US10027524B2
Disclosed are a method and an apparatus for transmitting a reference signal. The method for transmitting the reference signal comprises the step of: transmitting a secondary synchronization signal (SSS) and a primary synchronization signal (PSS) from a subframe including an N (natural number wherein N>1) number of resource blocks (RB) and a plurality of orthogonal frequency division multiplexing (OFDM) symbols; and transmitting from the subframe the reference signal which is generated on the basis of a cell identifier, wherein the reference signal can be transmitted from an M (natural number wherein K<=M
US10027523B2
Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to the wireless protocol in the RF wireless domain. A computing device may be trained to generate coefficient data based on the operations of a wireless transceiver such that mixing input data using the coefficient data generates an approximation of the output data, as if it were processed by the wireless transceiver. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
US10027509B2
A data transmission architecture, in particular for use in on-board avionics is disclosed. The data transmission architecture includes at least one main data transmission network with integrated functional nodes for connecting a plurality of peripheral data transmission networks to the main network, in order to provide data transmission between the networks. The data transmission architecture also includes a direct connection of peripheral networks to one another so as to allow the transmission of data directly between the peripheral networks without passing through the main network. The main network includes a plurality of associated sub-networks.
US10027504B2
System, methods and apparatus are described that support multimode operation of a data communication interface. A method includes receiving a first code word transmitted while a physical interface of the device is configured to operate in a low-power mode of operation, reconfiguring the physical interface in response to the first code word such that it operates in a high-speed mode, transmitting data while the physical interface operates in the high-speed mode of operation, receiving a second code word transmitted while the physical interface operated in the high-speed mode of operation, and reconfiguring the physical interface in response to the second code word, such that it operates in the low-power mode of operation. The first code word, the second code word, and the data may be transmitted in signals bound by a common voltage range. In one example, the voltage range is less than 600 millivolts.
US10027499B2
In an example of multi-user wireless communications, an access point may send a downlink frame, including a common information field and multiple per user information fields, to multiple stations. The common information field and the per user information fields are located in a payload section of the downlink frame. The common information field includes information common to all of the stations. Each per user information field may have information specific to its corresponding station. Some or all of the stations may generate and transmit their respective uplink frames based on the common information field and their respective per user information field(s) included in the downlink frame. The downlink frame may be a trigger frame such as a multi-user block acknowledgment request (MU BAR) frame. The uplink frames may be block acknowledgment or acknowledgment (BA or ACK) frames. Other methods, apparatus, and computer-readable media are also disclosed.
US10027496B2
A method for distributing identifiers of sources from a multicast group. The sources are interconnected via an electronic communications network, and the multicast group is identified by a group address. A stream transmitted to the group address by a first source is received by a second source if the second source is already subscribed to the first source. One of the sources, known as the server, is subscribed to all of the other sources. The method includes the server performing the following acts: receiving from one of the other sources, known as an announcer source, a multicast announcement message including an announcer source identifier; and transmitting a management message to the group address, including the announcer source identifier.
US10027480B2
A key enrollment method of a physically unclonable function (PUF) circuit including a plurality of PUF cells includes receiving a first level key from PUF cells, performing bit encoding on the first level key using a bit coding table based on Hamming weights of a plurality of bits in the first level key to generate a second level key, storing first helper data associated with the second level key in a non-volatile memory, performing block encoding on the second level key using an error correction code to generate a third level key, and storing second helper data associated with the third level key in the non-volatile memory.
US10027474B2
A hearing device includes: a processing unit configured to compensate for hearing loss of a user of the hearing device; and an interface; wherein the processing unit is configured to: receive a session request for a session via the interface, obtain and store a session key, encrypt the session key based on a hearing device key, send a session response comprising the encrypted session key, and receive session data in the session via the interface.
US10027459B2
Wireless communication under IEEE 802.11 standards utilizing carrier specific interference mitigation where an AP or UE employs an ultra-wideband tuner to evaluate available spectrum between several communication bands. Rather than being constrained to communicate in a single communication band, the AP and UEs may utilize more than one communication band to communicate with one another. In doing so, the AP and UE search across several bands and measure interference on a carrier-by-carrier basis across those bands. Either of the AP and UE may select a cluster of carriers for communication, where the cluster of carriers may comprise 1) contiguous carriers in a single sub-channel, 2) contiguous carriers spanning across more than one sub-channel, 3) discontinuous carriers in a single sub-channel, or 4) discontinuous carriers spanning across more than one sub-channel. The mapping between a cluster and its carriers can be fixed or reconfigurable.
US10027453B2
A user apparatus having a primary cell on a licensed band is requested to scan an unlicensed band, the scanning being performed with a raster. The thus obtained availability of the unlicensed band is used for determining a secondary cell. To improve the reparation of the traffic between the primary cell and the secondary cell, timing information measurements are carried out which can be exploited to avoid interferences between the primary and the secondary cell.
US10027451B2
The invention provides a base station that does not cause the number of blind decodings to be increased and further can prevent the flexibility of resource allocation from degrading. A search space setting unit sets search spaces each of which is constituted by one or more control channel elements (CCEs) and each of which is to be decoded in the terminals and each of which is defined by a plurality of to-be-decoded candidates. An allocating unit places, in one of the plurality of to-be-decoded candidates included in the search space, a control channel. The number of connections of CCEs constituting the to-be-decoded candidate is associated with the number of to-be-decoded candidates. The search space setting unit causes, in accordance with the control channel to be transmitted, the association of the number of connections of CCEs constituting the to-be-decoded candidate with the number of to-be-decoded candidates to differ.
US10027448B2
Variable bitrate (“VBR”)-based applications may use physical layer metrics, associated with a radio access network (“RAN”), in order to select a data rate and/or codec at which to send and/or receive data. Such VBR-based applications may include voice call application, video streaming applications, or the like. An application programming interface (“API”) between the physical layer and the application layer of a user device may facilitate the analysis of the physical layer metrics of the RAN. The RAN may also, or alternatively, provide physical layer metrics to the user device (e.g., via control signaling). The RAN may enforce constraints on maximum or minimum data rates, and/or may specify codecs that should be used.
US10027447B2
Circuits are used to sense and compensate or mitigate the imbalance errors, hence restoring the intended benefits of differential processing. In particular, the impedance mismatch between the positive and negative branches of a balanced system is sensed by digitizing an error voltage developed by injecting suitable common mode stimuli. The mismatch is then trimmed out by introducing and properly setting up a digitally controlled impedance that counters the original impedance mismatch and hence rebalances the signal path on-situ and prior to exercising the signal processing chain.
US10027440B2
A control circuit of a wireless user equipment includes: a PDCP layer computing circuit for reading a PDCP SDU from a PDCP SDU buffer of a memory device of the wireless user equipment, and for generating a ciphered data based on the PDCP SDU; a RLC layer computing circuit for generating a RLC PDU based on the ciphered data; a MAC layer computing circuit for generating a MAC PDU based on the RLC PDU; and a channel encoding circuit for encoding the MAC PDU. The PDCP layer computing circuit directly transmits the ciphered data to the RLC layer computing circuit, the RLC layer computing circuit directly transmits the RLC PDU to the MAC layer computing circuit, and the MAC layer computing circuit directly transmits the MAC PDU to the channel encoding circuit, without buffering above data in any buffering circuit outside the control circuit.
US10027435B2
In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ΔQ of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
US10027433B2
Example implementations described herein are directed to a micro-architecture of NoC router clocking which allows for a flexible Globally Asynchronous Locally Synchronous (GALS) implementation. The example implementations allow arbitrary clock domain partitions to be defined across the system. The example implementations further involve allowing the components of the NoC to be configured by the user through a NoC generation system to achieve the desired arbitrary clock domain partitioning.
US10027432B2
Techniques for sending and receiving broadcast information are described. In an aspect, broadcast metadata may be generated for broadcast information and may include location and time criteria used by terminals to filter the broadcast information. Each location and time criterion may include (i) a location criterion given by a target location and a presence or absence requirement and (ii) a time criterion given by a time period in which the location criterion applies. A terminal may receive the broadcast metadata prior to or with the broadcast information, obtain location and time criteria from the broadcast metadata, and filter the broadcast information based on the location and time criteria. The terminal may evaluate each location and time criterion by determining its location within a specified time period and determining whether its location is within or outside a specified target location, as indicated by the presence or absence requirement.
US10027429B1
Proactive systems for monitoring, diagnosing, and providing a plan of corrective action for Radio Frequency (RF) hardware components as part of a greater system or network in telecommunications. The system can be used for remote sites and in conjunction with current network management tools as the most prolific and fundamental piece of instrumentation in telecommunication networks. The system can be used simply as an RF development instrument for any industry requiring the use of high frequency signals. It consists of four sensor modules that are wirelessly linked to a receiver module which could be miles away. The sensors are: RF power detector, Spectrum Analyzer, Interference Cancelling Synthesizer, dual function RF power detector and spectrum analyzer. The data gathered allows the user to create a profile for specific malfunctions in the RF chain, as well as interference direction, strength and source type leading to remotely deployed solution, and a mobile network.
US10027428B2
Provided is a method of calibrating a power for a multiple input and multiple output-orthogonal frequency division multiplexing transmitter having a plurality of antennas via a measurement equipment, the method including: receiving a cyclic delay diversity (CDD) signal simultaneously output from the transmitter to obtain a starting point of a frame of a corresponding signal; performing a fast Fourier transform on a sample proceeded from the starting point by an extent of a maximum CDD delay; calculating a channel coefficient; calculating a channel impulse response and a power of the channel impulse response; converting CDD delay values of each antenna into values in units of samples by using a sampling rate in the channel impulse response; mapping a peak point position of the channel impulse response to each antenna using CDD delay sample values; and simultaneously performing a power calibration of each antenna based on each peak point power.
US10027425B2
A method for optical and electrical signal processing of a multi-heterodyne signal generated by a multi-mode semi-conductor laser, for a system comprising two laser sources and an sample interaction unit. At least the beam of one of the laser passes through said sample interaction unit before being combined on a detector. The first laser is tuned (40=>42) by an amount keeping the tuning result within the available detector bandwidth (55). Then the second laser is roughly tuned by the same amount as the tuning of the first laser to bring back the signal to the vicinity (48) of the original place in the RF-domain and within the bandwidth (55) of the detector. The tuning steps are repeated with different value of mode spacing for reconstructing the sample spectrum and provide a high resolution image of the dip (41) absorption line (40).
US10027414B2
A bidirectional optical amplifier amplifies optical signals having signal wavelength and signal power input from two directions. The amplifier is arranged so that two counter-propagating signals pass through a first pumped rare earth doped pre-amplifier before passing through other amplifiers downstream. Optical circulators route the two counter propagating signals so that they both pass through in a counter-propagating manner through subsequent pumped rare earth doped amplifiers downstream.
US10027413B2
A method implemented in a communication device, comprising generating, via a processor of the communication device, a first waveform modulation signal based on a first approximation of an input signal, generating, via the processor, a second waveform modulation signal based on a first difference between the input signal S and the first waveform modulation signal, generating, via the processor, a control signal having a sequence of control symbols with a pre-determined modulation format, performing, via the processor, time-domain multiplexing (TDM) on the first waveform modulation signal, the second waveform modulation signal, and the control signal to form a cascaded waveform modulation signal with embedded control signal (CWM-CS), modulating, via a frontend of the communication device, the CWM-CS onto a carrier, and transmitting, via the frontend, the CWM-CS over a communication link to a corresponding communication device in a network.
US10027411B2
A method of outputting color code for data communication to a display screen, the method includes determining a plurality of sections having a predetermined order of a display screen, mapping the plurality of sections to different binary numbers each having at least one-bit length, and outputting a predetermined color to consecutive sections including at least a first section among the plurality of sections in a direction of the predetermined order or a reverse direction of the predetermined order. The color output to the consecutive sections represents binary numbers in which ‘0’ or ‘1’ is added to a front or end of designated binary numbers in the direction of the predetermined order or the reverse direction of the predetermined order, the designated binary numbers mapped to a last section among the consecutive sections in the direction of the predetermined order or the reverse direction of the predetermined order.
US10027409B2
The invention provides a communication system (500), a lighting system, a method of transmitting information and a computer program product. The communication system according to the invention is configured for transmitting data via visible light. The communication system comprises a signal generator (530) for generating a light driving signal (200) being a frequency shift key modulated signal comprising a sequence of signal parts (215, 225), each signal part being modulated at a first or second frequency in accordance with the data, the signal parts modulated at the first frequency having first pulses in first periods (T0) and the signal parts modulated at the second frequency having second pulses in second periods (T1). Energy of the visible light corresponding to a pulse in a respective period has center of gravity in time. The pulses in the periods are positioned so that the center of gravity is at the center of the period for reducing human-perceivable frequency components in the visible light driving signal.
US10027407B2
A network design device includes a processor. The processor determines a second wavelength allocation based on a first wavelength allocation that indicates a wavelength allocation for a plurality of optical lines established in a wavelength division multiplexing optical network. The processor searches for a disconnection target optical line that is requested to be disconnected in order to realize a transition from the first wavelength allocation to the second wavelength allocation from among the plurality of optical lines. The processor generates procedure information that indicates a procedure of the transition from the first wavelength allocation to the second wavelength allocation based on a difference between the first wavelength allocation and the second wavelength allocation and a searched disconnection target optical line.
US10027406B2
A plurality of terminal devices 3 are connected to a parent device 1 to measure analog voltages of the terminals. Reference voltages 6 and measurement voltages 7 each having a polarity reverse to that of clocks are sequentially switched to be connected at gaps of clocks supplied by the parent device 1. Thus, the reference voltages 6 and the measurement voltages 7 of the terminal devices 3 are directly connected. With this mechanism, measurement of analog measurement signals at multiple points can be performed by use of a pair of electric wires, in which errors due to voltage drops of the measurement voltages 7 over the transmission line 2 are corrected with measurements of the reference voltages 6 whose voltage is known in advance so that precise analog measurements can be performed.
US10027405B2
The present disclosure discloses a method and device for channel switching, an Optical Network Unit (ONU) and a system for Time Wavelength Division Multiplexing (TWDM). The method for channel switching includes that: an ONU acquires channel information of a first TWDM channel, wherein the channel information of the first TWDM channel is used for indicating an uplink wavelength and/or downlink wavelength of the first TWDM channel; and the ONU tunes the uplink wavelength and/or downlink wavelength of the ONU into the uplink wavelength and/or downlink wavelength of the first TWDM channel according to the channel information of the first TWDM channel. By means of the present disclosure, the problem of high cost caused by specially building a standby channel for each TWDM channel in a system for TWDM Passive Optical Network (PON) to provide service protection is solved, and the cost of deploying the TWDM PON system is reduced.
US10027403B2
A satellite reception assembly that provides satellite television and/or radio service to a customer premises may comprise a wireless interface via which it can communicate with other satellite reception assemblies. Wireless connections between satellite reception assemblies may be utilized for providing satellite content between different satellite customer premises. Wireless connections between satellite reception assemblies may be utilized for offloading traffic from other network connections.
US10027402B2
A repeater system includes a first master unit and a second master unit located on the movable object, such as a train. The master units are each connected to an antenna for receiving a downlink RF signal from at least one base station outside of the movable object and for transmitting an uplink RF signal towards the base station. Remote units are associated with different coverage areas within the movable object and are connected to the master units unit via a transport medium. The remote units are each connected to an antenna system for transmitting the downlink RF signal into the associated coverage area of the movable object and for receiving the uplink RF signal from the coverage area. A control unit can control first gain for the connection with the first master unit and a second gain for the connection with the second master unit.
US10027398B2
Aspects of the subject disclosure may include, for example, a repeater device having a first coupler to extract downstream channel signals from first guided electromagnetic waves bound to a transmission medium of a guided wave communication system. An amplifier amplifies the downstream channel signals to generate amplified downstream channel signals. A channel selection filter selects one or more of the amplified downstream channel signals to wirelessly transmit to the at least one client device via an antenna. A second coupler guides the amplified downstream channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves. Other embodiments are disclosed.
US10027389B2
A mobile device includes a receiver configured to perform hybrid precoding on signals received through a large bandwidth communication. The receiver includes a plurality of antennas configured to receive wireless communications signals through the large bandwidth communication. The receiver also includes a number of radio frequency (RF) chains, each including a low-bit analog to digital converter (ADC) configured to preform precoding to receive the data and control signals. The receiver further includes a baseband processor configured to perform baseband detection.
US10027386B2
Methods, systems and apparatuses for selecting parameters of a beam are disclosed. One method includes selecting, by a network controller of a wireless network, coarse beam parameters of each of a plurality of antenna arrays of a first node or a second node of the wireless network based on one or more static parameters of the first node and the second node, selecting, by at least one of the first node or the second node of the wireless network, fine beam parameters of each of the plurality of antenna arrays of the first node or the second node based on perturbations to dynamic parameters of at least one wireless link between the first node and the second node, and forming at least one beam by at least one of the first node or the second node using the coarse beam parameters and the fine beam parameters.
US10027373B2
A communications node operable to communicate with another communications node over a communications channel having a plurality of frequency resources, the communications node includes data defining a division of the communications channel into a plurality of contiguous sub-bands each having N frequency resources, wherein each frequency resource in a sub-band has a corresponding frequency resource in each of the other sub-bands, data defining an initial allocation of the frequency resources, a resource determination module operable to apply a frequency shift to the initially allocated frequency resources in accordance with a frequency hopping sequence to determine frequency resources to use for communicating information with the other communications node, wherein the frequency shift applied moves the initially allocated frequency resources to corresponding frequency resources in another sub-band, a transceiver for communicating information with the other communications node using the determined frequency resource.
US10027362B2
A wireless wearable high data throughput (big data) brain machine interface apparatus is presented. An implanted recording and transmitting module collects neural data from a plurality of implanted electrodes and wirelessly transmits this over a short distance to a wearable (not implanted) receiving and forwarding module, which communicates the data over a wired communication to a mobile post processing device. The post processing device can send this neural data to an external display or computer enabled device for viewing and/or manipulation. High data throughput is supported by aggregating multiple groups of electrodes by multiple n-channel recording elements, which are multiplexed and then modulated into high frequency wireless communications to the wearable module. Embodiments include use of multiple radiators (multiple polarizations and/or spatially distributed), with beam alignment adjustment.
US10027355B2
Modular gain control based on blocker signal detection is disclosed herein. In a multi-stage gain control scheme for a receiver, the input stage gain or the pre-mixing stage gain can be controlled for effective blocker rejection based on detecting a blocker signal at a mixer, and the output stage gain or the post-mixing stage gain can be controlled to restore and maintain an appropriate output level after pre-mixing gain reduction performed for blocker rejection. Accordingly, the RF communication systems herein can include multiple loops for providing AGC. In particular, an RF communication system can include a main loop and a blocker loop used to override the main loop when the blocker signal is detected. In certain configurations, the blocker loop reduces the gain of an RF VGA, while the main loop will increase the gain of an IF VGA to restore the output power.
US10027328B2
Various techniques are provided to efficiently implement user designs in programmable logic devices (PLDs). In one example, a method includes identifying a multiplexer in the design, identifying one or more irrelevant inputs for the multiplexer by, at least in part, decomposing the select logic into one or more select line binary decision diagrams corresponding to the one or more select lines, and generating a reduced multiplexer by eliminating the one or more irrelevant inputs from the multiplexer. The reduced multiplexer may be used to generate configuration data to configure physical components of the PLD, and the configuration data may be used to program the PLD to conform to the timing constraints of the design and/or PLD.
US10027318B2
A transmission circuit includes: a first transistor, a first current source, a third transistor. The first transistor has a source terminal coupled to a first reference voltage terminal of the transmission circuit and a drain terminal coupled to a first output terminal of the transmission circuit. The first current source is coupled between a gate terminal of the first transistor and a second reference voltage terminal of the transmission circuit. The third transistor has a drain terminal coupled to the first output terminal of the transmission circuit, a source terminal coupled to the second reference voltage terminal of the transmission circuit, and a gate terminal for receiving a first input signal. The first transistor is of a first conducting type, and the second transistor is of a second conducting type different from the first conducting type.
US10027315B2
A method is for reducing pulse skipping from a characteristic affecting a modulating signal input to an integrator of a pulse width modulation (PWM) modulator, together with a square wave carrier signal for generating a triangular waveform of the PWM modulator. The method may include creating a broad synchronous peak at vertexes of the triangular waveform output by the integrator.
US10027307B2
An extensible filter structure is disclosed allowing realizable effective filtering over many decades in frequency. Multiple devices operating with mismatched frequency ranges can be multiplexed together with or without switching.
US10027306B2
A tunable notch filter/amplifier based on the non-reciprocal operation of distributedly modulated capacitors (DMC) formed for an RF front end. In one embodiment within the DMC is formed into a ring resonator with a filter between its ends to allow resonance to build up only at an up-converted frequency, and tune the frequency of the whole received band instead of the resonant frequency of the filter alone. In addition a circulator is described for passing different signals in different directions, but at the same frequency, while maintaining signal separation.
US10027303B2
To control loudness during a junction between different types of broadcast content, such as a junction between program and commercial or promotional content, representative loudness values for content respectively before (P) and after (C) the junction are received from a playout automation system. A time-varying gain control is applied before and after the junction in order to smooth loudness around the junction. The audio gain is smoothly increased prior to the junction to a gain (P+C)/2P times higher than the original gain value. Then, the gain is reduced shortly before the junction to a value (P+C)/2C times lower than the original gain value. After the junction, the gain is returned smoothly to the original value.
US10027302B2
The audio interrupter device (2) interfaces between any audio source (1) and headphones (3) to alert the user to external environmental sounds that exceed a threshold by temporarily halting audio transmission. The threshold is adjustable either through an automatic adjustment option that bases the threshold on the ambient sound level or through manual sensitivity adjustment. The device includes an audio plug (11) and an audio jack (12) that are connected to analog switches (10) that have the ability to connect and disconnect their corresponding conductors. An audio signal from a microphone (4) is amplified and input to a microcontroller (7), which compares the audio signal sample value to the sound interrupting threshold. If the audio signal sample exceeds the threshold, the analog switches disconnect the corresponding conductors of the audio plug and audio jack. If the audio signal sample is below the threshold, the analog switches connect the corresponding conductors of the audio plug and audio jack and thereby allow the audio signal to be transmitted from the audio source to the headphones.
US10027299B2
An apparatus can include a processor; memory accessible by the processor; a microphone; an audio signal output; audio circuitry that renders audio signals to the audio signal output; and volume control circuitry that regulates coarseness of increments of a dynamic range of the audio signals responsive to input via the microphone.
US10027298B2
In accordance with an embodiment, a system for amplifying a signal provided by a capacitive signal source includes an impedance converter having an input node configured to be coupled to a first terminal of the capacitive signal source, and an adjustable capacitive network having a first node configured to be coupled to a second terminal of the capacitive signal source and a second node coupled to an output node of the impedance converter.
US10027294B2
A class-D amplifier includes a loop filter, a pulse-width modulation (PWM) circuit, an output circuit, and a common-mode control circuit. The loop filter receives an input signal of the class-D amplifier to generate a filtered signal. The PWM circuit converts a non-PWM signal into a PWM signal, wherein the non-PWM signal is derived from at least the filtered signal. The output circuit generates an output signal of the class-D amplifier according to the PWM signal. The common-mode control circuit monitors a common-mode level of the output signal to generate a common-mode control signal for PWM common-mode control.
US10027293B2
An amplifier for modulating the amplitude of an RF signal, the amplifier including: a plurality of amplifier circuits, each circuit being connected to a first power source, each circuit including a charge storage device and an output across which a potential difference supplied by the first power source can be applied; a switching arrangement for switching connections between the first power source, the charge storage device, and the output in each amplifier circuit, wherein each circuit includes a first switched configuration in which the charge storage device is charged by the first power source and a second switched configuration in which the charge storage device, once charged, will apply an additional potential difference across the output. The amplifier is configured to vary the amplitude of the RF signal in proportion to the sum of the potential differences applied across the output in each amplifier circuit.
US10027288B2
In an embodiment an amplifier circuit comprises an amplifying element configured to amplify a radiofrequency input signal; a bias modulator configured to provide a bias voltage to the amplifying element, the bias voltage depending on a bias control signal; and a tuneable matching network configured to modulate the load to which the output of the amplifying element is applied.
US10027281B2
A system includes a circular oscillator suspended by a flexible support structure to a support frame, a drive mechanism configured to induce the circular oscillator into a two-dimensional drive oscillation, where the drive oscillation is modified responsive to a sense oscillation of the circular oscillator caused by an angular rotation of the support frame and the circular oscillator, and a plurality of digital proximity switches disposed around a perimeter of the circular oscillator. During the modified drive oscillation a plurality of the digital proximity switches are configured to switch between an open state and a closed state and generate a time and position output to allow for a determination of each of a plurality of variable oscillation parameters for each oscillation of the modified drive oscillation.
US10027278B2
Short-circuit current, maximum power, and open circuit voltage during a single flash are determined by varying intensity, voltage, and current. An apparatus determines the substrate doping and the series resistance of the solar cell. The series resistance of the cell is determined from a voltage step from the maximum power voltage operating point to the open-circuit condition. Methods are described for determining the substrate doping from stepping or sweeping the voltage. The first uses a voltage step and finds the change in charge that results. This determines a unique doping if the series resistance is known. The second uses data for a case of varying current, voltage, and light intensity, and compares this data to the case of varying voltage and intensity with no current. By transposing both cases into the steady state, agreement between the two data sets is found for unique doping and series resistance values.
US10027277B2
This disclosure generally relates to an energy generation system. In one embodiment, the energy generation system comprises a plurality of solar panels that are connected in a series electrical connection. The energy generation system further includes a short-string optimizer which outputs direct current electricity to a direct current bus.
US10027252B2
A rotating electric machine system includes a rotating electric machine and an electric power conversion circuit. The rotating electric machine includes N coils connected with each other to define a neutral point therebetween. The electric power conversion circuit includes N high-side switches, N low-side switches, a selector switch, a full-wave driver, a half-wave driver and a drive controller. The full-wave driver performs a full-wave drive process with high potential-side terminals of the low-side switches respectively connected with low potential-side terminals of the high-side switches by the selector switch. The half-wave driver performs a half-wave drive process with the high potential-side terminals of the low-side switches connected with the neutral point by the selector switch. The drive controller controls both the full-wave driver and the half-wave driver to selectively cause either the full-wave driver to perform the full-wave drive process or the half-wave driver to perform the half-wave drive process.
US10027248B2
An electric power conversion circuit includes: a first leg including first and third switches; a second leg including second and fourth switches; a third leg including fifth and seventh switches; a fourth leg including sixth and eighth switches; a first reactor connected between a first node, in which the first and second legs are connected to each other, and a fifth node, in which the third and fourth legs are connected to each other; a second reactor connected between a second node to which the first and second legs are connected and a sixth node to which the third and fourth legs are connected; a first port terminal connected to the first node; a second port terminal connected to the sixth node; a third port terminal connected to a midpoint of each of the first and third legs; and a fourth port terminal connected to a midpoint of each of the second and fourth legs.
US10027240B1
Systems and methods for grounding power generation units with silicon carbide MOSFET power converters are provided. A power generation unit can include a power generator configured to generate multiphase alternating current power at a first voltage. The power generation unit can also include a power converter configured to convert the multiphase alternating current power from the power generator at the first voltage to multiphase alternating current power at a second voltage. The power converter can include one or more silicon carbide MOSFETs and at least one heatsink configured to remove heat from the power converter. The at least one heatsink of the power converter can be electrically connected to a local ground formed by one or more components of the power generation unit.
US10027221B1
A novel method to generate a feedback signal in a switching regulator is presented. The method includes the generation of a first feedback signal using the switching signal. The first feedback signal carries a ripple and the ripple is in phase with the switching signal. The first feedback signal does not use a control-in terminal PIN. The voltage level of the first feedback signal is regulated through a resistor and a capacitor connected between the switching node and the switching regulator controller. In an alternative method, a second feedback signal is generated using the regulator output voltage. The controller receives the second feedback through a control-in terminal PIN. In the alternative method, another resistor and another capacitor are used to connect the first feedback signal and the second feedback signal. Furthermore, the second feedback signal can adjust the regulator output voltage through two resistors connected in series. The subject invention is designed to operate in the Continuous Conduction Mode (CCM) where the load is significant and the inductor current remains positive during the entire switching period. The method is presented for buck switching regulators, and can be utilized also for boost, buck-boost, flyback, forward, and sepic, etc.
US10027209B2
A method for manufacturing a stator for a rotating electrical machine by placing coils in a stator core, wherein each of a plurality of teeth formed in a radial pattern in an inner periphery of an annular yoke portion in the stator core has tip-end parallel side surfaces formed in its tip end portion having a constant width in a circumferential direction, has intermediate tilted side surfaces continuous with the tip-end parallel side surfaces and formed in its portion whose width in the circumferential direction increases closer to an outer periphery, and has base-end parallel side surfaces continuous with the intermediate tilted side surfaces and formed in its base end portion having a constant width in the circumferential direction.
US10027207B2
A shrink-fitting method for a laminated rotor includes: disposing, coaxially with a laminated rotor core, an annular ring having a through-hole, at an axial end of the laminated rotor core including laminated annular steel sheets and having a through-hole extending in its axial direction; and inserting a rotor shaft into the through-holes of the ring and the laminated rotor core after heating them. A ring attachment jig having a circular internal space, where the ring is disposed, has projections projecting from an axial end surface thereof in the axial direction and arranged along a circumferential direction of the circular internal space. The center of the ring is aligned with the center of the laminated rotor core, by fitting the projections in attachment holes axially extending in the laminated rotor core, and fitting the ring to an inner peripheral surface of the ring attachment jig, which defines the circular internal space.
US10027199B2
A pump assembly with an electric motor which includes a stator housing (6) and an electronics housing (4; 50) fastened at the outside on the stator housing (6). The electronics housing (4; 50) is connected to the stator housing (6) via at least one fastening element (24, 24′; 56). The fastening element is situated within an outer contour of the electronics housing (4; 50) which is delimited by the outer walls of the electronics housing (4; 50) and is accessible even with a closed electronics housing (4; 50).
US10027198B2
Electric motors are disclosed. The motors are preferably for use in an automated vehicle, although any one or more of a variety of motor uses are suitable. The motors include lift, turntable, and locomotion motors.
US10027191B2
A compressor includes: a motor that includes a rotor including opposed magnets; a compression unit that compresses a refrigerant; and a crankshaft that is connected to the motor and the compression unit and is configured to transmit rotational driving of the motor to the compression unit, wherein the magnets are arranged such that the difference in magnetic force between the opposed magnets eliminates a force that deflects the crankshaft when the motor is rotationally driven.
US10027185B2
A transmitter device for an inductive energy transfer system can include a DC-to-AC converter operably connected to a transmitter coil, a first capacitor connected between the transmitter coil and one output terminal of the DC-to-AC converter, and a second capacitor connected between the transmitter coil and another output terminal of the DC-to-AC converter. One or more capacitive shields can be positioned between the transmitter coil and an interface surface of the transmitter device. A receiver device can include a touch sensing device, an AC-to-DC converter operably connected to a receiver coil, a first capacitor connected between the receiver coil and one output terminal of the AC-to-DC converter, and a second capacitor connected between the receiver coil and another output terminal of the AC-to-DC converter. One or more capacitive shields can be positioned between the receiver coil and an interface surface of the receiver device.
US10027182B2
A wireless power transfer device includes a wireless power transfer unit that wirelessly transfers power to a plurality of other devices and a notification unit that provides notification that wireless power transfer to a third wireless power transfer device different from a second wireless power transfer device is not available or provides notification that the wireless power transfer to the third wireless power transfer device is available in the case where wireless power transfer to the second wireless power transfer device is performed.
US10027180B1
A wireless power receiver including an antenna to receive radio frequency (RF) waves via a plurality of slots defined by a metal plate. Each slot comprises at least two continuous segments that are orthogonally positioned relative to each other, where: (i) a first segment of the at least two continuous segments is defined by the metal plate in a first planar dimension and receives RF waves having a first polarization; and (ii) a second segment of the at least two continuous segments is defined by the metal plate in a second planar dimension and receives RF waves having a second polarization. The receiver further includes a circuit configured to convert the RF waves received by the antenna into power for powering a device. Additionally, the antenna is coupled with the circuit, and the metal plate at least partially houses the circuit, and operates as a heat sink for the circuit.
US10027175B2
A wireless power transfer system including a plurality of power supply coils, and wirelessly performing power transfer from the power supply coils to a power receiver, includes an entire controller. The entire controller is configured to control the power transfer performed by wirelessly transmitting and receiving powers of the power supply coils and the power receiver, in accordance with confirming power transfer ranges of the plurality of power supply coils.
US10027173B2
Various techniques are disclosed for providing electrical power and/or data from the interior of a building structure to a device at the exterior of the structure without piercing (e.g., making a hole through a wall or window frame) the structure. A camera surveillance system for an embodiment includes self-adhesive energy transfer units that can be placed on either side of a window so that electrical power is passed via the energy transfer units from inside a building to the outside without the need for making a hole in the window or building through which to pass electrical wire to feed power and/or data to/from the camera surveillance system. One of the energy transfer units may be integral with the camera surveillance system and the adhesive may be strong enough to support the weight of the camera surveillance system on the window. The camera surveillance system may be installed without the need for tools.
US10027171B2
A coupling electrode of a communication coupler intersects with an orthogonal plane that is orthogonal to a coil axial line direction of a power transmission coil. That is, the coupling electrode of the communication coupler is not in parallel with the orthogonal plane orthogonal to the coil axial line direction of the power transmission coil. For example, the coupling electrode of the communication coupler is perpendicular to the orthogonal plane being orthogonal to the coil axial line direction, and includes the coil axial line direction in a plane of the coupling electrode.
US10027163B2
Provided is a power storage device including: a first chassis member; a second chassis member; a power inlet; one or plural power outlets; a battery module; a power conversion device; a housing; a lower lid; and an upper lid. The battery module is fixed closely to one surface of the first main surface portion. The power conversion device is fixed closely to one surface of the second main surface portion. A gap portion is formed between the first main surface portion and the second main surface portion by disposing the other surface of the first main surface portion and the other surface of the second main surface portion to face each other. The space is used to make air taken through the plural openings of the lower lid flow via the plural openings of the upper lid.
US10027160B2
A method is provided for forming a wireless charging electronic device. An embodiment of the method includes integrating a coil and a collector plate to a chassis of the electronic device to wirelessly charge the electronic device.
US10027152B2
A charging device including a charging base and at least one hook portion is provided. The charging base has a receiving chamber for receiving a battery. The receiving chamber includes a first sidewall. The first sidewall has a first side and a second side opposing the first side. The hook portion is disposed on the first sidewall, positioned proximate to the first side of the first sidewall, and adapted to fix the battery in place. When the battery begins to rotate under an applied force and therefore disconnect from the hook portion, the fulcrum of the rotating battery is positioned proximate to the second side of the first sidewall. The battery can be firmly inserted into the charging device. It is easy to insert and take out the battery.
US10027146B2
An improved electrical connector for electrically connecting a rechargeable battery with an electrically powered device as well as methods of operation for use of an electrically powered device comprising the improved connector are provided. The connector may comprise one or more features including: integration of both first terminals for transmitting charging or discharging signals to and from the battery as well as one or more signal terminals for transmitting one or more balancing signals to and from the battery; implementation of communication means allowing for one or more signals comprising battery specific information to be received by the electrically powered device upon making an electrical connection with the battery; and, one or more safety features for preventing unsupported electrical connections between incompatible connector configurations. An electrically powered implemented with the improved electrical connector may detect one or more characteristics of a battery upon electrically connecting with the battery and may reconfigure one or more operational settings of the electrically powered device in response to the detected characteristics to safely charge or discharge the battery.
US10027142B2
A power supply system for an electrical equipment comprises a first power supply module for supplying power to the electrical equipment, wherein the first power supply module is connectable to a first electrical network and is adapted for converting a first input current from the first electrical network to an output current suppliable to the electrical equipment; a second power supply module for supplying electrical power to the electrical equipment, wherein the second power supply module is connectable to a second electrical network of different frequency and/or different voltage as the first electrical network and is adapted for converting a second input current from the second electrical network to the output current, when the first power supply module is not able to converting the first input current; and an electrical energy storage for supplying electrical power to the electrical equipment, wherein the electrical energy storage is adapted for providing the output current, when the first and/or second power supply module is not able to convert the first and/or second input current.
US10027140B2
A method is provided for identifying a battery pack that is operably coupled to a battery charger. The method comprises: measuring voltage at a plurality of designated terminals of a first battery pack while the battery pack is coupled to the battery charger; determining how many of the designated terminals are connected to a reference voltage, such as battery positive; and identifying an attribute of the battery pack based on how many of the designated terminals are connected to the reference voltage.
US10027137B2
An energy storage device includes a battery with at least one battery cell and two poles, two connection points each connected to battery pole, for connecting to an external current circuit for charging and discharging the battery, a battery charge state monitoring device, an additional energy storage element different than the battery cell, a connection circuit for connecting the additional energy storage element to at least one battery pole, and at least one connection point. The connection circuit is designed such that a specified energy storage element current having a specified relationship with the total current flowing through the energy storage device is charged into and/or discharged from the energy storage element. A voltage measuring device contacts the additional energy storage element to measure an energy storage voltage, and the charge state monitoring device determines the charge state of the battery based at least on the energy storage voltage.
US10027124B2
A controller has a predicting section which computes a predicted electric energy predicted to be supplied from a power distribution grid to the load during an assessment period which is a predetermined period. The controller has a supply electric energy computing section which computes a supply electric power based on the predicted electric energy, the supply electric energy being an electric energy to be supplied to the load from the electric power converter during the assessment period. The controller has a time computing section which computes a discharge time by dividing the supply electric energy by a rated power of the electric power converter. The controller has a control section which controls the electric power converter so that an electric power corresponding to the rated power is supplied to the load only for the discharge time within the assessment period.
US10027123B2
In order to control a plurality of inverters, which are connected on their input side to a current source each and on their output side to a common grid connection point, electrical variables are measured at the individual inverters and are used for controlling the individual inverters, currents being output by the individual inverters depending on the electrical variables measured at the location of the individual inverters Effects of the connection equipment between the individual inverters and the common grid connection point on currents are determined, electrical variables being measured at the grid connection point and are set in relation to the electrical variables measured at the same time at the individual inverters. The connection equipment between the individual inverters and the common grid connection point is taken into consideration in controlling the individual inverters.
US10027118B2
The present disclosure is directed to a system and method for balancing reactive power loading between multiple renewable energy power systems coupled to a power grid at a point of regulation (POR). The method includes determining a voltage error based on a voltage reference and a measured voltage at the POR. The method also includes measuring at least one operating condition from each of the power systems. Further, the method includes determining a per unit actual reactive power for each of the power systems based on at least one of the actual operating conditions and determining a per unit average reactive power from the power systems based on at least one of the actual operating conditions. Thus, the method also includes determining a voltage reference command for each of the power systems as a function of the voltage error, the per unit reactive power, and/or the per unit average reactive power.
US10027116B2
Disclosed are various embodiments for transmitting energy conveyed in the form of a guided surface-waveguide mode along a lossy conducting medium such as, e.g., the surface of a terrestrial medium by exciting a polyphase waveguide probe. A probe control system can be used to adjust the polyphase waveguide probe based at least in part upon characteristics of the lossy conducting medium.
US10027104B2
An electronic circuit arrangement may include a first supply line and a second supply line which are connectable with an electric energy supply unit at a first supply line input connection and a second supply line input connection. The first supply line and the second supply line may be electrically connectable at a first supply line output connection and a second supply line output connection with an external electronic device for supply of electric energy. The arrangement may include a switching element provided in the first supply line. The switching element may be switched between an opened state, in which the switching element electrically interrupts flow of an electrical current in the first supply line, and a closed state, in which the electrical current flows uninterrupted. The electronic circuit arrangement may include a first electronic circuit, a second electronic circuit, and a third electronic circuit.
US10027103B2
A device for protecting a medium or high voltage electrical network is provided, including a base part connected to means for measuring values representative of the electrical network and to a trip circuit of the electrical network, an active part that includes means for analogue-digital conversion of the values representative of the electrical network and which is mechanically and electrically connected to the base part in a first position referred to as the normal position, and a removable test part that is mechanically and electrically connected to the active part in a second position referred to as the test position. The test part includes means for mechanically and electrically connecting to the base part such that, in the test position, external terminals of the test part are connected to the trip circuit through the base part.
US10027091B2
A two-dimensional VCSEL array may include a VCSEL array including a VCSELs arranged in a two dimensional matrix forming a monolithic structure, a light-emitting surface, and a rear surface, first metal contacts provided on the light-emitting surface; and second metal contacts provided on the rear surface. The VCSELs may be arranged in first lines in a first direction and second lines in a second direction non-parallel to the first direction. Each of the first metal contacts may be electrically connected to each VCSEL of a corresponding first line. Each of the plurality of second metal contacts may be electrically connected to each VCSEL of a corresponding second line. The first metal contacts and second metal contacts may be arranged such that each combination of a first metal contact and a second metal contact is electrically connected to one VSCEL.
US10027088B2
The present invention relates to an optical semiconductor integrated element and manufacturing method for same solves difficulty in element manufacture, and reduces optical transmission loss. The present invention is provided with a stripe-shaped waveguide configured from a multilayer structure wherein at least a first conductivity-type lower cladding layer, a waveguide core layer, and an upper cladding layer are layered, and the upper cladding layer is formed using a second conductivity-type upper cladding layer, and an i-type upper cladding layer, which has a bent portion by being shifted in the perpendicular direction with respect to the main extending direction of the waveguide.
US10027086B2
A device including a non-polarization material includes a number of layers. A first layer of silicon (100) defines a U-shaped groove having a bottom portion (100) and silicon sidewalls (111) at an angle to the bottom portion (100). A second layer of a patterned dielectric on top of the silicon (100) defines vertical sidewalls of the U-shaped groove. A third layer of a buffer covers the first layer and the second layer. A fourth layer of gallium nitride is deposited on the buffer within the U-shaped groove, the fourth layer including cubic gallium nitride (c-GaN) formed at merged growth fronts of hexagonal gallium nitride (h-GaN) that extend from the silicon sidewalls (111), wherein a deposition thickness (h) of the gallium nitride above the first layer of silicon (100) is such that the c-GaN completely covers the h-GaN between the vertical sidewalls.
US10027082B2
A fiber laser oscillator includes a housing that accommodates an optical unit such that the optical unit is able to be drawn out of the housing; and a clean bench that is detachable to a side of the optical unit, and defines a closed space which is isolated from outside, in which a communication opening that is in communication with an internal space of the housing is defined in the clean bench.
US10027079B2
The present application relates to the field of electric vehicle connector, particularly to a new connector applied to USF cards and Micro SD cards. The connector comprises an end component, a frame and an outer shell. The end component is provided in the frame covered with the outer shell; UFS cards or Micro SD cards can be inserted into the frame and connected with the end component; the end component includes nineteen ends, i.e., Pin 1 to Pin 19; the ends of the inserted UFS card or Micro SD card can be connected with respective ends of the end component; the UFS card includes twelve ends(i.e., u1 to u12); the Micro SD card includes eight ends(i.e., m1 to m8). The beneficial effects of the present application are that: on the basis of existing UFS card connector, the ends 1-10, 11, 12 and 19 form a complete data transmission structure for the UFS card; at the same time, the ends 11-19 form a complete data transmission structure applied to the Micro SD card, so that the connector is applied to UFS cards and Micro SD cards.
US10027074B2
A coaxial connector includes a body having a longitudinal axis passing through first and second opposed body ends, the second body end for engaging a male coaxial connector, within the body a coil spring, a connector center conductor, and a second body end insulator supporting the connector center conductor, and a spring for urging an electromagnetic shield to protrude from the body.
US10027064B2
An electrical connector includes an insulative housing enclosing a plurality of terminals and enclosed within a metallic shell. The shell forms a receiving cavity in which said housing is retained. The shell includes opposite top and bottom plates with a plurality of spring tangs split therefrom and extending into the receiving cavity. A top extension unitarily extends rearwardly from a front edge of the top plate and includes a front stationary base section intimately positioned upon the top plate, and a rear deflectable section including a plurality of spring fingers rearwardly extending from a rear end of the front base section in an oblique manner away from the top plate. The front base section forms a plurality of openings corresponding to free ends of the spring tangs for accommodating the corresponding free ends, respectively.
US10027059B2
A twist-lock electrical connector includes first and second connector portions each having a respective interface end portion and longitudinal axes. The first connector has a projection and the second connector has a corresponding bore along the connectors' respective longitudinal axes. Two electrical contacts are located at opposite sides of the projection at the first interface end portion, and two other electrical contacts are located at opposite sides of the bore at the second interface end portion. The interface end portions are configured to engage one another at a first rotational orientation in which the bore receives the projection when the first and second longitudinal axes are made substantially coaxial and the connector portions are brought together along their axes. The interface end portions further engage one another at a second rotational orientation in which the first pair of electrical contacts electrically engage the second pair of electrical contacts.
US10027050B2
An electrical connector assembly includes an electrical connector that defines a terminal cavity. The terminal cavity extends from an insertion opening to a mating opening. An inner housing is positioned in the terminal cavity. The inner housing defines an inner cavity. The inner cavity extends from an inner insertion opening to an inner mating opening. The inner mating opening is adjacent to the mating opening of the electrical connector. An electrical terminal is positioned in the inner cavity. A mating portion of the electrical terminal is adjacent the inner mating opening.
US10027039B1
A threadless grounding bushing for placement on an end of an EMT or rigid electrical conduit has a bushing body with a first portion with an inner smooth cylindrical surface dimensioned for receipt of a rigid conduit; a second portion with a central bore for the passage of conductors therethrough, the second portion dimensioned to form a stop relative to a terminating end of a rigid conduit or EMT received in the first portion; at least one set screw that extends through the first portion to make contact with the EMT or rigid conduit; a lug secured to the bushing body having an opening to secure a ground conductor thereto; and a removable spacer with an inner surface corresponding to the outer surface of an EMT and having an outer surface corresponding to the inner smooth cylindrical surface of the first portion of the bushing body.
US10027034B2
A microwave system comprising a center fed parabolic reflector; a radio transceiver, said transceiver disposed on a circuit board and coupled to a radiator, said radiator disposed on the circuit board and extending orthogonally from a surface of the circuit board. Embodiments also include directors on the circuit board and a sub-reflector comprising a thin plate disposed on a weather proof cover and said sub-reflector having a substantially concave surface with a focus directed towards the radiator. The circuit board may be physically integrated within the feed mechanism of the center fed parabolic reflector and the radio transceiver is configured to provide OSI layer support.
US10027030B2
Dielectric-free, metal-only, dipole-coupled broadband radiating array aperture with wide field of view.
US10027026B2
A beamforming system includes a plurality of channelizers and a channel switching module in signal communication with the channelizers. Each channelizer is configured to receive a respective input radio frequency signal and to generate a plurality of respective channels in response to downsampling the respective input radio frequency signal. The channel switching module includes a channel combining circuit configured to selectively combine a common channel generated by each channelizer to form at least one steered analog beam.
US10027024B2
An antenna for vehicle platooning. The antenna includes a housing, a light emitting element within the housing, and a conductor configured to at least one of transmit and receive radiofrequency signals.
US10027023B1
Antenna structures and methods of operating the same of an electronic device are described. One wearable electronic device includes a housing of conductive material and an antenna structure disposed on or within a band that is used to affix to a user. The antenna structure includes a first connector, a second connector, and a first antenna element. The first and second connectors extend out from sides of the band and electrically couple to a RF feed and a ground point when the first and second connectors are physically coupled to the housing. The RF circuitry is operable to cause a first current flow on at least the first antenna element via the first connector to radiate electromagnetic energy in a first frequency range.
US10027020B2
A near field communication (NFC) antenna and a smartphone having the antenna are disclosed. The present disclosure provides a parallel stacked NFC antenna, of a smartphone, suitable for NFC communication. In addition, provided is a component arrangement structure capable of performing effective NFC communication by determining the location of the NFC antenna on the basis of the location of a slit arranged in a metal housing, and a battery.
US10027018B2
An electronic device may include a dielectric substrate, an electronic circuit supported by the substrate, for processing data, and a communication unit having an antenna. The communication unit may be mounted to the substrate in communication with the electronic circuit for converting between a first EHF electromagnetic signal containing digital information and a data signal conducted by the electronic circuit. The electromagnetic signal may be transmitted or received along a signal path by the antenna. An electromagnetic signal guide assembly may include a dielectric element made of a dielectric material disposed proximate the antenna in the signal path. The electromagnetic signal guide may have sides extending along the signal path. A sleeve element may extend around the dielectric element along sides of the dielectric element. The sleeve element may impede transmission of the electromagnetic signal through the sides of the dielectric element.
US10027017B2
The present invention relates to an RF tag comprising a magnetic antenna for transmitting and receiving information using an electromagnetic induction method, and an IC mounted to the magnetic antenna, wherein the magnetic antenna comprises a magnetic core and a plurality of coils formed on the magnetic core; the coils each have an inductance L1 satisfying the specific relational formula, and are connected in parallel to each other in an electric circuit and disposed in series on the magnetic core; and a combined inductance L0 of the magnetic antenna satisfies the specific relational formula. The RF tag of the present invention is used as a magnetic antenna for information communication using a magnetic field component which is capable of satisfying both reduction in size and improvement in communication sensitivity.
US10027013B2
A collar-mountable antenna for transmitting and receiving signals in a downhole environment, in at least some embodiments, comprises a bobbin having an inner surface and an outer surface, each of the inner and outer surfaces defining multiple slots, conductive wire disposed within the multiple slots on the outer surface of the bobbin, and ferrite disposed within the multiple slots on the inner surface of the bobbin.
US10027011B2
The waveguide device, in which first/second openings are formed at end parts of a waveguide path, comprises a waveguide path obtained by uniting first/second waveguides. The first waveguide is provided with a first recessed part which has an opening with a same shape as the first opening and has a bottom part formed in a first direction as seen from the opening. The second waveguide is provided with a second recessed part which has an opening with a same shape as the second opening and has a bottom part formed in a second direction as seen from the opening. The first/second waveguides are united in a manner such that, positions of the bottom parts of the first/second recessed parts are different from each other in a direction differing from the first/second directions, and the first/second recessed parts connect with each other at the respective bottom parts.
US10027010B2
There is provided a printed circuit board structure, a dielectric substrate structure and a method of manufacturing thereof using wideband microstrip lines for reducing signal reflection, resonance and radiation for maintaining signal quality. The widths of certain portions of the wideband microstrips and underlying substrate portions are tapered gradually for achieving a reduction in a signal reflection, resonance and radiation therefore resulting in maintaining signal quality.
US10027006B2
Various embodiments of an integrated multiband bandpass apparatus based on concentric dielectric ring resonators includes one or more radio frequency (RF) input transmission lines for receiving multi-band RF signals, multiple RF output transmission lines for receiving and transmitting multiple single-band RF signals, and a set of dielectric ring resonators coupled in between. The disclosed integrated multi-band bandpass apparatus based on dielectric ring resonators can support at least two operation modes, i.e., a multi-band bandpass filtering mode when used in one direction and a multi-band bandpass multiplexing mode when used in an opposite direction. When operating in the multi-band bandpass filtering mode, the multiple dielectric ring resonators can be used to simultaneously filter multi-band RF signals into multiple single-band bandpass signals. When operating in the multi-band bandpass multiplexing mode, the dielectric ring resonators can be used to multiplex multiple single-band bandpass signals into a multi-band RF signal.
US10027003B2
Provided is an energy storage apparatus which includes: an energy storage device; and a first spacer and a second spacer that sandwich the electric storage device, wherein each of the spacers includes: a passage forming portion that forms a passage for passing cooling air in a second direction that is perpendicular to a first direction in which the energy storage device and the spacers are arranged; and a passage blocking portion disposed at one end in the second direction, and wherein, in a view along a third direction perpendicular to the first and second directions, the passage blocking portion of one of the spacers and the passage blocking portion of the other of the spacers overlap.
US10026991B2
Provided are a manufacturing method for an amino-substituted phosphazene compound including reacting a fluorinated phosphazene compound and an amine compound in presence of a compound having a fluorine trapping function; and synthesizing a compound obtained by substituting the amine compound for the fluorinated phosphazene compound, a manufacturing method for an electrolyte solution for a nonaqueous secondary battery using this, and a manufacturing method for a nonaqueous secondary battery.
US10026964B2
A positive electrode for a rechargeable lithium battery includes a positive current collector; a high elastic modulus layer on the positive current collector and including a first positive active material and a high elastic modulus binder; and a low elastic modulus layer on the high elastic modulus layer and including a second positive active material and a low elastic modulus binder, wherein the low elastic modulus binder has a lower tensile modulus than the high elastic modulus binder. A winding element includes the positive electrode. A rechargeable lithium battery includes the winding element.
US10026962B2
A silicon-based anode comprises an alginate-containing binder. The many carboxy groups of alginate bind to a surface of silicon, creating strong, rigid hydrogen bonds that withstand battery cycling. The alginate-containing binder provides good performance to the anode by (1) improving the capacity of the anode in comparison to other commercially-available binders, (2) improving Columbonic efficiency during charging and discharging cycles, and (3) improving stability during charging and discharging cycles.
US10026959B2
A power storage device with high capacity is provided. Alternatively, a power storage device with excellent cycle characteristics is provided. Alternatively, a power storage device with high charge and discharge efficiency is provided. Alternatively, a power storage device with a long lifetime is provided. A negative electrode active material includes a first region and a second region. The first region includes at least one element selected from Si, Mg, Ca, Ga, Al, Ge, Sn, Pb, Sb, Bi, Ag, Zn, Cd, As, Hg, and In. The second region includes oxygen and the same element as the one included in the first region. The crystallite size of the element included in the first region is larger than or equal to 1 nm and smaller than or equal to 10 nm.
US10026955B2
To provide a method for producing a positive electrode active material layer for lithium ion battery that can improve durability and internal resistance of lithium ion battery, and particularly lithium ion battery that operates at high voltage. The method for producing positive electrode active material layer for a lithium ion battery includes coating a substrate with positive electrode mixture slurry containing positive electrode active material, first lithium salt, second lithium salt and solvent, and drying off the solvent. First lithium salt is lithium phosphate, the second lithium salt is selected from the group including of lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium sulfate and combinations thereof, and the proportion of the second lithium salt with respect to the first lithium salt is 1 to 50 mol % based on the number of lithium atoms.
US10026946B2
This electricity storage device comprises an electrode assembly, a case, an electrode terminal and a conductive member. The electrode assembly comprises a positive electrode, a negative electrode and a separator. The separator comprises a first separator part and a second separator part. The separator has a container part that contains portions of the positive electrode other than a tab. The separator has a welded part and a tab facing part. The welded part has facing parts that are positioned on both sides of the tab facing part. The facing parts face the electrode terminal with the conductive member being interposed therebetween. The facing parts are larger in shrinkage amount associated with thermal welding than the other portions of the welded part.
US10026945B2
A rechargeable battery is disclosed. In one aspect, the battery includes an electrode assembly including a first electrode, a separator, and a second electrode stacked together, wherein the first electrode, the separator, and the second electrode are fixed at a fixing portion on a first side of the electrode assembly. A case accommodates the electrode assembly; and first and second electrode tabs are respectively connected to the first and second electrodes and extend from a first end portion of the case so as to form a tab gap therebetween. Each of the first and second electrode tabs includes first and second adhesive portions opposing each other, at least one wire having a bent portion interconnecting the first and second adhesive portions, and an insulating member covering the bent portion.
US10026941B2
A separator 1 for a nonaqueous electrolyte secondary battery, includes a resin-made substrate (2) and a porous heat resistance layer (4) disposed on the substrate. The porous heat resistance layer includes an inorganic filler (6) and hollow bodies (7). The hollow body includes a shell portion and a hollow portion. The shell portion is formed of an acryl resin. The hollow portion is formed inside the shell portion. An opening portion extending through the shell portion to spatially interconnect the hollow portion and the outside of the shell portion is formed in the shell portion.
US10026939B2
A transfer system includes an expander roll for removing a wrinkle in a separator original sheet, and (i) the expander roll and (ii) a transfer roller immediately followed by or following the expander roll are spaced from each other at a distance of not less than 1 m and not more than 10 m.
US10026936B2
Disclosed herein are a pack case constructed in a structure in which a plurality of battery cells are mounted in the pack case to electrically connect the battery cells with each other, wherein the pack case includes an upper case and a lower case constructed in a hollow structure in which the upper case and the lower case are coupled with each other while the battery cells are mounted between the upper case and the lower case, each case is integrally provided at the inner part thereof with a plurality of spacers for supporting the battery cells, and each case is provided at the outer part thereof with a plurality of ventilation openings which communicate with the interior of each case, and a battery pack including the pack case. The pack case according to the present invention has effects in that a plurality of battery cells are stably mounted in the pack case in a compact structure through a simple assembly process, heat generated from the battery cells is effectively removed during the charge and discharge of the battery cells, and an additional safety unit, such as a detection member and/or a protection circuit module, is easily mounted to the pack case.
US10026929B2
The present invention provides an organic EL display device in which external light reflection and tinting are suppressed when viewed from a front and an oblique direction, and includes a polarizer, a first optically anisotropic layer, a λ/4 plate, and an organic EL display panel in this order from a viewing side, where an angle formed between an absorption axis of the polarizer and an in-plane slow axis of the λ/4 plate is within a range of 45±3°, an Nz factor of the first layer is −0.1 or more and 1.1 or less, the absorption axis of the polarizer is parallel with or orthogonal to the in-plane slow axis of the first layer, and Re(550), which is an in-plane retardation value of the first layer measured at a wavelength of 550 nm, satisfies the following Equation (X). 100 nm≤Re(550)≤450 nm. Equation (X)
US10026926B2
Embodiments relate to a method of forming an organic light emitting diode (OLED) display device. A first inorganic layer, a first organic layer, and a second inorganic layer are formed on pixel regions of an OLED display device. At least part of a first inorganic layer is formed using atomic layer deposition (ALD), such that the first inorganic layer completely covers particles generated on the OLED. Embodiments also relate to an OLED display device with pixel regions, each pixel region including an OLED, a bank layer across a boundary between adjacent pixel regions, and a first inorganic layer on at least a portion of the OLED and the bank layer. The first inorganic layer includes a first inorganic sub-layer and a second inorganic sub-layer.
US10026923B2
An electronic component has an organic member between two transparent substrates, in which outer peripheral portions of the two transparent substrates are bonded by a sealing material containing low melting glass. The low melting glass contains vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of oxides. The sealing material is formed of a sealing material paste which contains the low melting glass, a resin binder and a solvent, the low melting glass containing vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of the oxides. Thereby, thermal damages to an organic element or an organic material contained in the electronic component can be reduced and an electronic component having a glass bonding layer of high reliability can be produced efficiently. V2O5+TeO2+Fe2O3+P2O5≥90 (mass %) (1) V2O5>TeO2>Fe2O3>P2O5 (mass %) (2)
US10026921B2
Provided is a display device including: a base material; a display region over the base material; a wiring over the base material, the wiring extending from the display region to an outside of the display region; and a pair of metal films over the base material, where the wiring is located between the pair of metal films in a plane view. The display region may be positioned between the pair of metal films, and the wiring and the pair of metal films may exist in the same layer.
US10026915B2
A white organic light emitting device can include first and second electrodes on a substrate; a first stack configured with a hole injection layer, a first hole transportation layer, a first light emission layer and a first electron transportation layer which are stacked on the first electrode; a second stack configured with a second hole transportation layer, a second light emission layer, a third light emission layer, and a second electron transportation layer which are stacked on the first stack; a third stack interposed between the second stack and the second electrode and configured with a third hole transportation layer, a fourth light emission layer, a third electron transportation layer and an electron injection layer which are stacked on the second stack; and charge generation layers interposed between the first and second stacks and between the second and third stacks and configured to adjust a charge balance between the stacks.
US10026910B2
A display apparatus according to one aspect of the present disclosure includes at least one flexible display panel including a first picture element that emits a red light, a second picture element that emits a green light, a third picture element that emits a blue light, and a fourth picture element. Each of the first picture element, the second picture element, and the third picture element includes an organic electroluminescent element as a light source and is driven by an active matrix method. The fourth picture element includes an organic electroluminescent element as a light source and is driven by a passive method.
US10026907B2
Provided are an organic electroluminescence device, which shows high luminous efficiency, is free of any pixel defect, and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound having a n-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, oxygen atom, or sulfur atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
US10026899B2
Tandem electro-optic devices and active materials for electro-optic devices are disclosed. Tandem devices include p-type and n-type layers between the active layers, which are doped to achieve carrier tunneling. Low bandgap conjugated polymers are also disclosed.
US10026894B2
An example memristor includes a first conductive layer, a switching layer, and a second conductive layer. The first conductive layer may include a first conductive material and a second conductive material. The second conductive material may have a higher diffusivity than the first conductive material. The switching layer may be coupled to the first conductive layer and may include a first oxide having the first conductive material and a second oxide having the second conductive material. The second conductive layer may be coupled to the switching layer.
US10026893B2
A method for producing a memory device includes depositing a second interlayer insulating film on a substrate, forming contact holes, and depositing a second metal and a nitride film. The second metal and the nitride film are removed to form pillar-shaped nitride layers, and to form lower electrodes surrounding the pillar-shaped nitride layers. The second interlayer insulating film is etched back to expose upper portions of the lower electrodes. The upper portions of the lower electrodes surrounding the pillar-shaped nitride film are removed and a phase change film is deposited to surround the pillar-shaped nitride film and connect with the lower electrodes. The phase change film is etched on upper portions of the pillar-shaped nitride film, and a reset gate insulating film is formed surrounding the phase change film and forming a reset gate having a side wall shape and remaining on the upper portions of the pillar-shaped nitride film.
US10026888B2
According to one embodiment, a magnetoresistive effect element includes: a first magnetic layer; a second magnetic layer; a non-magnetic film between the first magnetic layer and the second magnetic layer; a first layer on an opposite side of a side of the non-magnetic layer of the first magnetic layer, the first layer including magnesium oxide as a principal component; and a second layer between the first film and the first magnetic layer, the second layer including a material different from a material of the first layer.
US10026885B2
Aspects relate to an energy harvesting device adapted for use by an athlete while exercising. The device may utilize a mass of phase-change material to store heat energy, the stored heat energy subsequently converted into electrical energy by one or more thermoelectric generator modules. The energy harvesting device may be integrated into an item of clothing, and such that the mass of phase change material may store heat energy as the item of clothing is laundered.
US10026883B2
The present disclosure relates to semiconductor structures and, more particularly, to wafer bond interconnect structures and methods of manufacture. The structure includes: a plurality of sub-pixels each comprising a contact plate; and redundant connections at opposite corners of each sub-pixel on a backside of the contact plate.
US10026877B2
An LED module according to the present invention includes: a mounting substrate; a first LED group including a plurality of LEDs mounted in a first light-emitting area extending in a first direction on the mounting substrate; a second LED group including a plurality of LEDs mounted in a second light-emitting area located outside the first light-emitting area; a dam material surrounding a periphery of the second light-emitting area; a first fluorescent resin coating the first LED group and causing the first light-emitting area to emit light having a first color temperature; and a second fluorescent resin coating at least the second LED group and causing the second light-emitting area to emit light having a second color temperature higher than the first color temperature, and viscosity of the first fluorescent resin is higher than viscosity of the second fluorescent resin.
US10026876B2
A light emitting device that includes a light emitting element having a peak emission wavelength at 400-480 nm and a fluorescent member can be provided. The fluorescent member includes a first fluorescent material that includes a nitride containing alkaline-earth metal, alkali metal, aluminum and europium, a second fluorescent material that includes a nitride containing alkaline-earth metal, aluminum, silicon and europium, and a third fluorescent material having a peak emission wavelength in a range of from 500 nm to 560 nm. A content of the first fluorescent material to a total content of the first fluorescent material and the second fluorescent material is from 5% by mass to 95% by mass.
US10026872B2
A solution for fabricating a device is described. The solution can include fabricating a heterostructure for the device, which includes at least one stress controlling layer. The stress controlling layer can include one or more attributes varies as a function of a lateral position based on a target variation of stresses in a semiconductor layer located directly under the stress controlling layer. Embodiments are further directed to a heterostructure including at least one stress controlling layer and a device including the heterostructure.
US10026851B2
There is provided an MPS diode comprising a first semiconductor layer that is an N type; P-type semiconductor regions and N-type semiconductor regions that are arranged alternately on one surface of the first semiconductor layer; and a Schottky electrode that is in Schottky junction with the N-type semiconductor regions and is arranged to be adjacent to and in contact with at least part of the P-type semiconductor regions. A donor concentration in an area of the N-type semiconductor region that is adjacent to and in contact with the first semiconductor layer is lower than the donor concentration in an area of the first semiconductor layer that is adjacent to and in contact with the N-type semiconductor region and is lower than the donor concentration in an area of the N-type semiconductor region that is adjacent to and in contact with the Schottky electrode. This configuration improves a breakdown voltage under applying a reverse bias voltage and reduces a rising voltage under applying a forward bias voltage.
US10026847B2
In a semiconductor element including an oxide semiconductor film as an active layer, stable electrical characteristics are achieved. A semiconductor element includes a base film which is an oxide film at least a surface of which has crystallinity; an oxide semiconductor film having crystallinity over the base film; a gate insulating film over the oxide semiconductor film; a gate electrode overlapping with at least the oxide semiconductor film, over the gate insulating film; and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. The base film is a film containing indium and zinc. With the structure, a state of crystals in the oxide semiconductor film reflects that in the base film; thus, the oxide semiconductor film can have crystallinity in a large region in the thickness direction. Accordingly, the electrical characteristics of the semiconductor element including the film can be made stable.
US10026843B2
A method for manufacturing an active region of a semiconductor device includes forming an implanted region in a substrate. The implanted region is adjacent to a top surface of the substrate. A clean treatment is performed on the top surface of the substrate. The top surface of the substrate is baked. An epitaxial layer is formed on the top surface of the substrate.
US10026842B2
A method for producing a semiconductor device includes a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate and forming a first insulating film; a second step of forming a pillar-shaped semiconductor layer and a first dummy gate; a third step of forming a second dummy gate; a fourth step of forming a fifth insulating film and a sixth insulating film; a fifth step of depositing a first interlayer insulating film, removing the second dummy gate and the first dummy gate, forming a gate insulating film, depositing metal, and performing etch back to form a gate electrode and a gate line; a seventh step of forming a seventh insulating film; and an eighth step of forming insulating film sidewalls, forming a first epitaxially grown layer on the fin-shaped semiconductor layer, and forming a second epitaxially grown layer on the pillar-shaped semiconductor layer.
US10026837B2
An integrated circuit and method having a first PMOS transistor with extension and pocket implants and with SiGe source and drains and having a second PMOS transistor without extension and without pocket implants and with SiGe source and drains. The distance from the SiGe source and drains to the gate of the first PMOS transistor is greater than the distance from the SiGe source and drains to the gate of the second PMOS transistor and the turn on voltage of the first PMOS transistor is at least 50 mV higher than the turn on voltage of the second PMOS transistor.
US10026824B1
Disclosed are integrated circuit (IC) structures and formation methods. In the methods, a gate with a sacrificial gate cap and a sacrificial gate sidewall spacer is formed on a channel region. The cap and sidewall spacer are removed, creating a cavity with a lower portion between the sidewalls of the gate and adjacent metal plugs and with an upper portion above the lower portion and the gate. A first dielectric layer is deposited, forming an air-gap in the lower portion and lining the upper portion. A second dielectric layer is deposited, filling the upper portion. During formation of a gate contact opening (optionally over an active region), the second dielectric layer is removed and the first dielectric layer is anisotropically etched, thereby exposing the gate and creating a dielectric spacer with a lower air-gap segment and an upper solid segment. Metal deposited into the opening forms the gate contact.
US10026817B2
A microelectronic device contains a high performance silicon nitride layer which is stoichiometric within 2 atomic percent, has a low stress of 600 MPa to 1000 MPa, and has a low hydrogen content, less than 5 atomic percent, formed by an LPCVD process. The LPCVD process uses ammonia and dichlorosilane gases in a ratio of 4 to 6, at a pressure of 150 millitorr to 250 millitorr, and at a temperature of 800° C. to 820° C.
US10026813B2
A semiconductor device including a p-type SiC layer, a gate electrode, and a gate insulating layer therebetween, the gate insulating layer including a first layer, a second layer provided between the first layer and the gate electrode and having a higher oxygen density than the first layer, a first and second regions provided in the second layer, the first region including a first element (at least one of Ta, Nb and V) having a first concentration peak, and the second region including a second element (at least one of Ge, B, Al, Ga, In, Be, Mg, Ca, Sr, Ba , La, and lanthanoid) having a second concentration peak of the second element and a third concentration peak of C, a distance between the second concentration peak and the third concentration peak being shorter than a distance between the first concentration peak and the third concentration peak.
US10026806B2
In an embodiment, a high frequency amplifying circuit includes a semiconductor device. The semiconductor device includes a semiconductor substrate having a bulk resistivity ρ≥100 Ohm·cm, a front surface and a rear surface, an LDMOS (Lateral Diffused Metal Oxide Semiconductor) transistor in the semiconductor substrate, and a RESURF structure comprising a doped buried layer arranged in the semiconductor substrate, spaced at a distance from the front surface and the rear surface, and coupled with at least one of a channel region and a body contact region of the LDMOS transistor.
US10026804B2
A semiconductor device according to an embodiment includes: a first GaN based semiconductor layer; a second GaN based semiconductor layer disposed on the first GaN based semiconductor layer and having a bandgap larger than that of the first GaN based semiconductor layer; a source electrode disposed on the second GaN based semiconductor layer; a drain electrode disposed on the second GaN based semiconductor layer; a p-type third GaN based semiconductor layer disposed between the source electrode and the drain electrode on the second GaN based semiconductor layer; a gate electrode disposed on the third GaN based semiconductor layer; and a p-type fourth GaN based semiconductor layer disposed between the gate electrode and the drain electrode on the second GaN based semiconductor layer and disposed separated from the third GaN based semiconductor layer.
US10026801B2
A semiconductor device includes an inductor disposed on a surface of an intermetallic dielectric layer at a location below which no virtual interconnect members are present. Thus, parasitic capacitance is reduced or eliminated and the Q value of the inductor is high.
US10026800B2
There is provided a light emitting device including: a semiconductor substrate; a plurality of pixel circuits that is disposed in a display region of the semiconductor substrate; a first wiring that is formed of a conductive material so as to be supplied with a predetermined electric potential; and a plurality of first contact portions that is formed of a conductive material so as to connect the semiconductor substrate and the first wiring. The plurality of first contact portions and the first wiring are provided in the display region.
US10026799B2
A display apparatus includes: a plurality of first scan lines which extend in a radial direction; a plurality of second scan lines between adjacent first scan lines of the plurality of first scan lines which are adjacent to each other; a plurality of data lines which extend in a circular direction and intersect with the first and second scan lines; and a plurality of pixels in an area partitioned by the first scan lines, the second scan lines, and the data lines, the plurality of pixels being connected to the first scan lines, the second scan lines, and the data lines.
US10026797B2
An organic light-emitting diode (OLED) display can include a substrate configured to have an emission area and a non-emission area defined in the substrate; a thin film transistor disposed in the non-emission area; a first storage capacitor electrode and a second storage capacitor electrode configured to be overlapped in the emission area with a passivation layer interposed between the first and the second storage capacitor electrodes; an overcoat layer configured to cover the thin film transistor and the second storage capacitor electrode; and a first pixel area configured to comprise a first anode electrode and an insulating layer sequentially stacked on the overcoat layer in such a way as to overlap the second storage capacitor electrode and a second anode electrode disposed on the insulating layer and configured to come in contact with the thin film transistor and the first anode electrode.
US10026789B1
The present application discloses a touch display substrate including an array of a plurality of pixels. Each pixel includes a first region and a second region in plan view of the touch display substrate. Each pixel includes a first electrode layer on a base substrate comprising a plurality of first electrode blocks in the first region, each of which corresponding to a subpixel; and a second electrode block in the second region; a first light emitting layer in the first region on a side of the plurality of first electrode blocks distal to the base substrate; a second light emitting layer in the second region on a side of the second electrode block distal to the base substrate; a second electrode layer in the first region on a side of the first light emitting layer distal to the plurality of first electrode blocks; and a touch electrode layer in the second region on a side of the second light emitting layer distal to the second electrode block; the touch electrode layer and the second electrode layer spaced apart and electrically insulated from each other.
US10026784B2
The present application discloses a display panel comprising a light emitting region comprising a plurality of light emitting units. Each of the plurality of light emitting units comprising a first sub-pixel comprising a first emissive layer of a first light emitting material for emitting light of a first color; a second sub-pixel comprising a second emissive layer of a second light emitting material for emitting light of a second color; and a third sub-pixel comprising a third emissive layer comprising the first light emitting material and the second light emitting material in vertical stack.
US10026780B2
According to one embodiment, a memory includes a resistance change layer includes a first chalcogenide layer, and a second chalcogenide layer having a composition different from that of the first chalcogenide layer which are stacked alternately, and the resistance change layer having a superlattice structure, and a semiconductor layer of a first conductivity type provided on a one of main surfaces of the resistance change layer.
US10026777B2
A light-emitting device includes: a substrate; a unit light-emitting area disposed on the substrate; first and second electrodes disposed in the unit light-emitting area to be separated from each other; a plurality of rod-shaped LEDs disposed between the first and second electrodes; a reflective contact electrode disposed on opposite ends of the rod-shaped LEDs to electrically connect the rod-shaped LEDs to the first and second electrodes; and a light-transmitting structure disposed between the first and second electrodes and extending to cross the rod-shaped LEDs.
US10026774B2
A method of manufacturing a solid-state image sensor including preparing a wafer including a pixel region where a photoelectric conversion element is provided, a peripheral circuit region where a gate electrode of a peripheral MOS transistor for constituting a peripheral circuit is provided, and a scribe region. The method includes forming an insulating film covering the pixel region, the peripheral circuit region, and the scribe region, and forming a sidewall spacer on a side surface of the gate electrode by etching the insulating film so that portions of the insulating film remains to cover the pixel region and the scribe region, and forming a metal silicide layer in the peripheral circuit region by using, as a mask for protection from silicidation, the insulating film covering the pixel region and the scribe region.
US10026770B2
Disclosed herein is a semiconductor device including: a first semiconductor chip having an electronic circuit section and a first connecting section formed on one surface thereof; a second semiconductor chip having a second connecting section formed on one surface thereof, the second semiconductor chip being mounted on the first semiconductor chip with the first and the second connecting sections connected to each other by a bump; a dam formed to fill a gap between the first and the second semiconductor chips on a part of an outer edge of the second semiconductor chip, the part of the outer edge being on a side of a region of formation of the electronic circuit section; and an underfill resin layer filled into the gap, protrusion of the resin layer from the outer edge of the second semiconductor chip to a side of the electronic circuit section being prevented by the dam.
US10026769B2
The present technology relates to a semiconductor device and a solid-state imaging device of which crack resistance can be improved in a simpler way. The semiconductor device has an upper substrate that is constituted by a Si substrate and wiring layers laminated on the Si substrate and a second substrate that is constituted by a Si substrate and wiring layers laminated on the Si substrate and is joined to the upper substrate. In addition, a pad for wire bonding or probing is formed in the upper substrate, and pads for protecting corner or side parts of the pad for wire bonding or probing are radially laminated and provided in each of the wiring layers between the pad and the Si substrate of the lower substrate. The present technology can be applied to a solid-state imaging device.
US10026768B2
A detector comprises a plurality of photoelectric converters to output an electrical signal corresponding to an incident light, and a plurality of filter circuits provided corresponding to each of the plurality of photoelectric converters or to each of a plurality of element groups respectively including a predetermined number of the photoelectric converters of the plurality of photoelectric converters, the plurality of filter circuits attenuating a signal having a predetermined frequency from the electrical signal output from the plurality of photoelectric converters,In the above-described detector, the plurality of photoelectric converters may be provided in a first substrate, and the plurality of filter circuits may be provided in a second substrate laminated on the first substrate.
US10026758B2
An array substrate, a manufacturing method thereof, a display panel and a display device are disclosed. The manufacturing method includes: forming a first metal wiring, an interlayer insulating film, a second metal wiring and a protecting layer in sequence on a substrate, the second metal wiring is parallel with the first metal wiring and has an overlapped area therewith which is defined as a first zone, and portions of the first and second metal wiring except the first zone are defined as a second zone and a third zone respectively; at least thinning a portion of the interlayer insulating film and/or the protecting layer corresponding to the first zone while leaving portions except those corresponding to the first, second and third zones un-thinned. The manufacturing method can mitigate Zara mura.
US10026753B2
A method includes providing a semiconductor device structure including a substrate having a semiconductor-on-insulator (SOI) region and a hybrid region. A semiconductor device is provided in the SOI region. The semiconductor device includes a gate structure, a diode structure provided in the hybrid region and coupled to a substrate material of the SOI region, a supply circuit arrangement including first and second supply lines, a first resistor coupled between the first supply line and a first terminal of the diode structure, and a second resistor coupled between the second supply line and the substrate material positioned beneath the gate structure. At least one of the first and second resistors comprises a tunable resistor. A resistance of the tunable resistor is adjusted so as to adjust a threshold voltage (Vt) of the semiconductor device in dependence on an operating temperature of the SOI region.
US10026745B1
A semiconductor memory cell structure includes a substrate, a tunnel dielectric layer formed on the substrate, a blocking dielectric layer formed on the substrate, a control gate formed on the blocking dielectric layer, and a tri-layered charge-trapping layer sandwiched between the tunnel dielectric layer and the blocking dielectric layer. Furthermore, the tri-layered charge-trapping layer includes a bottom nitride layer formed on the substrate, a top nitride layer formed on the bottom nitride layer, and a middle nitride layer sandwiched between the bottom nitride layer and the top nitride layer. The bottom nitride layer includes a first nitride concentration, the top nitride layer includes a second nitride concentration, and the middle nitride layer includes a third nitride concentration. And the third nitride concentration is larger than the first nitride concentration and the second nitride concentration.
US10026740B1
One illustrative DRAM structure disclosed herein includes a first memory cell pair, a second memory cell pair, a single diffusion break (SDB) isolation structure positioned between the first and second memory cell pairs, and a single first gate positioned between the first and second memory cell pairs and above the SDB isolation structure.
US10026723B2
Methods, systems, and apparatus, including a photonic integrated circuit package, including a photonic integrated circuit chip, including a lumped active optical element; an electrode configured to receive an electrical signal, where at least one characteristics of the lumped active optical element is changed based on the electrical signal received by the electrode; a ground electrode; and a bond contact electrically coupled to the electrode; and an interposer bonded to at least a portion of the photonic integrated circuit chip, the interposer including a conductive trace formed on a surface of the interposer, the conductive trace electrically coupled to a source of the electrical signal; a ground trace; and a conductive via bonded with the bond contact of the photonic integrated circuit chip, the conductive via electrically coupled to the conductive trace to provide the electrical signal to the electrode of the photonic integrated circuit chip.
US10026715B2
A semiconductor device according to the present embodiment includes a semiconductor substrate, an insulating film and a conductive film. The insulating film is disposed on a first surface of the semiconductor substrate. The insulating film covers a semiconductor element. The conductive film penetrates the semiconductor substrate across from the first surface to a second surface opposite to the first surface. On the second surface, a trench continuously or intermittently exists across from a first end part side of the second surface to a second end part side thereof.
US10026711B2
A polymerizable composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and a phosphor capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
US10026706B2
An integrated circuit includes a metal seed layer contacting a metal element of a top interconnect layer, a plated copper pad over the seed layer, a plated metal cap layer on the top surface of the copper pad, an upper protective overcoat covering a lateral surface of the copper pad and overlapping a top surface of the cap layer with a bond pad opening exposing the cap layer, and a bond pad of electroless plated metal in the bond pad opening.
US10026701B1
The various technologies presented herein relate to isolating an integrated circuit from electromagnetic radiation/interference. The integrated circuit can be encapsulated in a coating (e.g., a conformal coating). A conductive layer can be formed over the coating, where the conductive layer is deposited to connect with an electromagnetic shielding layer included in a substrate upon which the integrated circuit is located thereby forming a Faraday cage around the integrated circuit. Hollow spheres can be included in the coating to improve the dielectric constant of the coating. The conductive layer can be formed from at least one of metallic material or a polymer coating which includes conductive material. The integrated circuit can be utilized in conjunction with a heat sink and further, the integrated circuit can be of a flip chip configuration.
US10026695B2
A semiconductor device includes a semiconductor substrate, an insulating film formed above the semiconductor substrate, a wiring having copper as a main component and formed above the insulating film, and a barrier metal film having a higher modulus of rigidity than copper and interposed between the insulating film and the wiring. The barrier metal film may have a lower thermal expansion coefficient than copper.
US10026691B2
Package substrates including conductive interconnects having noncircular cross-sections, and integrated circuit packages incorporating such package substrates, are described. In an example, a conductive pillar having a noncircular pillar cross-section is electrically connected to an escape line routing layer. The escape line routing layer may include several series of conductive pads having noncircular pad cross-sections. Accordingly, conductive traces, e.g., strip line escapes and microstrip escapes, may be routed between the series of conductive pads in a single escape line routing layer.
US10026688B2
A semiconductor device includes a substrate, a gate electrode on the substrate, an insulating layer on the gate electrode, first and second lower vias in the insulating layer, first and second lower metal lines provided on the insulating layer and respectively connected to the first and second lower vias, and first and second upper metal lines provided on and respectively connected to the first and second lower metal lines. When viewed in a plan view, the first lower via is overlapped with the second upper metal line, and the second lower via is overlapped with the first upper metal line.
US10026667B2
A method of manufacturing a light-emitting device that includes a circuit board with p- and n-electrodes formed on a surface of a substrate and a light-emitting element connected to the p- and n-electrodes of the circuit board via a conductor member. The method includes forming two protrusions facing each other on both sides of a gap between the p- and n-electrodes of the circuit board, and dispensing a underfill at a position on an opposite side to the light-emitting element with respect to the two protrusions, allowing the dispensed underfill to flow toward the light-emitting element by a capillary action through the gap between the p- and n-electrodes of the circuit board while contacting the protrusions, and filling, by the capillary action, a gap between the circuit board and the light-emitting element with the underfill reaching a bottom of the light-emitting element.
US10026652B2
Multi-Vt horizontal nanosheet devices and a method of making the same. In one embodiment, an integrated circuit includes a plurality of horizontal nanosheet devices (hNS devices) on a top surface of a substrate, the plurality of hNS devices including a first hNS device and a second hNS device spaced apart from each other horizontally. Each of the hNS devices includes a first and a second horizontal nanosheets spaced apart vertically; and a gate stack between the first and second horizontal nanosheets, the gate stack including a work function metal (WFM) layer. A thickness of the first and second horizontal nanosheets of the first hNS device is different from a thickness of the first and second horizontal nanosheets of the second hNS device, and a thickness of the WFM layer of the first hNS device is different from a thickness of the WFM layer of the second hNS device.
US10026651B1
A method of making a substrate involves patterning the substrate into active areas and dicing lanes. After the substrate is patterned one or more stress layers are formed the substrate. A change in stress along a thickness of the substrate in the active areas is larger than a change in stress along the thickness of the substrate in the dicing lanes. The substrate is subsequently diced along the dicing lanes.
US10026643B2
Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
US10026640B2
A method and structure of improving the robustness of an electrostatic discharge (ESD) protection device is disclosed. One aspect of the instant disclosure provides a semiconductor structure that comprises: a first well structure; a second well structure arranged adjacent to the isolation structure in the substrate, a diffusion region respectively disposed in the first and the second well structures; an isolation structure arranged between the well structures and laterally separating the diffusion regions; and a partition structure arranged in the isolation structure. The partition structure affects a steeper slope on a lateral surface of the isolation structure bordering at least one of the diffusion regions, thereby modifying a ballasting characteristic of the isolation structure.
US10026639B2
The semiconductor wafer conveying tool which can realize the uniform heating to a surface of a semiconductor wafer when heating the semiconductor wafer is a semiconductor wafer conveying tool which holds the semiconductor wafer having a predetermined diameter to convey it wherein the tool is provided with a main body having an opening with a diameter which is larger than a diameter of the semiconductor wafer, and at least three supporting members each having a predetermined length, containing plural pins which are arranged corresponding to the diameter of the semiconductor wafer and being configured to be a holding mechanism for holding the semiconductor wafer concentrically at a projection position from an inner periphery portion of the main body around the opening, as shown in FIG. 1.
US10026637B2
A polyimide resin includes an acid anhydride residue; and a diamine residue, the polyimide resin including a residue of a polysiloxane diamine represented by Formula (1) in an amount of not less than 60% by mole in the total amount of the diamine residue: wherein, n is a natural number and an average value thereof calculated from the average molecular weight of the polysiloxane diamine is 45 to 200; R1 and R2, the same or different, each represent an alkylene group having 1 to 30 carbon atoms or a phenylene group; and R3 to R6, the same of different, each represent an alkyl group having 1 to 30 carbon atoms, a phenyl group or a phenoxy group.
US10026632B2
A system for processing a wafer may use a wafer identification (ID) assigned by a wafer manufacturing company as an ID code of the wafer in managing the wafer by a semiconductor manufacturing company.
US10026628B2
The present invention relates to a method and a system for cleaning a semiconductor substrate wherein Al is at last partially exposed on a silicon substrate and silicided with a metallic substance without damaging the Al and a silicide layer. A cleaning portion cleans the aforementioned semiconductor substrate. A delivery portion, disposed on the cleaning portion, delivers a solution to the semiconductor substrate. A sulfuric acid solution transfer path connected onto the delivery portion transfers a sulfuric acid solution and an adsorptive inhibitor solution transfer path connected to the delivery path transfers an adsorptive inhibitor having any one or more of N-based, S-based, and P-based polar groups to the delivery portion. The sulfuric acid solution and the adsorptive inhibitor may be mixed or separately transferred to come into contact with the semiconductor substrate.
US10026627B2
A substrate processing apparatus includes a chamber, a substrate holding part, a substrate rotating mechanism, and a processing liquid supply part. The chamber includes a chamber body and a chamber cover, and the chamber cover is moved up and down by a chamber opening and closing mechanism. A top plate is attached to the chamber cover. While the chamber cover is in contact with the chamber body, a sealed space is formed and processing is performed. When the chamber cover is moved up, an annular opening is formed between the chamber cover and the chamber body. A cup part is positioned outside the annular opening. A processing liquid spattering from a substrate is received by the cup part.
US10026619B2
The yield of a product is improved when a substrate held by a conveyance carrier is subjected to a plasma treatment. A plasma treatment method of the substrate held by the conveyance carrier includes preparing the conveyance carrier which includes a holding sheet and a frame disposed on the outer peripheral portion of the holding sheet; bonding the substrate to the holding sheet so that the substrate is held by the conveyance carrier; and increasing tensile strength of the holding sheet. The plasma treatment method further includes placing the conveyance carrier on the stage after the bonding of the substrate and bringing the substrate into contact with the stage through the holding sheet; and performing a plasma treatment on the substrate after the placing of the conveyance carrier.
US10026609B2
A method for template fabrication of ultra-precise nanoscale shapes. Structures with a smooth shape (e.g., circular cross-section pillars) are formed on a substrate using electron beam lithography. The structures are subject to an atomic layer deposition of a dielectric interleaved with a deposition of a conductive film leading to nanoscale sharp shapes with features that exceed electron beam resolution capability of sub-10 nm resolution. A resist imprint of the nanoscale sharp shapes is performed using J-FIL. The nanoscale sharp shapes are etched into underlying functional films on the substrate forming a nansohaped template with nanoscale sharp shapes that include sharp corners and/or ultra-small gaps. In this manner, sharp shapes can be retained at the nanoscale level. Furthermore, in this manner, imprint based shape control for novel shapes beyond elementary nanoscale structures, such as dots and lines, can occur at the nanoscale level.
US10026601B2
The invention relates to reflectors for time-of-flight mass spectrometers, and especially their design. A Mamyrin reflector is provided which consists of metal plates with cut-out internal apertures, and symmetric shielding edges which are set back from the inner edges. The dipole field formed by these shielding edges penetrates only slightly through the plates and into the interior of the reflector. With a good mechanical design, the resolving power of the time-of-flight mass spectrometer increases by around fifteen percent compared to the best prior art to date.
US10026597B2
The present disclosure provides methods for cleaning chamber components post substrate etching. In one example, a method for cleaning includes activating an etching gas mixture using a plasma to create an activated etching gas mixture, the etching gas mixture comprising hydrogen-containing precursor and a fluorine-containing precursor and delivering the activated etching gas mixture to a processing region of a process chamber, the process chamber having an edge ring positioned therein, the edge ring comprising a catalyst and anticatalytic material, wherein the activated gas removes the anticatalytic material from the edge ring.
US10026596B2
A substrate processing apparatus includes: a cylindrical shaped chamber configured to accommodate a substrate; a movable electrode capable of moving along a central axis of the cylindrical shaped chamber within the cylindrical shaped chamber; a facing electrode facing the movable electrode within the cylindrical shaped chamber; and an expansible/contractible partition wall connecting the movable electrode with an end wall on one side of the cylindrical shaped chamber. A high frequency power is applied to a first space between the movable electrode and the facing electrode, a processing gas is introduced thereto, and the movable electrode is not in contact with a sidewall of the cylindrical shaped chamber, a first dielectric member is provided at the cylindrical shaped chamber's sidewall facing the movable electrode, and an overlap area between the first dielectric member and a side surface of the movable electrode is changed according to movement of the movable electrode.
US10026591B2
An ion beam etching device includes a grid provided between a treatment chamber and a plasma generation chamber, and for forming an ion beam by drawing ions from the plasma generation chamber; a gas introduction unit for introducing discharge gas into the plasma generation chamber; an exhaust for exhausting the treatment chamber; a substrate holder; a control unit to receive a measurement result of an in-plane film thickness distribution before the substrate is processed; and an electromagnetic coil provided outside of the plasma generation chamber in a ceiling portion opposite to the grid of the plasma generation chamber. The electromagnetic coil includes an outer coil provided on an outer circumference of the ceiling portion and an inner coil provided on an inner circumference of the ceiling portion, and the control unit controls the currents applied to the outer coil and the inner coil in accordance with the measurement result.
US10026589B1
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use patterns generated using the Hadamard transform as alignment and registration marks (Hadamard targets) for multiple-column charged particle beam substrate processing and inspection tools. Hadamard targets can be written to a substrate using charged particle beams performing, for example, resist-based lithography or resist-less direct processing. High-order Hadamard targets can also be patterned and imaged to obtain superior column performance metrics for applications such as super-rapid beam calibration DOE, column matching, and column performance tracking. Hadamard target blocks can be written highly locally to electrically functional pattern portions, or integrated into said pattern portions, thereby enabling re-registration local and contemporaneous to writing and improving beam targeting accuracy following re-registration. Superior alignment and registration, and column parameter optimization, allow significant yield gains.
US10026586B2
An X-ray tube can include: a cathode planar emitter that emits an inhomogeneous electron beam; an anode to receive the electron beam; a first magnetic quadrupole having a first yoke with four evenly distributed first pole projections extending from the first yoke and oriented toward a central axis of the first yoke and each of the four first pole projections having a first quadrupole electromagnetic coil; a second magnetic quadrupole having a second yoke with four evenly distributed second pole projections extending from the second yoke and oriented toward a central axis of the second yoke and each of the four second pole projections having a second quadrupole electromagnetic coil; and at least one coil of a first pair of opposing coils with alternating current offset from the power supply.
US10026583B2
A process of fabricating a discrete-dynode electron multiplier (DDEM) including the steps of mounting an insulator block to a conductor block, and forming a series of ion-optics geometrical structures in the conductor block, each ion-optics geometrical structure having a smallest dimension of less than 1 millimeter. The forming step may be performed by electrical discharge machining (EDM), laser cutting, and/or water jet cutting.
US10026574B2
A circuit arrangement includes a first number of loads connected in series. Each of a second number of drive units is coupled to at least one of the first number of loads, and is configured to assume a first operation state or a second operation state. A current source circuit is coupled in series with the first number of loads and is configured to control a load current.
US10026569B2
In a modular switch panel assembly, a switch cover with an aperture and a switch button having a button portion and an integral mounting portion are provided. The mounting portion comprises at least first and second spring members protruding laterally of and at opposite sides of the button portion. Each of the spring members has a meandering path shape and has one end integral with the button portion and an opposite end attached to the switch cover such that the button portion extends through the aperture. A printed circuit board has a switch, and is attached to the switch cover such that the switch is adjacent to a bottom surface of the switch button.
US10026566B1
A keyboard device includes a key structure, a switch circuit board, a base plate and a buffering strip. The key structure includes a keycap and a stabilizer bar. The stabilizer bar is connected with the keycap. A first end of the buffering strip is fixed in a first coupling structure of the keycap. A second end of the buffering strip is fixed in a second coupling structure of the keycap. The buffering strip is contacted with the stabilizer bar and filled in a gap between the stabilizer bar and the first coupling structure. Since the possibility of resulting in the collision between the stabilizer bar and the keycap is minimized, the keycap device is capable of reducing noise.
US10026565B2
A switch contact element, having a layered structure comprising three layers: the bottom layer is silicone rubber, the middle layer is a continuous base metal sheet layer, and the upper layer is a discontinuous (stripe-shaped, raised-point-shaped or lattice-shaped) precious metal plated layer or a double-metal composite layer of a discontinuous base metal plated layer and a precious metal plated layer. The thickness of the bottom layer is greater than that of the middle layer, the thickness of the middle layer is greater than that of the upper layer, and the thickness of the upper layer meets the conditions that the conductive current is greater than safe current of conductive contacts on a circuit board, and the service life of a switch for the design is ensured.
US10026563B2
An integrated circuit, comprising an electrical-switching mechanical device in a housing having at least one first thermally deformable assembly including a beam held in at least two different locations by at least two arms secured to edges of the housing, the beam and the arms being metallic and situated within the same first metallization level and an electrically conductive body, wherein the said first thermally deformable assembly has at least one first configuration at a first temperature and a second configuration when at least one is at a second temperature different from the first temperature, wherein the beam is at a distance from the body in the first configuration and in contact with the said body and immobilized by the said body in the second configuration and establishing or prohibiting an electrical link passing through the body and through the beam.
US10026560B2
The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.
US10026559B2
An electrolytic capacitor includes an anode body, a dielectric layer disposed on the anode body, and a cathode body. An organic polymer attached to the dielectric layer is disposed between the dielectric layer and the cathode body. The organic polymer has one or more groups selected from an acidic group and residues of the acidic group, and at least one of the one or more groups is incorporated into the dielectric layer.
US10026555B2
A device and method for providing electrical energy storage of high specific energy density. The device contains one or more layers of high dielectric constant material, such as Barium Titanate or Hexagonal Barium Titanate, sandwiched between electrode layers made up of a variety of possible conducting materials. The device includes additional insulating layers including carbon, such as carbon formed into diamond or a diamond-like arrangement for providing between the electrodes and the dielectric layer to provide for very high breakdown voltages. The layers can be created by a variety of methods including laser deposition and assembled to form a capacitor device provides the high energy density storage.
US10026551B2
The present disclosure provides a magnetic capacitor structure including a first electrode, a second electrode opposite to the first electrode, a dielectric layer disposed between the first electrode and the second electrode, a first magnetic layer disposed between the first electrode and the dielectric layer, a second magnetic layer disposed between the second electrode and the dielectric layer, a first oxide layer disposed between the first electrode and the first magnetic layer, and a second oxide layer disposed between the second magnetic layer and the dielectric layer.
US10026548B2
First and second divisional cores each including right and left leg portions and a yoke interconnecting those together are formed by molding respective yoke-side core members in a resin. Cylindrical core mounting portions extending from the outer circumference of the surface of the yoke-side core member are formed integrally with the respective right and left leg portions of the first divisional core. I-shaped leg-portion-side core members and spacers are attached in the cylindrical core mounting portion formed in each of the right and left leg portions. The surface of the yoke-side core member molded in the resin and the surface of the leg-portion-side core member are disposed so as to have a spacer therebetween. The two divisional cores are joined together by butting respective leg portions of the two divisional cores with each other to form an annular mold core, and a coil is wound around the mold core.
US10026547B2
The present application provides a coil for facilitating an electromagnetic coupling and method for increasing the degree of an electromagnetic coupling. The coil for facilitating an electromagnetic coupling includes one or more loops formed from a material through which an electric current can flow. At least one of the one or more loops is adjustable, including at least one of a size and a shape of the at least one of the one or more loops of the coil being selectively adjustable.
US10026534B2
By using a hot-rolled steel sheet of a predetermined chemical composition, and annealing the hot-rolled steel sheet in nitrogen atmosphere at 1000° C. for 30 seconds, and then immersing in a solution of 7% HCl at 80° C. for 60 seconds to obtain a hot-rolled steel sheet having a pickling weight loss of 10 g/m2 or more and 35 g/m2 or less, it is possible to obtain a hot-rolled steel sheet for producing a non-oriented electrical steel sheet that not only has excellent magnetic properties such as iron loss properties and magnetic flux density, but also has reduced steel sheet surface defects and an excellent manufacturing yield.
US10026533B2
According to the present invention, a grain-oriented electrical steel sheet for iron cores exhibiting excellent transformer iron loss properties in an excitation range from 1.5 T to 1.9 T is provided, in which a residual stress of 150 MPa or more is formed near strain regions, each extending 300 μm or less in the rolling direction and 42 μm or more in the sheet thickness direction, and the strain regions are formed periodically at intervals of 2 mm to 10 mm in the rolling direction, with reduced energy loss in transformers in operation.
US10026514B2
A canister apparatus, basket apparatus and combinations thereof for transporting and/or storing high level radioactive waste, such as spent nuclear fuel. In one embodiment, the invention can be a basket apparatus for supporting a plurality of spent nuclear fuel rods within a containment structure, the basket apparatus comprising a plurality of disk-like grates, each disk-like grate having a plurality of cells formed by a gridwork of beams; and means for supporting the disk-like grates in a spaced arrangement with respect to one another and so that the cells of the disk-like grates are aligned.
US10026513B2
Lead-free radiation shielding material and processes for producing and using the same are described. The radiation shielding comprising a heavy metal component, such as bismuth, and a polymer component while also being optically transparent. The bismuth can be bonded to the polymer component or can be embedded within the matrix of the polymer component without being bonded to the polymer. As well, the bismuth can be nanoparticles that are contained within the matrix of the polymer component without being bonded to the polymer. The bismuth provides a stable, environmentally benign alternative to lead, while blocking the radiation and also being optically transparent. Other embodiments are described.
US10026504B2
The invention relates to a system for controlling a data transmission to and/or from a plurality of medical devices, said plurality of medical devices being divided into individual groups, each of which comprises at least one medical device. Each group of medical devices on a first data transmission level is directly connected via a respective first network to a communication device for transmitting, storing, and controlling data, said communication device being on a second transmission level, and a plurality of said communication devices exchange data with a common central server device for storing, controlling, and data transmission, said server device being on a third data transmission level.
US10026500B2
A method for generating address translation stimuli for post-silicon functional validation is provided. The method includes determining a plurality of memory configurations based on a plurality of translation tables used by a stimuli generator to solve a plurality of test templates, providing a test template from the plurality of test templates, selecting a memory configuration from the plurality of memory configurations based on the test template, a memory variable, and a set of testing parameters, identifying a translation table from the plurality of translation tables based on the test template, allocating a memory space for the translation table, and executing the test template on the stimuli generator based on the translation table, the memory space, and the set of testing parameters.
US10026498B1
Provided is an integrated circuit that includes a reset electrically connected to a select line of a multiplexer and an OR gate. The multiplexer receives data from a power source. The multiplexer and the OR gate comprise a circuit. A clock is electrically connected to the OR gate. The OR gate is electrically connected to a clock input of a latch. The latch includes the clock input, a scan enable input, a data input, and a data output. A regular logic data path is electrically connected to the multiplexer, and the multiplexer is further electrically connected to the data port of the latch.
US10026492B2
Systems and methods for improving the reliability of data stored in memory cells are described. To mitigate the effects of trapped electrons after one or more programming pulses have been applied to memory cells, a delay between the one or more programming pulses and subsequent program verify pulses may be set based on a chip temperature, the number of the one or more programming pulses that were applied to the memory cells, and/or the programming voltage that was applied to the memory cells during the one or more programming pulses. To mitigate the effects of residual electrons after one or more program verify pulses have been applied to memory cells, a delay between the one or more program verify pulses and subsequent programming pulses may be set based on a chip temperature and/or the programming voltage to be applied to the memory cells during the subsequent programming pulses.
US10026490B2
A memory device and a programming method thereof are provided, and the programming method of the memory device includes following steps. A memory cell grouping procedure is performed to divide a plurality of memory cells into a plurality of groups. After the memory cell grouping procedure is performed, a programming procedure is performed, and the programming procedure includes following steps. A first programming pulse, a second programming pulse and a verification pulse are provided to a word line. A first group is programmed by the first programming pulse, and a second group is programmed by the second programming pulse. Whether the first group and the second group respectively pass a verification operation is determined by the verification pulse.
US10026479B2
A content addressable memory cell includes a first floating body transistor and a second floating body transistor. The first floating body transistor and the second floating body transistor are electrically connected in series through a common node. The first floating body transistor and the second floating body transistor store complementary data.
US10026471B2
A system-on-chip and an electronic device including the system-on-chip are provided. The system-on-chip includes a power switch, a logic block, a memory device, and a buffer. The power switch is coupled between a first power supply line and a virtual power supply line, and turns on in response to a switch control signal. The logic block is coupled between the virtual power supply line and a ground line. The memory device is coupled between a second power supply line and the ground line. The buffer is coupled between the second power supply line and the ground line, and generates the switch control signal based on a sleep signal.
US10026466B2
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.
US10026463B1
A semiconductor device includes a clock shifting circuit suitable for shifting a write pulse which is synchronized with a clock, in response to write latency signals, and generating shifting pulses and a mask write read signal; and a flag generation circuit suitable for generating a mask write flag by latching a mask write command or outputting the mask write command as the mask write flag, in response to the shifting pulses.
US10026459B2
Examples of the present disclosure provide apparatuses and methods for storing a first element in memory cells coupled to a first sense line and a plurality of access line. The examples can include storing a second element in memory cells coupled to a second sense line and the plurality of access lines. The memory cells coupled to the first sense line can be separated from the memory cells coupled to the second sense line by at least memory cells coupled to a third sense line and the plurality of access lines. The examples can include storing the second element in the memory cells coupled to the third sense line.
US10026453B1
A hard disk tray adapted for accommodating a hard disk having a plurality of screw holes at two sides is provided. The hard disk tray includes a body and a cover. The body includes two body lateral walls and a plurality of fixing members protruding from the two body lateral walls and corresponding to at least a part of the screw holes. The cover is pivoted to the body and includes two cover lateral walls. When the hard disk is placed in the hard disk tray, the fixing members extend into the at least a part of the screw holes, and when the cover is closed to the body, the two cover lateral walls are located outside the two body lateral walls so as to prevent the two body lateral walls from moving outwardly. A hard disk rack assembly is further provided.
US10026451B2
Embodiments provide a video camera that can be configured to allow tagging of recorded video and/or capture of video segments or sequences of images in response to user actuation of a camera control identifying an event of interest. For example, a user may press a button on the camera when an event of interest occurs, and in response the camera may tag a captured video file at a timestamp corresponding to the event. In another example, the user may initiate capture of video segments or sequences of images at an occurrence of an event of interest by pressing a button. The camera may include an image data buffer that may enable capture of video segments and/or sequences of images occurring before the user initiates capture of the event. User interfaces may enable the user to quickly review the captured video or sequences of images of the events of interest.
US10026445B1
A data storage library system includes at least one data storage library comprising at least one library frame and at least one environmental conditioning unit, the at least one environmental conditioning unit configured to control one or more environmental conditions within the at least one library frame. The system further includes at least one access door for providing access to an interior portion of the data storage library, a library controller, and at least one warning indicator associated with the data storage library and in electronic communication with the library controller. The at least one warning indicator is configured to provide an indication to an operator when the conditions within the data storage library are such that the at least one access door may be opened and when the conditions within the data storage library are such that the access door should not be opened.
US10026442B2
Mechanisms are provided, in a storage system controller of a storage system, for writing data to a storage medium. The storage system controller receives a write request to write a block of data to the storage medium. The write request does not specify a location on the storage medium to which to write the block of data. The storage system controller determines a current position of a write mechanism of the storage system relative to the storage medium and determines a location on the storage medium to write the block of data based on the current position of the write mechanism. The storage system controller sends a notification to a host system identifying the location of the block of data on the storage medium as determined by the storage system controller. The writing mechanism writes the block of data to the determined location on the storage medium.
US10026439B2
Example techniques may involve managing playback of media content by a playback device. In an example implementation, a playback device receives, from a media service provider, a first media item for playback. The playback device identifies one or more user accounts currently interfacing with the playback device. The playback device transmits, to a media system server, a first message indicating (i) the first media item and (ii) the identified one or more user accounts. After transmitting the first message, the playback device receives, from the media system server, a second message indicating that the first media item is not to be played by the playback device. Responsive to the second message, the playback device transmits, to the media service provider, a request for a second media item. The playback device plays the second media item via one or more speakers.
US10026432B1
A magnetic stack includes a interlayer structure and a magnetic recording layer disposed over the interlayer in the magnetic stack. The magnetic recording layer includes substantially ordered L10, <001> oriented crystalline magnetic grains laterally separated by a nonmagnetic, segregant material. The interlayer structure comprises a first layer having cubic crystal structure including <100> oriented crystalline grains and a second layer having crystalline grains laterally separated by a segregant material. The crystalline grains of the second layer are arranged in substantially vertically contiguous alignment with the crystalline grains of the first layer and the segregant material of the magnetic recording layer is arranged in substantially vertically contiguous alignment with the segregant material of the second layer.
US10026422B1
A data writer may be configured with a write pole that has one or more sidewalls continuously extending from an air bearing surface. A write pole sidewall can have a plurality of different wall angles. A portion of a write pole sidewall contacting the air bearing surface can have a first wall angle with respect to a trailing edge of the write pole, parallel to the air bearing surface. A second portion of the write pole sidewall can be half or less of the first wall angle. A third portion of the write pole sidewall can be smaller than the second wall angle.
US10026417B2
Example embodiments provide systems and methods for accelerating digital content playback based on speech. A content acceleration system electronically accesses digital content. The system analyzes the digital content to detect at least one audio portion within the digital content, each of the at least one audio portion comprising speech. The system creates at least one digital content segment from the digital content based on the at least one audio portion, whereby a beginning of each digital content segment of the at least one digital content segment coincides with a beginning of a corresponding audio portion of the at least one audio portion. The system then accelerates playback of the digital content by fast forwarding through parts of the at least one digital content segment where speech is absent.
US10026403B2
Systems and methods for associating audio signals in an environment surrounding a voice-controlled system include receiving by a voice-controlled system through a microphone, an audio signal from a user of a plurality of users within an environment surrounding the microphone. The voice-controlled system determines a source location of the audio signal. The voice-controlled system determines a first user location of a first user and a second user location of a second user. The voice-controlled system then determines that the first user location correlates with the source location such that the source location and the first user location are within a predetermined distance of each other. In response, the voice-controlled system performs at least one security action associated with the first user providing the audio signal.
US10026395B1
A system extracting features from a time-varying signal comprising a computer processor and a computer readable medium having computer executable instructions for providing: a bank of bandpass filters; a module approximating the output of those filters with nonlinear components; a module representing a decorrelated projection of the output of the filters with nonlinear components; and a module representing the temporal derivative of the decorrelated information with nonlinear components.
US10026387B2
A sound absorbing sandwich plate for attaching to a component includes a first layer and a second layer connected to the first layer in an areal manner characterized in that, at least partially, especially along the second layer at least an area-shaped mounting part is provided, which at its side facing the second layer has a plurality of engaging elements, which are engageable into the second layer.
US10026382B2
A string instrument comprising an instrument body, a neck, a bridge, and at least one string extending forwardly and rearwardly over the instrument body. The instrument body is topped by a sound table. The bridge may be removably located onto the sound table by virtue of a tension applied to the at least one string.
US10026378B2
Information processing methods and electronic devices are provided. A method for an electronic device with a display unit may comprise: determining a first environmental light parameter under an environment where the electronic device is disposed; and determining a first display parameter for output by the display unit based on the first environmental light parameter. When the display unit performs display based on the first display parameter, a difference between a first color temperature of the display unit and a second color temperature of the environment may be less than a first preset threshold.
US10026376B2
The present disclosure provides a power management integrated circuit (PMIC) and a display device. The PMIC includes an FBN and a DC voltage output unit configured to output different DC voltages to the FBN in a time-division manner.
US10026371B2
A display device includes a pixel matrix having pixel rows and pixel columns and including pixels having switching elements positioned alternately at a corner near an upper and a lower side of each pixel row and positioned alternately at a corner near an upper and a lower side of and alternately at a corner near a left and a right side of each pixel column; multiple pairs of gate lines transmitting a gate-on voltage; and multiple data lines transmitting data voltages, wherein each pair of gate lines are disposed at the upper and lower sides of each pixel row with the pixels in each row connected to the gate line positioned nearest the respective switching element, and each data line is disposed between adjacent pairs of pixel columns and connected to pairs of pixels where one pixel of the pair has a switching element positioned nearest the respective data line.
US10026364B2
A life prediction method and device that can predict the life of a display device considering the differences between temperatures at measurements of the luminance of the display device. A monitor measures the luminance of the display screen using an optical sensor and measures the temperature around the display screen using a temperature sensor. A terminal device stores the measured luminances and temperatures in such a manner that the luminance and temperature are associated with each other. On the basis of the measured luminances and temperatures obtained by repeated measurements, the terminal device predicts the trend of changes in the luminance assuming that the temperatures at the measurements have been approximately constant, and predicts the life of the monitor on the basis of the predicted change trend.
US10026363B2
A window display device includes a display screen provided in a transparent rear window glass pane of a vehicle, an operating device adapted to detect an action for operating the display screen, and a control device, which displays a shade on the display screen. The shade is movable to selectively open and close the display screen based on an action performed on the operating device.
US10026344B2
A display device includes a first pixel including a first light emitter, a second pixel including a second light emitter, and a holding capacitor connected to the first and second pixels. The holding capacitor stores first data for the first light emitter and stores second data for the second light emitter at different times. An irradiation direction of first light emitted by the first OLED is substantially equal to an irradiation direction of second light emitted by the second OLED. The first light from the first OLED is emitted in a first frame period and the second light from the second OLED is emitted in a second frame period to prevent mixing of the first and second light.
US10026325B2
An aircraft system, computer-implemented method, and computer program product for optimizing a flight plan for schedule, ride quality, and efficiency is provided. Tradeoff preferences between on-schedule operations, ride quality, and efficiency are received. A multi-axis chart that includes axes for on-schedule operations, ride quality, and efficiency is displayed. Values are arranged along the respective axes based on the tradeoff preferences. When a flight plan is received, values for on-schedule operations, ride quality, and efficiency are extracted. A triangle is overlaid on the multi-axis chart such that apexes of the triangle intersect the respective axes at locations corresponding to the extracted values. When multiple optional flight plans are received, multiple triangles corresponding to the respective flight plans can be overlaid on the multi-axis chart. The pilot can identify a most-preferable flight plan based on visual differences between the triangles.
US10026324B2
Systems and methods for enhanced adoptive validation of ATC clearance requests are provided. In certain implementations, a system comprises a processor executing a controller pilot data link communication application, and at least one source of dynamic information coupled to the processor, wherein the dynamic information comprises data relevant to possible flight paths of an aircraft, the dynamic information being changeable during the flight of the aircraft, wherein the processor processes at least one clearance request that identifies a deviation from the present flight path and validates the at least one clearance request against the dynamic information.
US10026317B2
An action probability factor is developed based at least in part on a plurality of probability arrays predicting one or more probabilities of a deviation from at least one of a planned vehicle direction, position, speed, and acceleration. Levels of autonomous control are transitioned based at least in part on the action probability factor.
US10026302B1
A method of responding to alarm includes receiving an alarm message from an alarm system at a site. The alarm message may indicate that an alarm has been triggered at the site. In response to receiving the alarm message, a responder may be identified to respond to the alarm. A call message may be automatically sent over a network to a mobile alarm device in the possession of the responder. A message may be received back from the mobile alarm device accepting the call message for the alarm. In some embodiments, the responder's response to the alarm (for example, time to arrive at the alarm, time to clear the alarm) is automatically timed and monitored based on messages received from the responder over the mobile alarm device.
US10026292B2
A system for monitoring the movements or other activities of patient. Aspects include a monitoring device with one or more sensors such as a pressure or motion sensors that may be positioned on or near a patient. Alerts may be generated by the monitoring device if the sensor readings fall outside predetermined limits set in a patient profile specific to a particular patient. Sensor readings and/or alerts may be sent by the monitoring device to the central server which may notify nearby caregivers that a patient needs assistance. The server may be configured to analyze sensor readings and alert information to refine patient profiles to reduce or eliminate false alarms.
US10026291B2
A method is provided to avoid risk at a workplace. The method comprises establishing an indication including a first region with a first safety level at the workplace; determining a position of an object in the workplace and generating position information; and issuing a first alert if it is determined that the object is in the first region based on the position information and the indication.
US10026290B2
The present invention provides a system and method for increasing construction site safety. The present invention reduces the risk of a construction or similar large vehicle or piece of mobile machinery hitting a construction worker. The system uses low-power wireless beacons embedded in a construction worker's hardhat or otherwise on the construction worker's person. The low-power wireless beacon interacts with sensor modules around the construction site, on construction vehicles, on construction equipment, or any other suitable placement known to or conceivable by one of skill in the art. The sensor modules send alert signals to a display accessible to a driver of the vehicle, and/or a foreman on the construction site. While the present invention is discussed herein in the context of construction safety, it should be noted that such a system can be applied to any situation where tracking and alert generation would be beneficial.
US10026284B2
A monitoring area is scanned by an area sensor device (e.g., an optical distance meter) detects objects. Moving objects are identified among the detected objects, and, among the identified moving objects, a moving object which is present in the monitoring area and which has been newest identified is set as a tracking target. The moving object which has been set at the tracking target is automatically tracked by a camera device. As a result, even if there are present a plurality of moving objects in the monitoring area, tracking targets can be switched from one to another, so that it is possible to designate, as a tracking target, a moving object desired by an observer.
US10026280B2
An anti-lost notification method and an anti-theft device, which can improve accuracy of BLUETOOTH anti-lost notification, and avoid erroneous vibration notification in a non-lost case, where the method includes determining whether a step count value in first preset duration before a connection between an anti-theft device and a peer device is disconnected is greater than a preset value; if the step count value is greater than the preset value, determining whether a signal quality value sequence of a communication signal between the anti-theft device and the peer device shows a progressively decreasing trend in the first preset duration before the connected is disconnected; and giving an alarm if the signal quality value sequence shows a progressively decreasing trend in the first preset duration before the connected is disconnected.
US10026275B1
A presentation moderator assembly for facilitating nonverbal and nonphysical communication between a moderator and a presenter includes a base unit that is positioned in view of a presenter. The base unit has a first light emitter that is selectively illuminated to communicate to the presenter that the presenter may begin speaking. The base unit has a second light emitter that is selectively illuminated to communicate to the presenter that the presenter should begin finishing speaking. The base unit has a third light emitter that is selectively illuminated to communicate to the presenter to stop speaking. A remote unit is carried by a moderator and the remote unit is in electrical communication with the base unit. The remote unit selectively turns on each of the first, second and third light emitters.
US10026271B2
An automatic banking machine operates responsive to data read from data bearing records corresponding to authorized user or financial account data. The machine includes a card reader for reading data from user cards. The automated banking machine causes financial transfers related to financial accounts that correspond to data read from user cards. The automated banking machine also includes devices that control the supply of power to included devices to avoid exceeding power supply capacity.
US10026263B2
A skill level initiated interleaved wagering system is disclosed, including: an interactive controller configured to: communicate an application telemetry communication comprising application telemetry; scan an application resource instruction; and scan a wager outcome communication; a wager controller constructed to: scan a wager instruction; generate the wager outcome; communicate, to the application controller, the wager outcome communication comprising the wager outcome; and the application controller operatively connecting the interactive controller and the wager controller and constructed to: determine an application level change, wherein the application level is associated with a user; generate the wager instruction comprising one or more wager parameters used in determining wager outcomes; communicate, to the wager controller, the wager instruction; scan the wager outcome communication from the wager controller; generate the application resource instruction comprising application resources; communicate the application resource instruction; generate the wager outcome communication; and communicate the wager outcome communication.
US10026255B2
A gaming system including a number of host devices each coupled to one or more gaming machines, wherein content provided by the host device is output on the gaming machine. To output the content provided by the remote host, a host-controlled process that is authenticated by the gaming machine and executed in a secure memory location such that it is isolated from other processes executing on the gaming machine may be utilized. The host-controlled processes may be decoupled from the process used to execute the game of chance played on the gaming machine such that the content output by the host-controlled process does not alter the play of game of chance.
US10026254B1
A mechanical lift for delivery bins and receptacles in vending and analogous machines includes a feature that partial opening of a delivery door allows at least partial access to the delivery bin or receptacle but that further opening of the door would lift the bin or receptacle floor. The assembly can be compact, relatively noncomplex and economical. It can come in basically a preassembled kit that can be retrofitted or original manufacture equipment. It can include additional features such as anti-cheat functions and dispense detect sensors. An additional feature can be a unique dispensing floor geometry.
US10026252B2
In one embodiment, a money dispensing device has a storage device, an attaching/detaching mechanism and a control device. The attaching/detaching mechanism detachably supports a storage bag. When the storage device to store money has overflowed, the money stored in the storage device is discharged to a storage bag. The control device outputs information indicating that the storage bag is not attached when the storage bag is not attached to the attaching/detaching mechanism.
US10026247B2
A REX activation detection and control module system configured to allow a REX device having at least four connectors to electrically connect with ACS devices having at least four connectors, while only connecting two wires to the REX device. The system comprises a first REX input/output device comprising two couplings and a second REX input/output device comprising at least four couplings. The system also comprises a current sense amplifier electrically connected to the first REX input/output device, the current sense amplifier configured to measure current from either the first REX input/output device. The system also comprises a microcontroller electrically connected to the current sense amplifier, the microcontroller configured to monitor the rolling average of the measured current output from the current sense amplifier. When the microcontroller detects an anomaly within the rolling average of the measured current, the microcontroller will activate the relay.
US10026244B2
A parking area access control system includes a first blocking device (6) with a data communication connection to a central control device (2) for opening by a control device command. An identification element (22), with an unambiguous identification key, is arranged on the first blocking device (16). A mobile communication apparatus (20) is connected to the control device for data communication and is configured to read out the identification key from the identification element. The mobile communication apparatus (20) and the control device (2) interact such that the identification key is transmitted from the communication apparatus to the control device and, the control device or the mobile communication apparatus generates a temporary parking key. The control device (2), as a reaction to a request signal (6) sent from the communication apparatus (20) to the control device, opens the first blocking device which is identified by the identification key.
US10026242B2
A state information display for a wheel-type working vehicle includes: a state information displaying unit that displays plural kinds of state information of the wheel-type working vehicle; and a display controller that controls display of the state information displaying unit. The display controller includes: a standard screen displaying unit that displays the plural kinds of state information in the form of a standard screen during an operation of the wheel-type working vehicle; a maintenance/inspection screen switching unit that switches from the standard screen to a maintenance/inspection screen for the wheel-type working vehicle to be displayed in response to a predetermined dedicated operation; and a speed information displaying unit that displays speed information of the wheel-type working vehicle in any one of areas defined in the maintenance/inspection screen when the maintenance/inspection screen is switched to be displayed by the maintenance/inspection screen switching unit.
US10026230B2
A visualization system that uses deep learning can store data representing a scene in multiple layers of representation. Each layer can include a different category of data from the other layers. The categories of data can increase in complexity and specificity from a lowermost layer to an uppermost layer. For instance, first, second, and third layers can store information corresponding to edges, corners, and surface finishes present in the scene, respectively. The visualization system can retrieve data representing the scene from multiple layers, and augment a point cloud representation of the scene in response to the retrieved data. The point cloud can be augmented to increase a point density in one or more point cloud regions that lack data or include only sparse data. Downstream, the visualization system can use the augmented point cloud to create improved images of the scene from desired points of view.
US10026216B2
A graphics data processing method and apparatus are disclosed. The graphics data processing method includes determining a guard band region having a distance range which is predetermined in a viewing direction from a position of a virtual camera, outside a virtualization region representing regions of objects able to be displayed on a screen among a plurality of objects included in graphics data. The method further includes acquiring position information of each of the plurality of objects, determining a region where at least one object among the plurality of objects is located, based on the acquired position information, and performing at least one of clipping and culling on data of the at least one object, based on the determined region.
US10026210B2
A method for rendering frames of an animation sequence using a plurality of motion clips included in a plurality of motion spaces that define a behavioral motion space. Each motion space in the behavioral motion space depicts a character performing a different type of locomotion, including running, walking, or jogging. Each motion space is pre-processed to that all the motion clips have the same number of periodic cycles. Registration curves are made between reference clips from each motion space to synchronic the motion spaces.
US10026207B2
An image display device including a display unit and a computing device that is operable to function as units including a clipping unit which clips an image of one portion from a fisheye image captured by using a fisheye lens as a clipping target area, a correcting unit which corrects distortion of the image clipped by the clipping unit, a specifying unit which specifies a vertical direction of a corrected image acquired by the correcting unit, based on orientation information when the fisheye image is captured, and a display control unit which controls the corrected image to be displayed on the display unit based on the vertical direction specified by the specifying unit.
US10026200B2
The invention provides devices and methods that process images. The invention processes a received signal representing information of texture and information of an image, which has the texture removed from at least one region. The image information is encoded to obtain encoded information of the image. An output signal is generated representing the texture information and the encoded image information. In another embodiment, the invention synthesizes texture based on the received texture information, decodes received image information, which is encoded, to obtain a decoded image, and then maps the synthesized texture onto the decoded image.
US10026197B2
There is provided with a signal processing method. A filtering result is generated by performing spatial filtering on multi-dimensional data. Encoding result data is output by encoding the filtering result using a value at a pixel of interest of the filtering result and a value at a reference pixel located at a relative position with respect to the pixel of interest. The relative position of the reference pixel is decided in advance according to a characteristic of a spatial filter used in the spatial filtering step.
US10026176B2
Features are disclosed for an automatic segmentation and alignment of images for display via an interface. The images may have different scales and lengths. As such, items shown in the images, such as clothing, may not be depicted in a uniform way. Segmentation of the images into image portions where a portion of an image shows a specific item is described. The segmentation may be achieved using models and/or complex image analysis. To provide a realistic view of the subject when image segments are presented together on an interface, additional alignment of the image segments may be performed. The alignment may be achieved using models and/or complex image analysis.
US10026167B1
Anisotropic contrast methodology in combination with use of sample investigating polarized electromagnetic radiation to provide Jones or Mueller Matrix imaging data corresponding to areas on samples.
US10026151B2
A script-driven head-up display controller comprising an image warping unit and an image projection unit wherein the image warping unit is coupled to the image projection unit and is adapted to: receive a line-based warping descriptor comprising first information associated with a distortion caused by a non-flat display; and, in response to the reception of the line-based warping descriptor, the image warping unit is further adapted to, based on the line-based warping descriptor: fetch one or more lines of the source image; and, output to the image projection unit at least one output line of the output image associated with an electronic image warping of one or more pixels of the one or more input lines, and wherein the line-based warping descriptor further comprises second information associated with buffer management instructions calculated off-line.
US10026143B2
Embodiments of a system and method for enhanced graphics rendering performance in a hybrid computer system are generally described herein. In some embodiments, a graphical element in a frame, application, or web page, which is to be presented to a user via a web browser, is rendered either by a first processor or a second processor based on indications of whether the first or the second processor is equipped or configured to provide faster rendering. A rendering engine may utilize either processor based on historical or anticipated rendering performance, and may dynamically switch between the hardware decoder and general purpose processor to achieve rendering time performance improvement. Switches between processors may be limited to a fixed number switches or switching frequency.
US10026142B2
A mechanism is described for facilitating multi-level nesting of batch buffers at computing devices. A method of embodiments, as described herein, includes facilitating a hardware extension to accommodate a plurality of batch buffers to engage in a multi-level nesting, where the plurality of batch buffers are associated with a graphics processor of a computing device. The method may further include facilitating the multi-level nesting of the plurality of batch buffers, where the multi-level nesting is spread over a plurality of levels associated with the plurality of batch buffers, where the plurality of levels include more than two levels of nesting associated with more than two batch buffers of the plurality of batch buffers.
US10026132B2
An activity is detected in a computer system. The activity is correlated to a given entity. A line item display is generated for the detected activity and contextual actions are identified for the line item display. The line item display, with contextual action mechanisms is added to a chronological display structure which is surfaced for user interaction.
US10026128B2
The APPARATUSES, METHODS AND SYSTEMS FOR A VOLATILITY EXPIRATION INDEX PLATFORM (“VEIP”) transforms user and market data inputs via VEIP components into Vol Ex Index publication and Vol Ex Index instrument communications outputs. A current reference security price may be determined for a reference security. A plurality of option strike prices may be derived from the current reference security price. Implied volatility and delta may be determined for options associated with each derived option strike price and used to calculate a delta-weighted implied volatility for each derived option strike price. A weighting for each derived option strike price may be determined and used along with the delta-weighted implied volatilities to calculate a volatility expiration index value for the reference security. Using the volatility expiration index value, a volatility expiration index financial instrument may be generated and introduced into a financial instrument exchange market.
US10026124B2
Systems, methods and user interfaces are provided for order matrix management and highlighting. Market data may be arranged in a matrix where the market data may be highlighted and/or otherwise presented to provide further information to a user. In some cases a computer system may include a computer-readable medium containing computer-executable instructions that, when executed by one or more processors, cause a computing device to receive market data for a financial instrument. The computer system may further process instructions to identify pending orders that may result in a cross trade, such as with trades entered by a trader or between members of a same business organization. The computer system may further process instructions that cause the computer system to generate a user interface that highlights which of the pending orders that may result in a cross trade.
US10026120B2
In an electronic supply chain finance system, a method of enabling a supplier to obtain funds includes receiving information from a buyer defining a payment obligation, receiving an offer to sell the payment obligation, and providing electronic instructions to print a negotiable instrument issued by the buyer, to the supplier as payee, having a payable date based on a maturity date of the payment obligation and a payment value based on a payment amount of the payment obligation.
US10026113B2
Methods and systems are provided for use, for example, in e-commerce. E-commerce data from a merchant may be received regarding interactions of customers with a website of the merchant. Characteristics of the e-commerce data may be identified. Based at least in part on the one or more identified characteristics, a plurality of marketing actions may be selected, or automatically selected, that are potentially effective for the merchant. The selected marketing actions may be ranked based at least in part on one or more of a quality score and one or more bids associated with each of the selected marketing actions. A ranked list of the selected marketing actions may be provided, or recommended, to the merchant.
US10026108B2
Certain exemplary embodiments can provide a method that can include: sending software to a first information device and to a second information device, the software adapted to cause display of information regarding user-selected items; and providing content to the software running on the second information device, the software adapted to cause the content to be rendered via the second information device.
US10026107B1
A method and system for analyzing user behavior as users search for items within an electronic marketplace is provided. A query is submitted by a user of the electronic marketplace, the query is processed to identify a series of actions or behaviors performed by the user in relation to the query and fingerprint information for the query is determined based at least in part on analyzing the actions. A classification for a query is determined based on the fingerprint information. In one embodiment, an electronic marketplace receives a query from a user, accesses a query classification database having fingerprint information, determines a fingerprint for the query based on the fingerprint information and dynamically modifies a user experience for the user based at least in part on the fingerprint information.
US10026106B2
Techniques for providing a synthetic price are described herein. The techniques may include a method of synthetic price provisioning including identifying a device operating in a consumption entity, wherein the device operates at least partially based on a pricing signal provided by an energy provider. Optimal operation is determined based on the device and other devices in the consumption entity. The method includes providing a synthetic pricing signal to replace the pricing signal provided by the energy provider such that the devices operate according to the optimization model.
US10026099B1
Tracking waiting lists associated with merchants and presenting deals to users based on adding the users to waiting lists is described. A service provider may enable merchants to track waiting lists associated with their own services and services of other merchants. Users may be automatically added to waiting lists of merchants based at least in part on a service provider determining that a user is at a geographic location of a merchant. Based at least in part on adding a user to a waiting list for a particular merchant, the service provider may access and select deals from one or more alternative merchants. The one or more alternative merchants may not have waiting lists or may have waiting lists with fewer groups than the waiting list for the particular merchant. The service provider may offer the deals to the user via a user device.
US10026096B2
Systems and methods are provided for discovering advertisements on publisher web pages and for identifying placement pathways by which discovered advertisements have been placed on the publisher web pages. An advertisement tracking and discovery system may use multiple web crawler applications to explore multiple publisher websites. The web crawler applications may gather advertisement data that includes times associated with each request made by the web crawler application. The system may use the gathered advertisement data and the times associated with each request to determine the placement pathways by which discovered advertisements have been placed. Each placement pathway may include one or more advertising channels or combinations of advertising channels. The system may accumulate and aggregate advertising data associated with the advertisements and the placement pathways and display the aggregated advertising data to a customer.
US10026089B2
The disclosure is directed to a system, method, and computer program for dynamically identify a merchant associated with an authorization request for a payment card, wherein a merchant identifier in the authorization request is unrecognized. A plurality of unique signatures is created for each of a plurality of registered merchants, wherein the signatures for each registered merchant are based on values of merchant attributes associated with the registered merchant. In response to the system receiving an authorization request for a payment card that includes an unrecognized merchant identifier used to process authorization requests, a plurality of unique signatures is generated for the unrecognized merchant based on a combination of merchant attributes in the authorization request. A payment processing system then determines if the signatures match one of the signatures previously created for the registered merchants. If so, the authorization request is identified as originating from the matching registered merchant.
US10026075B2
Disclosed herein are method, system and computer-readable storage media for gift card e-banking. This is a unique platform, where people can deposit and withdraw gift cards of any store, of any denomination, at any time and at any place from the bank. Gift cards are converted into virtual money not affiliated with any store. Unlike traditional banking system majority of transactions are in the form of gift cards. Customers have two types of accounts, gift card money account and fixed account. The gift cards deposited in the bank account are available to all the customers. Cards deposited in the fixed account are only available to the customer who owns that account. Customer may transfer gift card/virtual money from one account to another account. Gift card e-bank also issues its own gift card known as “one gift card”, which facilitates customers to use any gift card at any store.
US10026066B2
A system for interfacing predetermined services to a user at a fixed location includes a processing platform running an operating system. Also included are a plurality of physical system resource interfaces for interfacing with available physical system resources. The physical system resources allow a user to gain access to the predetermined desired services. The system further includes a data store for storing configuration information for enabling the operating system to interface with the available physical system resources through the physical system resource interface associated therewith. A communication resource for interfacing with the operating system allows communication of the operating system with a central office for downloading configuration information to selectively enable ones of the available physical system resources to interface with the operating system through associated ones of the physical system resource interfaces in accordance with the configuration information and the predetermined service selected by a user. A plurality of configurations are stored in the data store, and each is associated with a predetermined service and one or more of the available physical system resources. Each physical system resource interface is uniquely associated with a defined one of the physical system resources.
US10026056B2
According to one aspect, a monitoring device includes a processor, a sensor, and a configuration circuit. The sensor is adapted to detect if the sensor is subjected to at least a first magnitude of the particular condition. The configuration circuit may be used to specify a second magnitude of the particular condition, wherein the second magnitude is greater than the first magnitude. The processor remains in an inactive state if the object is subjected to a magnitude of the particular condition less than the second magnitude, and the sensor generates a signal in response to detection of sensor being subjected to at least the second magnitude of the particular condition. In response to the signal, the processor enters an active state to develop an indication of at least the second magnitude of the particular condition.
US10026052B2
Systems and methods for providing an electronic task assessment platform are disclosed. The system may include a first computing device, a second computing device and a server communicatively coupled by a network. A first computing device may include a web browser configured with an assessment builder that enables the creation of customizable assessments. A second computing device may include an assessment application for completion of the customized assessment related to task performance evaluations. The completed assessment may be provided to the server that performs objective evaluation of the completed assessment and generates a specialized report including statistical metrics relating to the task performance evaluations. The report is provided to the first computing device and/or the second computing device.
US10026047B2
A method for crowd sourcing tasks may include identifying a group of potential candidates for crowd sourcing. Each candidate of the group of potential candidates may be identified based on the candidate being expected to accept a certain type of task. The certain type of task may be at least a task that is performable within a predetermined range of time. The method may also include receiving a request to perform a particular task from a requester. The method may additionally include determining if the particular task is the certain type of task. The method may further include transmitting an offer for performance of the particular task to at least a subgroup of the group of potential candidates in response to the particular task being the certain type of task.
US10026044B1
A method includes obtaining, by a management module, an inventory unpacking sequence for a remote facility. The inventory unpacking sequence indicates a sequence for unpacking a shipment at the remote facility. An order associated with the remote facility is received that includes inventory items. The management module determines an order packing arrangement for the inventory items based on the inventory unpacking sequence. Mobile drive units are instructed to transport one or more inventory holders storing the inventory items to an inventory station, where the inventory items are packed into a shipment according to the order packing arrangement. The shipment is arranged to be unpacked at the remote facility according to the inventory unpacking sequence.
US10026033B2
A mobile device configured to enable a user to maintain a facility includes: a display device; a network interface configured to communicate across a computer network with an external computer server to retrieve facility data; an antenna for interrogating an RFID tag; a reader configured to read a response signal generated by the RFID tag in response to the interrogating, process the response signal to extract tag information, determine whether the tag information includes information identifying one of a room within the facility or equipment within the facility; and a processor configured to determine whether the tag information includes a room identifier identifying a room within the facility or an equipment identifier identifying equipment within the facility based on the facility data, retrieve display data from the stored facility data based on the identified information, and present the display data on the display device.
US10026021B2
In one embodiment, a method includes identifying a shared visual concept in visual-media items based on shared visual features in images of the visual-media items; extracting, for each of the visual-media items, n-grams from communications associated with the visual-media item; generating, in a d-dimensional space, an embedding for each of the visual-media items at a location based on the visual concepts included in the visual-media item; generating, in the d-dimensional space, an embedding for each of the extracted n-grams at a location based on a frequency of occurrence of the n-gram in the communications associated with the visual-media items; and associating, with the shared visual concept, the extracted n-grams that have embeddings within a threshold area of the embeddings for the identified visual-media items.
US10026018B2
A medical image classification system includes an acceptance apparatus, a medical image acquisition apparatus, and a medical image classification apparatus. The acceptance apparatus includes an acceptor that accepts the input of patient identification information and medium identification information, and a first storage that stores first association information. The medical image acquisition apparatus includes an identification information acquirer, an image acquirer that acquires a medical image for diagnosing a patient, and a second storage that stores second association information. The medical image classification apparatus includes a first acquirer that acquires the first association information stored by the first storage, a second acquirer that acquires the second association information stored by the second storage, and a classifier that performs classification of the medical image identification information per the patient identification information based on the medium identification information in the first association information and the second association information.
US10026012B2
A method and an apparatus for separating objects are disclosed. The method includes obtaining a depth image including a plurality of objects; obtaining a two-dimensional image including the objects; performing pixel-clustering using depth values of pixels in the depth image and pixel values of pixels in the two-dimensional image to obtain a plurality of sub-regions; performing region-clustering for the sub-regions to obtain a clustering result as an object separation result; and outputting the object separation result.
US10026010B2
A particular method includes receiving a set of images, where each image of the set of images is related to a common scene. The method also includes determining a first subset of pixels of a first image of the set, where the first subset of pixels corresponds to a second subset of pixels of a second image of the set. The method further includes generating a first image quality estimate of the first image based on a comparison of the first subset of pixels and the second subset of pixels.
US10026008B2
Inspection and classification system have a customs data repository for automatic customs inspection of parcels comprising a data acquisition module configured to acquire information about parcels by input devices, wherein the information indicates customs classification criterias, the acquisition module further configured to communicate the information to the customs data repository; wherein the data repository stores the following data: information about parcels; parameters; attributes and big-data; a processor coupled with memory configured to map the information according with the parameters and attributes, wherein the mapped information of the parcel is a cluster; the processor is further configured for predicting customs classification of the parcel based upon comparison between parameters/attributes of the cluster and parameters/attributes of clusters stored in the big-data, wherein clusters stored in the big-data are were previously inspected, and wherein the cluster assumes a customs classification of a comparable cluster stored in the big-data.
US10026007B1
A method provides for greatly reducing the time required for humans and machines to review long periods of recorded surveillance video, obtain images with high spatial and temporal detail, and greatly reduce the amount of data required for review. An Internet-accessible camera continuously captures video and records it internally in one or more series of short “normal” files. Each series of normal files has a particular resolution and frame rate. Periodically, a time-lapse video is also created within the camera, from images from a number of most-recent files in a given series of normal files. A user interface enables viewing a sequence of time-lapse videos, pausing playback, and clicking over to a normal video file it was made from, to view images with greater temporal detail, and back again. The method includes multiple resolutions of normal files and multiple series of time-lapse videos with different durations and sample rates.
US10026001B2
Systems and methods to generate maps or models of structures are disclosed. Features of the structure to be mapped may be determined for the purposes of generating the map or model based at least in part on images associated with the structure, sensor measurements associated with the structure, and phase data of communications signals that interact with the structure. The mapping or modeling processes may be performed at a mapping server that receives images, sensor data, and/or communications signal phase information from one or more user devices, such as mobile devices. The mapping servers may perform a simultaneous localization and mapping (SLAM) process and may enhance the generated maps using sensor and/or communications phase data to map one or more hidden features of the structure.
US10025995B2
An object detecting arrangement is configured to detect objects in a field surrounding a vehicle hosting the arrangement. The arrangement comprises an imaging unit configured to capture images of the field. The imaging unit is arranged at the vehicle such that the field is in a direction of at least one of a side of the vehicle, and a rear of the vehicle. The arrangement further comprises a processing unit configured to detect objects in the field. The processing unit is configured to determine an object detecting capability. In addition, the arrangement comprises an illumination unit configured to illuminate the field when the object detecting capability is lower than a first predetermined threshold value. The present disclosure also relates to a lane keeping arrangement, a positioning arrangement and a method of detecting objects.
US10025989B2
Images are selectively captured and transmitted by 3D security cameras to avoid congestion of a network coupling them to a central server. Skeleton detection circuits enable conditional event capture when triggered. Head, hands, and feet are associated with pixel blocks. An artificial horizon is derived from a shoulder segment. An isometric floor perspective is derived from a series of foot positions. Orientation of feet, head, or hands relative to an artificial horizon triggers event capture and transmission. Simultaneous position of two feet above the floor perspective triggers event capture and transmission. Images are transformed to effectively alert a user.
US10025987B2
The invention provides a method of analyzing a sporting activity comprising receiving location data associated to a first player; receiving location data associated to a game object; receiving location data associated to a second player; determining a relative location of the first player in (5) relation to the game object location and the second player location, at least partly from the received location data associated to the first player, the game object and/or the second player; comparing the determined relative location of the first player with a set of reference relative locations of the first player; and determining a match between the determined relative location of the first player and at least one reference relative location of the first player. Other aspects of the (10) invention provide a classification system.
US10025980B2
Aspects of the present invention include a method, system and computer program product. The method includes a method includes selecting a chart, and interpreting contents within the selected chart. The method also includes searching for additional sources of information, and extracting information from the additional sources of information. The method further includes combining the interpreted chart contents with the extracted information, and generating a textual description of the selected chart.
US10025967B2
Systems and methods for extracting information from a scanned item having a plurality of regularly spaced row marks along at least part of a length of the scanned item are disclosed herein. The system can include a line scan camera that can generate a line of pixels of a portion of the scanned item in an imaging area; a feed device coupled to the line scan camera; and a timing circuit. The feed device can move at least a portion of the scanned item through the imaging area, and the timing circuit can provide a plurality of capture signals to the line scan camera. The timing circuit can vary a time interval between capture signals based on a number of pixels between adjacent row marks along at least a portion of the length of the scanned item.
US10025962B2
In an embodiment, a pair of overhead mirror portions splits a field of view of an imager into first and second subfields of view. An illuminating assembly is energized to illuminate a target. A first part of the imager is exposed to capture return illumination light from the target passing through a horizontal window of a workstation over the first subfield of view, and a second part of the imager is exposed to capture return illumination light from the target passing through the horizontal window over the second subfield of view.
US10025959B2
Systems and methods for reading Radio Frequency Identified (RFID) tags. In an embodiment, an enclosure having, within it, an antenna and processor is provided. The processor may be configured to record tag observations for tag identifiers received by the antenna from RFID tags. For one or more time intervals, tag observations may be identified which satisfy a tag filter, and a confidence that RFID tags satisfying the tag filter were in the field of view of the antenna during the time interval may be computed based on the identified tag observations. According to an embodiment, reports for tag filters may be then generated using the computed confidences, and these reports may be transmitted to an external system over a network.
US10025958B1
A computer system detects that a mobile device of a user is in a location that exceeds a threshold distance from a second device of the user. Based on at least the detecting, the computer system switches the mobile device to stealth mode, wherein switching the mobile device to stealth mode includes determining an image that visually matches a surface directly below the mobile device, and displaying the image on at least one display of the mobile device. The computer system determines that the second device of the user is located within the threshold distance of the mobile device. Based on the determining, the computer system initiates one or more actions to alert the user as to the location of the mobile device.
US10025955B2
The present disclosure describes systems and methods for controlling access to secure debugging and profiling features of a computer system. Some illustrative embodiments include a system that includes a processor, and a memory coupled to the processor (the memory used to store information and an attribute associated with the stored information). At least one bit of the attribute determines a security level, selected from a plurality of security levels, of the stored information associated with the attribute. Asserting at least one other bit of the attribute enables exportation of the stored information from the computer system if the security level of the stored information is higher than at least one other security level of the plurality of security levels.
US10025946B1
A method is provided for controlling whether transactions applied against a database go forward or are aborted on a transaction processing system. A tracking engine identifies an uncompleted transaction to be joined, joins the uncompleted transaction, and collects one or more attributes of the joined uncompleted transaction. The collected one or more attributes become available as a result of the joining of the uncompleted transaction. The collected one or more attributes of the joined uncompleted transaction are compared against rules in a rules engine to determine whether the joined uncompleted transaction goes forward or is aborted. Alternatively, the joined uncompleted transaction is automatically modified so that the collected attributes are in compliance with the rules in the rules engine, thereby allowing the joined uncompleted transaction to go forward and be applied against the database of the transaction processing system.
US10025944B1
The variable domain data access control system and method described herein use the same variable domain to describe a data security model and a variable domain data model, such as a product configuration model. A variable domain is a set of resource data that can be described using a logical relationship data structure. The variable domain utilizes logical relationship expressions, such as a Boolean logic language, to define resource data in terms of parts, rules and/or attributes, and any other property that can be accessed for viewing, manipulation, or other purposes. The data security model represents an access control list (ACL) that includes security attributes as resource data and uses the same data structure and logical relationship expressions as an associated variable domain data model. An application, such as a configuration engine, can be used to create controlled access to the variable domain data model using the data security model.
US10025940B2
A method for encrypting data. The method comprises receiving, from a user, via a client terminal, digital content including at least one textual string for filling in at least one field in a document managed by a network node via a computer network, encrypting the at least one textual string, and sending the at least one encrypted textual string to the network node via the computer network so as to allow filling in the at least one field with the at least one encrypted textual string. The network node is configured for storing and retrieving the at least one textual encrypted string without decrypting.
US10025939B2
In an example, a submission of a confidential data value of a first confidential data type is received from a first user with one or more attributes. A plurality of previously submitted confidential data values of a first confidential data type for a cohort matching the one or more attributes of the first user are retrieved. A plurality of percentiles for the confidential data values are calculated. Then, an interquartile range is calculated for a first and a second of the plurality of percentiles. A lower limit for the first confidential data type and the cohort is computed by taking a maximum of zero or the difference between the value for the first of the plurality of percentiles and a product of a preset alpha parameter and the interquartile range. Then it is determined if the confidential data value submitted by the user is lower than the lower limit.
US10025929B2
Disclosed are devices, systems, apparatus, methods, products, media and other implementations, including a method that includes obtaining hardware-based micro-architectural data, including hardware-based micro-architectural counter data, for a hardware device executing one or more processes, and determining based, at least in part, on the hardware-based micro-architectural data whether at least one of the one or more processes executing on the hardware device corresponds to a malicious process. In some embodiments, determining based on the hardware-based micro-architectural data whether the at least one of the one or more processes corresponds to a malicious process may include applying one or more machine-learning procedures to the hardware-based micro-architectural data to determine whether the at least one of the one or more processes corresponds to the malicious process.
US10025927B1
Techniques for efficient malicious content detection in plural versions of a software application are described. According to one embodiment, the computerized method includes installing a plurality of different versions of a software application concurrently within a virtual machine and selecting a subset of the plurality of versions of the software application that are concurrently installed within the virtual machine. Next, one or more software application versions of the subset of the plurality of versions of the software application are processed to access a potentially malicious content suspect within the virtual machine, without switching to another virtual machine. The behaviors of the potentially malicious content suspect during processing by the one or more software application versions are monitored to detect behaviors associated with a malicious attack. Thereafter, information associated with the detected behaviors pertaining to a malicious attack is stored, and an alert with respect to the malicious attack is issued.
US10025924B1
A system for managing Containers, including a hardware node running an OS; a multi-tenant application on the node; and a plurality of Containers under the OS. A process of the multi-tenant application uses only one Container at a time. Remaining Containers available to the process are taskless Containers. An arbiter controls permissions for the process to switch from one Container to another Container. The arbiter defines trusted and untrusted execution contexts. Code of the process executing in the untrusted context is not permitted to switch Containers, and the code of the process executing in the trusted context is permitted to switch Containers. The arbiter detects attempts to switch Containers, and prevents them when executing untrusted code. Upon a request to the multi-tenant application, the arbiter switches the process that will process the user request to one of the taskless Containers and executes the request in the untrusted context.
US10025923B2
A data processing apparatus includes processing circuitry and a data store including a plurality of regions including a secure region and a less secure region. The secure region is configured to store sensitive data accessible by the circuitry when operating in a secure domain and not accessible by the circuitry when operating in a less secure domain. The data store includes a plurality of stacks with a secure stack in the secure region. Stack access circuitry is configured to store predetermined processing state to the secure stack. The processing circuitry further comprises fault checking circuitry configured to identify a first fault condition if the data stored in the predetermined relative location is the first value. This provides protection against attacks from the less secure domain, for example performing a function call return from an exception, or an exception return from a function call.
US10025922B2
Techniques are described herein for loading a user-mode component associated with a kernel-mode component based on an asynchronous procedure call (APC) built by the kernel-mode component. The APC is provided to the main thread of a user-mode process while that user-mode process loads, causing the user-mode process to load the user-mode component. The APC also causes allocation of memory at a location adjacent to that of the user-mode process and stores instructions at the allocated memory. The user-mode component then atomically hooks function(s) of the user-mode process, including modifying a single instruction or set of instructions of the function(s) to jump to the allocated memory. When that modified instruction is executed and jumps to the allocated memory, the instructions at the allocated memory request loading of the user-mode component, which receives data from the hooked function. The user-mode component then provides that data to the kernel-mode component.
US10025905B2
Methods and devices are disclosed for managing a resource of a communication device configured to process and communicate medical data in addition to other data. The systems and devices may implement the method, including determining whether to switch to a medical mode based on at least one signal. In response to determining to switch to the medical mode, the communication device may be switched to the medical mode. A resource status associated with a plurality of resources used by the communication device may be weighed against a medical data criticality associated with the medical data managed by the communication device. The method may include allocating a resource of the plurality of resources on a sliding priority scale. The allocating may include allocating a resource of the plurality of resources preferentially to the medical data over the other data.
US10025902B2
A method includes magnifying a pathology sample with a microscope to form magnified pathology images, and recording the magnified pathology images with a digital camera optically coupled to the microscope. The method also includes comparing the magnified pathology images to reference pathology images included in a pathology database to identify one or more regions of interest in the magnified pathology images. A user of the microscope is alerted to the one or more regions of interest in the magnified pathology images.
US10025900B2
The invention provides computational methods for engineering, selecting, and/or identifying proteins with a desired activity. Further provided are automated computational design and screening methods to engineer proteins with desired functional activities including, but not limited to ligand binding, catalytic activity, substrate specificity, regioselectivity and/or stereoselectivity.
US10025896B2
A computerized method of creating a circuit logic model of a VLSI device, comprising mapping a plurality of logic function patterns of one or more circuits of a VLSI device through a plurality of probe iterations and generating a circuit logic model of the circuit(s) by reconstructing a logical function of a combinatorial logic of the circuit(s) based on analysis of the logic function patterns. Each of the probe iteration comprises switching between scan shift mode and functional mode of the VLSI device such that while the VLSI device operates in scan shift mode register(s) associated with the circuit(s) is accessed and while the VLSI device operates in functional mode external pin(s) of the VLSI device associated with the circuit(s) is probed and mapping a respective one of the logic function patterns according to a logic state of one or more bits in the register(s) and/or the external pin(s).
US10025894B2
Systems and methods for prediction of in-plane distortions (IPD) due to wafer shape in semiconductor wafer chucking process is disclosed. A series of Zernike basis wafer shapes process to emulate the non-linear finite element (FE) contact mechanics model based IPD prediction is utilized in accordance with one embodiment of the present disclosure. The emulated FE model based prediction process is substantially more efficient and provides accuracy comparable to the FE model based IPD prediction that utilizes full-scale 3-D wafer and chuck geometry information and requires computation intensive simulations. Furthermore, an enhanced HOS IPD/OPD prediction process based on a series of Zernike basis wafer shape images is also disclosed.
US10025888B2
A system for simulating a semiconductor device comprises a data input module configured to receive structural data of the semiconductor device comprising a first region and a second region, and a spatial discretization generating module configured to divide a space of the semiconductor device using the structural data through division of the first region into first type meshes and division of the second region into second type meshes different from the first type meshes.
US10025884B1
Embodiments are directed to a method for receiving a user selection of a first object of a simulated model and selecting a second object of the simulated model based on the received selection of the first object. The method includes generating an offset object similar to the first object, wherein the position of the offset object is based on the position of the first object and second object. The method includes generating a manipulation tool configured to allow a user to change the position of the offset object relative to the first object and second object. The method further includes generating a manipulation tool. The manipulation tool allows a user to change the position of the offset object relative to the first and second objects. The manipulation tool includes a first marker and a second marker associated with the first and second objects, one or more third markers that may or may not be associated with the offset object.
US10025882B2
The disclosure provides a technique for recursively partitioning a 3D model of an object into two or more components such that each component fits within a predefined printing volume. The technique includes determining a set of planar cuts each of which partitions the 3D model into at least two components, evaluating one or more objective functions for each cut in the set of planar cuts, and selecting a cut from the set of planar cuts based on the evaluations of the objective functions. In addition, the technique includes, upon determining that a component resulting from the selected cut does not fit within the predefined printing volume, further partitioning that component.
US10025878B1
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for analyzing lineage data. One of the methods includes obtaining data access event information; generating a lineage graph from the data access event information; receiving a data lineage request, wherein the data lineage request is a request for lineage data for a specified data set or a specified software process; traversing the lineage graph to identify nodes and edges in the lineage graph that satisfy the data lineage request; and providing data identifying the nodes and edges that satisfy the data lineage request in response to the request.
US10025877B2
Determining relative connections between individuals includes: obtaining identification information of a first individual and identification information of a second individual; determining, based at least in part on a relative connections graph, a relative connections path connecting the first individual, the second individual, and at least one additional individual; and outputting information pertaining to the relative connections path.
US10025873B2
A system is provided that is adapted to service web-based database service requests. In one implementation, a database service is provided for servicing web-originated service requests. In one implementation, virtual computer systems may be used to service requests in a more reliable manner. Different operating modes may be configured for backup redundancy and the database service may be scaled to meet service requests for a particular application. Also, methods are provided for exchanging timestamp information among web service transaction systems to reduce the amount of processing capability and bandwidth for ensuring database consistency. Further, a NoSQL Key/Value (KVS) database is provided that provides one or more features that may be beneficial for cloud service, Internet-based, and other types of database applications.
US10025871B2
A method of providing content includes detecting execution of a mark-all-read command associated with a specified stream. The specified stream includes two or more content feeds, wherein each content feed includes a set of content items published by a respective publication source. The method also includes recording a time of execution of the mark-all-read command and displaying content items associated with the specified stream. The displayed content items have associated timestamps, and content items having associated timestamps dated prior to the recorded time of execution are displayed in a visually distinctive format from content items having associated timestamps dated after the recorded time of execution.
US10025868B1
Methods, systems, and apparatus, including computer program products, for establishing preferences for sites that are explicitly identified by a user by either a textual input or an acceptance in response to a recommendation, and adjusting the presentation of search results based on these preferences.
US10025866B2
Among other things, a user can view graphically how different available items compare to one another, with respect to attributes of the available items, by controlling what is shown in a displayed diagram that identifies the items, in the context of indicators of their attributes.
US10025865B2
Networking systems and methods according to exemplary embodiments of the present invention can provide robust filtering to enable users to customize their networking environments. A networking system can comprise a plurality of interfaces, a request unit, a management unit, and a filter unit. Each interface can include a plurality of displayable objects, each of which can represent some user of the networking system. The request unit can receive from a client a request for one of the interfaces. The management unit can manage filters, where each active filter hides one or more users from one or more other users. When an interface is requested by a client associated with a first user, the filter unit can apply the active filters to the requested interface to exclude displayable objects that represent users hidden from the first user by one or more active filters.
US10025859B2
The present disclosure discloses a second-degree friend query method. The method includes storing a first-degree friend of each account, querying for the first-degree friend after receiving a second-degree friend query command, and query the first-degree friend to obtain a second-degree friend. A storage module stores the first-degree friend relationships. The second-degree friend is obtained through a query according to the first-degree friend in real time. The present disclosure further discloses a second-degree friend query apparatus and system corresponding to the foregoing method and a storage medium. The system includes a processing server and a storage server. The storage server stores a first-degree friend for each account, and queries for and returns the first-degree friend at the request of the processing server. The processing server controls an entire query procedure, and obtains a second-degree friend after twice queries. Further, because the processing server can manage multiple storage servers, obtaining a friend relationship chain of multiple types in one query command is supported.
US10025858B2
A method for searching Web pages that begins with the identification of query criteria entered into a search provider. A set of Web pages that satisfies the query criteria are determined. Then, a page ranking is ascertained for each Web page in the set. The Web pages are presented in order by page ranking. The page ranking is based upon at least one relevancy factor that includes a browsing-time factor. The browsing-time factor can be calculated from browsing behavior exhibited by users, who provided similar query criteria. The set of users from which the browsing-time factor is calculated can include a current user, a set of users sharing characteristics with the current user, and/or a general set of users. Browsing behavior can include time spent at a Web page, where the browsed Web page is a page that was previously presented as a search result for the similar query criteria.
US10025857B2
A slideshow builder for dynamically building a slideshow to be presented on a client device including a database for storing topics and a collection of slides, each slide being associated to one of said topics, a search engine adapted to communicate with the client device, in order to receive a search query therefrom, the search query containing a search criterion including one of said topics, the search engine being in communication with the database in order to extract a set of one or more slide among the collection of slides, which match the search criterion, and to build, based on the extracted set, a slideshow to be presented on the client device.
US10025852B2
A computer-implemented method includes identifying an information resource. The information resource includes text information. The information resource includes a contribution from an entry source. The entry source is associated with a profile. The profile includes at least one profile information item that describes the entry source. The method includes generating a first word cloud. The first word cloud is based on one or more words used within the text information. The first word cloud includes a first plurality of words. The method includes generating a second word cloud. The second word cloud is based on at least one profile information item. The second word cloud includes a second plurality of words.
US10025848B2
A system and method for speech file processing which provides users with differentially selectable speech file transcripts which can be sent to one or more other users. The speech files may be voicemail messages from which respective voicemail transcripts are created. The voicemail transcripts are provided in a user selectable format from which users may select non-contiguous portions of the transcript.
US10025845B1
A method is provided for logging non-durable attributes of an uncompleted transaction to a persistent storage medium. A tracking engine identifies an uncompleted transaction to be joined, joins the uncompleted transaction, and collects non-durable attributes of the joined uncompleted transaction. The non-durable attributes of the joined uncompleted transaction are made durable by logging them to the persistent storage medium.
US10025836B2
Application synchronization techniques are disclosed. An indication is received that a mobile app has performed an operation affecting mobile app data of the mobile app. At least a portion of the mobile app data is stored to a remote storage system based at least in part on the indication. The indication may be received by and the storing operation may be performed at least in part by a management code embedded in mobile app code comprising the mobile app.
US10025830B1
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing local search results. In one aspect, a method includes accessing data specifying for a first local entity respective sets of second local entities; determining from the respective sets of second local entities a composite set of second local entities ranked according to a composite order of relatedness to the first local entity; determining from the composite set of second local entities, a reference distance for the first local entity; and adjusting the composite order of the composite set of second local entities based on the reference distance for the first local entity and the respective distance of each geographic location of each second local entity from the geographic location of the first local entity.