coordinate measurement device determines the position and orientation of the six-DOF probe, and the integral camera captures a second 2D image. A cardinal point common to the first and second image is found and is used, together with the first and second images and the positions and orientations of the six-DOF probe in the first and second instances, to create the 3D image.
US10089788B2
An HMD device identifies a pose of the device and identifies a subset of a plurality of camera viewpoints of a light-field based on the pose. The HMD device interpolates image data of the light-field based on the pose and the subset of the plurality of camera viewpoints to generate an interpolated view; and displays at the HMD device an image based on the interpolated view. By interpolating based on the subset of camera viewpoints, the HMD device can reduce processing overhead and improve the user experience.
US10089784B2
Systems and method of mapping spaces include a head-mounted sensor array. The array includes sensors configured to both measure distances within spaces and capture images of the spaces. This data may be used to generate continuously navigable virtual simulations of the spaces. Mapping of the spaces may include movable objects such as doors, transparent objects such as windows, and transitions between floors.
US10089782B2
When rendering a region of a three-dimensional object represented by a base set of polygon vertices in a graphics processing pipeline, a first processing stage uses meta-information representative of the surface relief of the region of the three-dimensional object to determine whether to generate a set of additional polygon vertices over the region of the three-dimensional object, and generates the additional set of polygon vertices (when this is deemed necessary). A second processing stage then uses information representative of the surface relief of the region of the three-dimensional object to modify the positions of one or more of the polygon vertices, before the vertices are assembled into primitives that are then rasterised and rendered.
US10089776B2
In a graphics processing system, a bounding volume 20 representing the volume of a scene to be rendered and a cube texture 30 representing the transparency of the surface of the bounding volume are defined. Then, when the scene is to be rendered for output, a color to be used to represent a first sampling point 25 as seen from a viewpoint position 24 for the scene is determined by determining, for each of plural second sampling points 27 along a vector 26 from the first sampling point 25 to the viewpoint position 24, a transparency parameter indicative of the amount of light that falls on the second sampling point 27, and then using the determined transparency parameter values for each of the plural second sampling points 27 to determine the color. Each transparency parameter is determined by determining a vector 29 to be used to sample a graphics texture 30 that represents the transparency of the surface of the bounding volume 20 in the scene, and then using the determined vector 29 to sample the graphics texture 30 to determine the transparency parameter value for the light source 22 for the second sampling point 27.
US10089771B2
A method, apparatus and computer program product are provided for non-occluding overlay of user interface or information elements on a contextual map. A method is provided for receiving map data and location data, determining, using a processor, relevant map elements based on the location data; and determining an information element overlay area based on the relevant map elements. The overlay areas do not occlude the relevant map elements.
US10089760B2
Techniques for dynamically displaying corresponding segments of related pie charts are implemented by a UI engine, pie chart engine, and graphics framework engine that operate in conjunction to display at least two related pie charts having a plurality of corresponding segments, receive a user selection of corresponding segments that are displayed in different positions in their respective pie charts, rotate at least one of the related pie charts, and display the related pie charts so that the corresponding segments are displayed in the same position/orientation in their respective pie charts. The computing device may also visually highlight the selected corresponding segments and execute an animation graphically displaying the rotation of the at least one related pie chart.
US10089759B2
Systems and methods disclosed herein provide drawing assistance to a user that improves the user's ability to draw accurate perspective drawings. In general, a drawing assistance system provides a homography that annotates guidelines over an image and connects lined features of the image to a corresponding vanishing point. More specifically, the homography provides a perspective grid to the user that assists the user in adding drawing strokes to a drawing using the proper perspective. In addition, the drawing assistance system can adjust a user's drawing stroke to properly align with a vanishing point. Further, in some embodiments, the drawing assistance system allows a user to add an asset into a drawing such that the asset is displayed in the proper perspective, even after a user moves the asset within a drawing.
US10089757B2
An image processing obtains a plurality of measurement data from a measurement apparatus for obtaining the plurality of measurement data of an object, divides the plurality of measurement data into a plurality of subsets, distributes the measurement data included in the plurality of subsets to operation units in each repetitive operation, divides an image region into a plurality of regions, distributes the plurality of regions to the operation units, updates a result obtained by each operation unit in the distributed region information using the distributed measurement data, thereby performing the reconstruction process and generating a partial reconstructed image on each operation unit, and combines the partial reconstructed images to generate the reconstructed image.
US10089754B2
An unevenness inspection system includes an image pickup section configured to acquire a picked-up image of an inspection target, an image generation section configured to generate a color-unevenness inspection image and a luminance-unevenness inspection image, based on the picked-up image, a calculation section configured to use both of the color-unevenness inspection image and the luminance-unevenness inspection image to calculate an evaluation parameter, and an inspection section configured to use the calculated evaluation parameter to perform unevenness inspection. The image generation section generates the color-unevenness inspection image and the luminance-unevenness inspection image, based on a filter-processed color-component image and a filter-processed luminance-component image. The calculation section calculates the evaluation parameter in consideration of unevenness visibility with respect to both of color and luminance.
US10089752B1
In an approach to tracking markers in one or more images, one or more computer processors identify objects that exist in more than one image from a plurality of images. The one or more computer processors analyze the identified objects for one or more physical characteristics. The one or more computer processors assign a marker to at least one object of the identified objects on at least one image of the more than one image, wherein the marker is annotated based upon the one or more physical characteristics of the object of the identified objects. The one or more computer processors store the more than one images, analysis data, and marker data associated with the identified objects and one or more markers. The one or more computer processors manipulate the one or more images based on a change in the objects across the more than one image.
US10089751B1
A method and system for determining the location of objects using a plurality of full motion video cameras where the location is based on the intersecting portions of a plurality of three-dimensional shapes that are generated from the video data provided by the cameras. The three-dimensional shapes include two-dimensional shapes that contain predetermined traits in each of the frames of the video signals.
US10089750B2
A system, article, and method of automatic object dimension measurement by using image processing.
US10089744B2
An X-ray image processing device for providing segmentation information with reduced X-ray dose that includes an interface unit, and a data processing unit. The interface unit is configured to provide a sequence of time series angiographic 2D images of a vascular structure obtained after a contrast agent injection. The data processing unit is configured to determine an arrival time index of a predetermined characteristic related to the contrast agent injection for each of a plurality of determined pixels along the time series, and to compute a connectivity index for each of the plurality of the determined pixels based on the arrival time index. The data processing unit is configured to generate and provide segmentation data of the vascular structure from the plurality of the determined pixels, wherein the segmentation data is based on the connectivity index of the pixels.
US10089727B2
A region extraction unit extracts first and second shape-invariant regions corresponding to each other from first and second three-dimensional images acquired by an MRI apparatus. A first registration unit acquires a first deformation vector by performing rigid registration between the first and second shape-invariant regions. A second registration unit acquires a second deformation vector by performing non-rigid registration between the first and second three-dimensional images in each shape-invariant region. A magnetic field distortion vector calculation unit calculates a magnetic field distortion vector, which represents relative magnetic field distortion between the first and second three-dimensional images based on the first and second deformation vectors.
US10089725B2
An application executed at a central processing unit (CPU) of a head mounted display (HMD) system generates sets of frame drawing commands for a graphics processing unit (GPU), and for each set of frame drawing commands the GPU renders a corresponding frame into one of a plurality of frame buffers. Each frame is generated to include or be associated with a frame number that indicates the location of the frame in the sequence of frames generated over time. In addition, each frame is generated to include or be associated with pose information indicating the pose of the HMD system when the frame is generated. At periodic preemption points, the GPU selects the frame stored at the plurality of frame buffers having the most recent frame number and applies an electronic display stabilization warp to the frame based on the difference between the current pose and the pose information stored with the selected frame.
US10089716B2
An apparatus for generating precision maps of an area is disclosed. The apparatus receives sensor data, where the sensor data includes sensor readings each indicating a level of a parameter in one of a plurality of first portions of an area, and video data representing an aerial view of the area. The sensor data may be received from sensors that are each deployed in one of the first portions of the area. The video data may be received from an aerial vehicle. An orthomosaic may be generated from the video data, and the orthomosaic and the sensor data used to generate a predication model. The prediction model may then be used to extrapolate the sensor data to determine a level of the parameter in each of a plurality of second portions of the area. A precision map of the area may be generated using the extrapolated sensor readings.
US10089698B2
A computer-implemented engine, system and method for generating business valuations, scoring, and/or flagging over a network, responsively to information input by a user remote from the engine, system and method. The invention may include a graphical user interface capable of locally querying a user to input the company information, at least one network port capable of remotely receiving the company information from the graphical user interface, and at least one engine communicatively connected to the at least one network port, which engine preferably includes a plurality of rules to generate, responsively to the input company information, at least one of a business valuation, a business score, and/or one or more business flags to be used as indicators in a network marketplace, for the company associated with the inputted company information.
US10089695B1
Systems and methods for managing a long-term care insurance policy associated with a property are provided. According to certain aspects, configuration data associated with a component installed within the property may be received and analyzed to determine that the component is not included in a long-term care insurance policy of the property. The component may be analyzed to determine a discount associated with the long-term care insurance policy, and the discount may then be applied to the long-term care insurance policy.
US10089688B2
A system and method are provided for displaying a trading screen and placing an order in an electronic trading environment. The system and method may be used to assist a trader in selecting an item of interest, such as the inside market (best bid and best ask) to be displayed relative to a user configured location on the trading screen, such as the center of the trading screen. In a preferred embodiment, the inside market will stay located relative to center of the trading screen and the price levels associated to the inside market will move as the market conditions fluctuate. Other features and advantages are described herein.
US10089686B2
Certain embodiments of the disclosed technology include systems and methods for increasing efficiency in the detection of identity-based fraud indicators. A method is provided that includes: receiving entity-supplied information comprising at least a name, a social security number (SSN), and a street address associated with a request for a payment or a benefit; querying one or more databases with the entity-supplied information; receiving a plurality of information in response to the querying; determining a validity indication of the entity supplied information; creating disambiguated entity records; determining relationships among the disambiguated records; scoring, based at least in part on determining the relationships among the disambiguated entity records, at least one parameter of the entity-supplied information; determining one or more indicators of fraud based on the scoring; and outputting, for display, one or more indicators of fraud.
US10089681B2
An augmented reality commercial platform is provided to simulate a product in an environment. The augmented reality commercial platform may include a merchant component, consumer component, augmentation engine, illustrator component, and monetization component. A method to simulate a product in an environment using the augmented reality commercial platform is also provided.
US10089680B2
Image of a subject is received along with viewable representations of a user selected wearable object having a respective size indicative of physical dimensions of the wearable object. The physical proportions of the subject are determined and a display is generated that shows how the wearable object having a respective size will look when worn by the subject having the determined physical proportions.
US10089677B2
The present disclosure describes making a payment transaction between a customer and a merchant using a payment card of the customer including: transmitting details of the payment transaction from a mobile device to a remote server; capturing at least one image of the payment card using the mobile device of the merchant; transmitting the at least one image of the payment card to the remote server; identifying, by the remote server, the merchant and the payment card captured in the at least one image; and implementing the payment transaction between bank accounts of the customer and the merchant.
US10089676B1
A service provider system may implement an enterprise catalog service that manages software products and portfolios of software products on behalf of service provider customer organizations. A graph processing service of the enterprise catalog service may create a graph representation of the enterprise catalog service data, including principals, product listings, portfolios, and constraints (and the relationships between them) that may be used to manage access control, launch contexts, and searches within the enterprise catalog service. A primary (key-value) store may maintain an adjacency list and a secondary index of de-normalized edges. A secondary (document) store may maintain the de-normalized edges. In response to various queries directed to the graph processing service, the service may query the adjacency list or the secondary index. For example, one query may return a list of products that an end user can access, and another may return a count of products within a portfolio.
US10089666B2
An authored contract document can be created based on an existing RFx sourcing document such as a “terms and conditions” document. This RFx sourcing document can be the product of collaboration and editing by unrelated bidders, thus creating bidder-specific RFx documents. The authored contract document can be created using a rules-based multi-source configurator. This multi-source configurator can include in or exclude from the authored contract document clauses or edits that have been made to the RFx document. The multi-source configurator can replace text from the RFx document that is not typically found in or relevant to an authored contract document with contract-specific text that is not typically found in or relevant to an RFx document. The multi-source configurator can add, to the authored contract document, contract-specific text that is not contained within the RFx document.
US10089661B1
Techniques are disclosed herein for identifying software products, available from an electronic marketplace, to be tested. Data associated with software products is accessed and analyzed to determine what software products to test. The data analyzed may include, but is not limited to, download data, crash data, ratings data, marketplace data, usage data, and the like. A machine learning mechanism may be used to predict a popularity of a software product, classify the application into a category relating to whether a potential anomaly is identified for the software product, and determine whether to test the software product. A score may also be calculated for the software products that indicates whether or not to test the software product. The predicted popularity, the classification and/or the score may be used to determine whether to perform further analysis or testing with regard to a software product. For instance, the score may be used to determine that the software product is to be tested by a testing service.
US10089656B1
Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium for conducting a selection process for load order. A method includes: identifying a plurality of winners of a first selection process for displaying content in a block including identifying first and second winning content items and an associated placement of the first and second content items in the block; determining when the first content item or second content item has a bid specified for a load order for the block; when both the first and the second content item have a bid specified for load order, conducting a selection for load order based on the respective bids; determining a winner of the selection and enabling the winner to load first when the block is rendered on a user device; and charging the winner based at least in part on the bids.
US10089631B2
A method for preventing mobile payment is described. The method comprises receiving an authorization request at an issuer system from a payment module on a mobile device. The authorization request may be based on sensitive data on the mobile device. The issuer system determines whether the mobile device is missing. The issuer system sends a neutralization trigger to the mobile device, and in response to receiving the neutralization trigger, the payment module is disabled.
US10089614B1
A checkout system includes a checkout station having a housing, an attendant work station, a customer unloading station and an exceptions processing subsystem. A point-of-sale system has a microprocessor and memory operatively associated with one another to identify products being purchased, payments tendered therefor and to store transaction information locally at the checkout station or remotely from the checkout station. The microprocessor has programming configured to allow an item to be scanned by a product identification scanner and in communication with the exceptions processing subsystem. The attendant work station may include an exceptions handling display: Check out methods and apparatus are also disclosed.
US10089611B1
Technology for sharing digital media is provided. In one example, a method may include identifying a first consumer. A request may be received from a second consumer requesting to consume the digital media. A first segment of the digital media being consumed by the first consumer may be identified. The digital media may be provided to the second consumer for consumption at a second segment of the digital media different from the first segment being consumed by the first consumer.
US10089606B2
This invention is related to secure payments using data codes displayed on a mobile device, for example a QR code displayed on a cell-phone. The invention establishes a third party transaction service that protects the customer's proprietary payment information, for example, credit card numbers, while ensuring for a merchant that a payment token, for example, the QR code, will represent a valid payment.
US10089605B2
Disclosed are methods and systems for transmitting a first electronic message to an employee. The method further includes generating a first data structure based on one or more first parameters of one or more electronic messages, one or more demographic attributes associated with the employee and one or more second parameters representative of one or more feedbacks provided by the employee on each of the one or more electronic messages other than the first electronic message. The method further includes determining a priority of the first electronic message, wherein the determination of the priority comprises predicting the one or more second parameters associated with the employee for the first electronic message based on the one or more second data structures. The method further includes transmitting the first electronic message to the employee based on the determined priority of the first electronic message.
US10089595B2
According to some embodiments, an event query to an item supply chain event database is processed such that a trace extraction algorithm will be executed to determine extracted trace data. A plurality of location nodes may then be graphically represented on an interactive user display based on the extracted trace data. Similarly, a plurality of item flow edges connecting location nodes may be graphically represented on the interactive user display based on the extracted trace data. According to some embodiments, a selection from a user is received via the interactive user display, the selection being associated with at least some of the graphically represented information. Responsive to the received selection, the graphical representation may be adjusted in accordance with the extracted trace data.
US10089594B2
This invention relates to a system and method for monitoring the cold chain integrity of at least one packet of environmentally sensitive goods. The system comprises a monitoring unit applied directly to the goods packet, the monitoring unit comprising an environmental sensor monitoring an environmental condition to which the goods are subjected to and an optical output device for conveying environmental condition data. The system further comprises a camera operable to capture the environmental condition data conveyed by the optical output device, a memory for storing the environmental condition data captured by the camera and a processor for analyzing the environmental condition data. The use of a camera allows for a very simple, robust and inexpensive optical output device (e.g. an LED) to be used. The arrangement reduces the equipment cost significantly thereby allowing application across a wider range of products and provides greater flexibility and possibility for analyzing the cold chain integrity.
US10089579B1
A method and system for predicting a next navigation event are described. Aspects of the disclosure minimize the delay between a navigation event and a network response by predicting the next navigation event. The system and method may then prerender content associated with the next navigation event. For example, the method and system may predict a likely next uniform resource locator during web browsing to preemptively request content from the network before the user selects the corresponding link on a web page. The methods describe a variety of manners of predicting the next navigation event, including examining individual and aggregate historical data, text entry prediction, and cursor input monitoring.
US10089573B2
[Problem to be Solved]To provide an RF tag antenna capable of improving readability and a method of manufacturing the same, and an RF tag.[Solution]An RF tag antenna 10 according to an embodiment includes a first insulating substrate 40 having a first principal surface and a second principal surface, a first waveguide device 20 provided on the first principal surface, a second waveguide device 30 provided on the second principal surface, a power feeding part 50 electrically connected to the second waveguide device 30 at one end thereof, and a short-circuit part 60 electrically connected to the first waveguide device 20 at one end thereof and to the second waveguide device 30 at another end thereof, the first insulating substrate 40, the first waveguide device 20, the second waveguide device 30, the power feeding part 50 and the short-circuit part 60 form a plate-shaped inverted-F antenna that receives a radio wave transmitted from a reader, and an inductor pattern L formed by the first waveguide device 20, the short-circuit part 60, the second waveguide device 30 and the power feeding part 50 and a capacitor 93 formed by the first waveguide device 20, the second waveguide device 30 and the first insulating substrate 40 form a resonant circuit that resonates in a frequency band of the radio wave.
US10089569B2
A dynamic transaction card that is manufactured using conductive plastic jumpers that will dissolve when in contact with a solvent used to tamper with the dynamic transaction card. Internal components of a dynamic transaction card may be manufactured using a synthetic or semi-synthetic organic material, such as, for example, plastics. These materials may be conductive to provide functionality to a dynamic transaction card, such as a connection between an integrated circuit and other card components such that when the materials dissolve, the connections are broken and the dynamic transaction card may be inactive due to the loss of various connections.
US10089562B2
When time required for print processing is estimated, estimation in consideration of overlap between objects is performed in such a manner that the objects are regarded as objects with a predetermined simple shape.
US10089561B2
An image processing apparatus which segments a raster image of a region having a predetermined width and a predetermined height includes an acquiring unit configured to acquire print data, a plurality of rendering units each configured to perform rendering in regions each having the predetermined width and a height smaller than the predetermined height based on the print data to generate a raster image of a region having the predetermined width and the predetermined height, the rendering being performed in parallel by the plurality of rendering units, and a segmenting unit configured to segment the generated raster image of the region having the predetermined width and the predetermined height into raster images of a plurality of segment regions each having a width smaller than the predetermined width and the predetermined height.
US10089555B2
A method is provided for providing automated testing of an Optical Character Recognition (OCR) system. An automated testing framework may convert original text files to images of various formats and resolutions. The images may comprise various fonts and layouts according to a document type. The images may be processed by the OCR system to generate a converted text file. Converted text files may be compared to original text files and an OCR accuracy score may be calculated.
US10089548B2
An image recognition device includes: a plurality of first charge storage circuits that store signal charges generated by photoelectric conversion sections; a plurality of second charge storage circuits that store signal charges generated by the photoelectric conversion sections; a first charge read circuit section that reads a pixel signal and outputs an image as a first image; a second charge read circuit section that reads a pixel signal and outputs an image as a second image; a read circuit selection section that selects one of the first charge read circuit section and the second charge read circuit section; and a feature amount determination section, wherein the feature amount determination section determines a detection target subject according to a feature amount of a subject in the second image, and whether to perform the determination for a subject in the first image is determined based on the determination result.
US10089546B2
A method of correcting charge values acquired from a capacitive fingerprint sensor, comprising acquiring a list of one or more defective capacitive sensor elements and for defective capacitive sensor element in the list, selecting its position as a first position and: performing a first operation by placing a first filter window about the first position and computing a replacement value for the first position from charge values within the first filter window, but forgoing computing a replacement value for the first position in case a first threshold number of defective capacitive sensor elements located within the first filter window is exceeded; in case the first operation forgo computing a replacement value for the first position, performing a second operation by placing a second filter window about the first position and computing a replacement value for the first position from charge values within the second filter window, but forgoing computing a replacement value for the first position in case a second threshold number of defective capacitive sensor elements located within the second filter window is exceeded; wherein the second filter window has a wider expanse than the first filter window.
US10089544B2
In one aspect, the present disclosure relates to video system and methods for emulating a view through an aircraft window to a passenger in an interior passenger suite. The view may be emulated by determining a perspective view of the seated passenger relative to each monitor of at least one monitor mounted to a side wall of the interior passenger suite, and capturing video data of scenery exterior to the aircraft at the perspective view(s) for display on the monitor(s).
US10089542B1
The present disclosure is directed to apparatuses, systems and methods for acquiring images of occupants inside a vehicle. More particularly, the present disclosure is directed to apparatuses, systems and methods for acquiring images of occupants inside a vehicle using a vehicle in-cabin device that automatically determines a location of the device inside the vehicle.
US10089538B2
Cameras having wide fields of view are placed at each of the front left, front right, rear left, and rear right corners of a nominally rectangular-shaped vehicle, thereby providing a continuous region of overlapping fields of view completely surrounding the vehicle, and enabling complete 360° stereoscopic vision detection around the vehicle. In an embodiment the regions of overlapping fields of view completely surround the vehicle. The cameras are first individually calibrated, then collectively calibrated considering errors in overlapping viewing areas to develop one or more calibration corrections according to an optimization method that adjusts imaging parameters including homography values for each of the cameras, to reduce the overall error in the 360° surround view image of the continuous region surrounding the vehicle.
US10089533B2
Systems and methods are described for using video fingerprinting to detect depiction of one or more objects of interest in video data. An object of interest may first be identified in one or more frames of video data. A system may then create a digital video fingerprint representing the one or more frames in which the object is depicted. A potentially large amount of subsequent video data may then be received or retrieved, and the system may determine that the object appears in a portion of the subsequent video data based at least in part by identifying that the digital video fingerprint at least substantially matches a portion of the subsequent video data.
US10089530B2
An unmanned aerial vehicle (UAV) assessment and reporting system may utilize one or more scanning techniques to provide useful assessments and/or reports for structures and other objects. The scanning techniques may be performed in sequence and optionally used to further fine tune each subsequent scan. The system may include shadow elimination, annotation, and/or reduction for the UAV itself and/or other objects. A UAV may receive or determine a pitch of roof of a structure. The pitch of the roof may be used to capture perpendicular images of sample regions that have a defined area-squared.
US10089526B2
Systems and methods for eyelid shape estimation are disclosed. In one aspect, after receiving an eye image of an eye (e.g., from an image capture device), an eye-box is generated over an iris of the eye in the eye image. A plurality of radial lines can be generated from approximately the center of the eye-box to an upper edge or a lower edge of the eye box. Candidate points can be determined to have local maximum derivatives along the plurality of radial lines. From the candidate points, an eyelid shape curve (e.g., for an upper eyelid or a lower eyelid) can be determined by fitting a curve (e.g., a parabola or a polynomial) to the candidate points or a subset of the candidate points.
US10089525B1
A system and method for determining whether an eye image includes a left eye or a right eye image is described. After obtaining an eye image, the centers of the iris and pupil in the eye image are located. A horizontal displacement between the centers of the iris and pupil is determined. In addition, neural network classifiers are used to perform eye corner detection to identify inner and outer eye corners in the image. A determination is made as to whether the eye image includes a left eye image or a right eye image based on the detected eye corners and horizontal displacement.
US10089503B2
Methods, apparatus, and systems are described for dynamically transforming scan data representing a container's loaded volume using a scanning sensor node mounted above storage space within the container. The scanning sensor node generally includes a memory, a depth sensor oriented above and towards the storage space, an identification scanner, and a communications interface to an external managing node. The identification scanner identifies an item being loaded into the storage space and the depth sensor responsively scans the storage space to generate the scan data. The scanning sensor node determines if the item is at least partially not visible to the depth sensor based upon the generated scan data and dynamically transforms the scan data into refined scan data based on this determination and upon material dimension data associated with the item.
US10089500B2
A processor of an aspect includes a decode unit to decode a modular exponentiation with obfuscated input information instruction. The modular exponentiation with obfuscated input information instruction is to indicate a plurality of source operands that are to store input information for a modular exponentiation operation. At least some of the input information that is to be stored in the plurality of source operands is to be obfuscated. An execution unit is coupled with the decode unit. The execution unit, in response to the modular exponentiation with obfuscated input information instruction, is to store a modular exponentiation result in a destination storage location that is to be indicated by the modular exponentiation with obfuscated input information instruction. Other processors, methods, systems, and instructions are disclosed.
US10089492B2
A surveillance system for monitoring of Electronic Medical Record (EMR) application navigation through a plurality of navigation interfaces of an EMR application. The system includes an EMR system that includes the EMR application. The system includes a context-sensitive engine that includes an agent device to record EMR application navigation data in real time and contextual data comprising application sensitive, user sensitive and context sensitive data. The system includes an information management server to facilitate serving of information blocks to the EMR system from a plurality of distributed databases in real-time. The system includes a processing that analyzes the plurality of navigation interfaces associated with the EMR application during a workflow event, maps the analyzed navigation data and the contextual information with actual information pre-stored in a separate database connected with the EMR system, and determine an inconsistency in a navigation workflow during the workflow event based on the mapping.
US10089490B2
Provided is a business card management server that makes it possible to efficiently input information on business cards while protecting personal security, including: a business card information storage unit 101 in which business card information having a business card image and a business card identifier is stored; a piece storage unit 102 in which two or more pieces, each of which is an image in which only part of a business card image is recognizable, are stored for each business card image; a piece transmitting unit 104 that transmits two or more piece information each of which has one of two or more pieces corresponding to one business card image and further has a business card identifier, to one or more input terminals 20; a partial business card information receiving unit 105 that receives partial business card information having a business card identifier and a business card partial character string corresponding to a piece, from the input terminals 20; and a business card partial character string accumulating unit 110 that accumulates the business card partial character string, in the business card information storage unit 101, in association with the received business card identifier.
US10089487B2
A method for searching in an encrypted database includes the following steps. A search is formulated as a conjunct of two or more atomic search queries. One of the conjuncts is selected as a primary atomic search query. Search capabilities are generated for a secondary atomic search query using the primary atomic search query and the secondary atomic search query.
US10089486B2
A method for transaction registration is described herein. The method includes sending, for a transaction manager, a registration request for a transaction. The method also performing data accesses on a data server. The registration request is non-blocking to the data accesses. The method further includes performing a two-phase commit process for the data server if the registration request is accepted. Additionally, the method includes handling the rollback if the transaction registration is rejected.
US10089484B2
Systems and methods for destroying sensitive enterprise data on portable devices are provided. Such systems and methods may include providing a portable device that includes a security agent for deleting sensitive enterprise data. The security agent on the portable device can be required to regularly be authenticated by a user through an authentication server. The authentication server provides a pre-determined timeframe for which the user would need to re-authenticate. Failure by the user to re-authenticate within the pre-determined timeframe can result in the security agent proceeding with deleting the sensitive enterprise data on the portable device.
US10089483B2
The application relates to systems, devices and methods for controlling enablement of resources based on a number of tokens in a token store. A resource is enabled when a number of tokens in the token store is greater than a minimum value. The resource is disabled when the number of tokens in the token store is not greater than the minimum value. When used in combination with an authorisation source, such as an authorisation source stored on a server or storage means, the token store provides a grace period during which the resource is enabled, even if the authorisation source is unavailable due to network or hardware failure, or disconnection of the storage means, for example.
US10089478B1
The present invention provides a method and apparatus for the production and labeling of objects in a manner suitable for the prevention and detection of counterfeiting. Thus, the system incorporates a variety of features that make unauthorized reproduction difficult. In addition, the present invention provides a system and method for providing a dynamically reconfigurable watermark, and the use of the watermark to encode a stochastically variable property of the carrier medium for self-authentication purposes.
US10089473B2
Systems and methods for securing a computer system are described herein. The systems and methods, which are computer-implemented, involve receiving, by a computing device, a name of a software vulnerability. The computing device measures a lexical similarity distance between the vulnerability name and each name in a list of names of software systems and components of the computer system. The computing device further identifies the software system and component names that are within a predetermined similarity distance of the vulnerability name as corresponding to software systems and components having the software vulnerability. Once the vulnerabilities are detected and mapped to corresponding software systems and components, the systems and methods can generate derivative works (e.g., reports, charts, and other derivative data) for further data processing, storage or analysis by different stake holders and/or other computing devices.
US10089469B1
The disclosed computer-implemented method for whitelisting file clusters in connection with trusted software packages may include (1) identifying a trusted file cluster that includes a set of clean files, (2) identifying an additional file cluster that includes a set of additional files that typically co-exist with the set of clean files included in the trusted file cluster on computing systems, (3) determining that the trusted file cluster and the additional file cluster represent portions of a single trusted software package, and then, in response to determining that the trusted file cluster and the additional file cluster represent portions of the single trusted software package, (4) merging the trusted file cluster and the additional file cluster into a merged file cluster and (5) whitelisting the merged file cluster. Various other methods, systems, and computer-readable media are also disclosed.