US09504190B2

A computing system includes one or more rack rows comprising one or more racks. The racks includes one or more tanks that hold liquid coolant for at least one of the one or more servers, and a liquid coolant to remove heat from at least one of the one or more servers. An aisle is provided next to a rack row or between two of the rack rows. The aisle includes a floor. The floor can be walked on by service personnel to access at least one of the one or more racks in at least one of the rows. Cooling components at least partially below the aisle move a liquid to remove heat from at least one of the servers in at least one of the racks. The racks, floor and cooling components may be fire-resistant.
US09504188B1

Apparatuses and methods are provided for facilitating air-cooling of, for instance, one or more electronics racks within a data center. The apparatus includes an air-moving assembly and an auxiliary turbine drive. The air-moving assembly includes a shaft, one or more mechanical fans coupled to the shaft to rotate, at least in part, with the shaft, and a motor coupled to the shaft to rotatably drive the shaft. The auxiliary turbine drive is coupled to the shaft of the air-moving assembly to provide backup rotational energy to the shaft to facilitate continued rotation of the shaft during interruption in power to the motor. In one implementation, the auxiliary turbine drive is configured to facilitate, for a specified time period, continued rotation of the shaft at a specified percentage, or greater, rotational speed of the shaft compared with a shaft speed when rotatably driven by the motor.
US09504183B2

An enclosure with hybrid thermal management for a heat-generating electronic device comprises a passive heat sink for conducting heat away from the electronic device, a cold skin adapted to slide over the top of the passive heat sink and having a front wall forming a plurality of air intake ports, and a plurality of blowers mounted inside the cold skin for drawing air into the cold skin though the air intake ports and then directing the air through the passive heat sink. In one implementation, the passive heat exchanger includes multiple thermally conductive fins adjacent to the electronic device and extending rearwardly from the intake ports, the fins being spaced apart from each other for conducting heat away from the electronic device. The blowers preferably direct air rearwardly from the intake ports in the front wall into the spaces between the thermally conductive fins.
US09504177B2

A hermetic electronics package includes a metal case with opposing first and second open ends, with each end connected to a first feedthrough construction and a second feedthrough construction. Each feedthrough contruction has an electrically insulating substrate and an array of electrically conductive feedthroughs extending therethrough, with the electrically insulating substrates connected to the opposing first and second open ends, respectively, of the metal case so as to form a hermetically sealed enclosure. A set of electronic components are located within the hermetically sealed enclosure and are operably connected to the feedthroughs of the first and second feedthrough constructions so as to electrically communicate outside the package from opposite sides of the package.
US09504167B2

Disclosed is a procedure for manufacturing a cable connector device with a blade and the structure of the cable connector device including a printed circuit board and a cable thread. a bore is made on the printed circuit board covered with a conductive layer, and then the head of the cable connector component is placed into the bore and is soldered to the conductive layer. Then, the cable threads are held in the bladed opening of the cable connector. In the next step, the entire unit is covered by a resin case, thereby also holding the cable threads in the opening of the cable connector. The case itself consists of a single part and does not require any other holding component or plastic shell. Given the small size of the case, there is a shortened warm up period.
US09504159B2

A bridge device is described herein. The bridge device may include a first via of a bridge device, the first via of the bridge device having a short via stub or no via stub, the first via of the bridge device to be communicatively coupled to a first via of a printed circuit board (PCB). The bridge device may include a second via of the bridge device, the second via of the bridge device having a short via stub or no via stub, the second via of the bridge device to be communicatively coupled to a second via of the PCB. A trace of the bridge device may communicatively couple the first via of the bridge device to the second via of the bridge device.
US09504146B2

Provided are a heat radiation printed circuit board and a method of manufacturing the same, the heat radiation printed circuit board being produced by the method including: forming a circuit layer having an insulating layer, a circuit pattern and a solder resist on a first area of one surface of a metal substrate; and forming a bending part in a second area, in which the insulating layer is not formed, by bending the metal substrate, whereby a crack can be prevented in advance from being generated in the insulating layer, and durability and reliability of the heat radiation printed circuit board and a backlight unit applying the same can be improved.
US09504145B2

A flexible display device includes: a flexible display panel configured to display an image; a dielectric elastomer film disposed on a portion of the flexible display panel; a first electrode layer disposed on an upper portion of the dielectric elastomer film; and a second electrode layer disposed on a lower portion of the dielectric elastomer film, the first electrode layer includes a plurality of first electrodes, each of the plurality of first electrodes disposed apart from each other, the second electrode layer includes a plurality of second electrodes, each of the plurality of second electrodes disposed apart from each other.
US09504142B2

A flexible flat circuit includes a pair of insulation sheets, and a plurality of conductors that are held between and covered with the pair of insulation sheets in a state that the plurality of conductors are separated to each other. Among from the plurality of conductors, at least conductors with different current capacities are different in thickness to each other.
US09504140B2

In accordance with the various embodiments disclosed herein, an improved electrical connector footprints, such as printed circuit boards (printed circuit board), is described comprising one or more of, for example, a first linear array containing at least a first anti-pad extending along a first direction, a first electrical signal trace extending along the first direction and spaced from the first linear array along a second direction that is perpendicular to the first direction, a group of ground isolation vias containing at least one electrically conductive ground via arranged along a line extending parallel to the first direction and spaced from the first electrical signal trace along the second direction, and a second linear array containing at least a second anti-pad extending along the first direction spaced from the group of ground isolation vias along the second direction.
US09504133B2

A controller for controlling a plurality of lighting devices configured for wireless communications in a facility includes a data communications interface communicating with at least one of the devices. The controller further includes a control module configured to provide a control signal to the data communications interface for communicating to a transceiver associated with the device and for turning off the device according to an algorithm wherein the control signal is provided based on a time of day and/or a sensed condition relating to use of the facility. The transceiver reports device data to the control module to quantify a reduction in power obtained by controlling the devices according to the algorithm.
US09504132B2

An exemplary lighting system utilizes intelligent system elements, such as lighting devices, user interfaces for lighting control or the like and possibly sensors, and utilizes network communication amongst such intelligent system elements. Some processing functions performed within the system are implemented on a distributed processing basis, by two or more of the intelligent elements of the lighting system. Distributed processing, for example, may enable use of available processor and/or memory resources of a number of intelligent system elements to process a particular job. Another distributed processing approach might entail programming to configure two or more of the intelligent system elements to implement multiple instances of a server functionality with respect to client functionalities implemented on intelligent system elements.
US09504129B2

In order to regulate an illuminance, an actual value of a sensor (3) is queried, said value being dependent on the illuminance to be regulated and being regulated to a setpoint value. In a control step, an electronic computing device (11) determines an actuating step for an illuminant (2) on the basis of said actual value and a parameter value of a control parameter. The electronic computing device (11) determines a new parameter value of the control parameter for a subsequent control step on the basis of a first actual value which is received before the corresponding control step, and a second actual value which is determined after the corresponding control step.
US09504128B2

An image display device including: a light-emitting unit; a display panel including color filters of a plurality of colors and pixels corresponding to the respective color filters; a sensor which detects light from the light-emitting unit and light incident from outside; an acquisition unit configured to acquire, in a state where the display panel is controlled so that, relative to transmittance of pixels of one color among the plurality of colors, transmittance of pixels of colors other than the one color becomes smaller, a detection value that is output from the sensor; and a determination unit configured to determine an irradiation condition of external light based on the detection value of each color of the plurality of colors acquired by the acquisition unit.
US09504126B2

A coded lighting system comprises a set of light sources and a remote control unit or an arrangement. The set of light sources emits coded light. In order to do so each light source is associated with a unique identifier. The remote control unit or the arrangement comprises an image sensor which captures images comprising light emitted by at least one of the light sources in the set of light sources. By analyzing the captured images the remote control unit or the arrangement is able to associate light sources affecting a particular region and/or object. The remote control unit or the arrangement is thereby able to transmit a control signal comprising updated light settings to the set of light sources.
US09504114B2

An illumination control apparatus including a controller which: in switching a first lighting mode to a second lighting mode when a combination of results of detections by occupancy sensors changes, compares a first priority level pre-assigned to the first lighting mode and a second priority level pre-assigned to the second lighting mode; if the second priority level is lower than the first priority level, maintains the first lighting mode for a predetermined amount of wait time from a moment when the combination of the results of the detections changes, and subsequently switches the first lighting mode to the second lighting mode; and if the second priority level is higher than the first priority level, switches the first lighting mode to the second lighting mode at the moment when the combination of the results of the detections changes.
US09504113B2

A method is provided for improving the illumination of an illuminated area (100), especially an operating area, of an illuminating device (10) with at least two light modules (20). The method includes the emission of an illuminant characteristic of the light module (20) with a preset amplitude from each light module (20). The reflected amplitudes of all characteristic light types are detected. The detected amplitudes for each light module (20) are compared. The light intensity of at least one light module (20) is varied on the basis of the comparison of the detected amplitudes for each light module (20).
US09504111B2

A line-frequency determining circuit for coupling to the output of a thyristor-switched dimmer that determines a line-frequency of an AC power source that supplies an input to the thyristor-controlled dimmer permits accurate control of periodic probing of the dimmer output. The probing is performed to predict zero-cross times of the AC power source that, in turn, are used to determine a dimming control value of the thyristor-switched dimmer. A minimum conductance is applied across the output of the dimmer during the probing intervals that begin at the turn-on time of the dimmer and last until enough information has been gathered to correctly predict a next zero crossing of the AC line voltage that supplies the input of the dimmer. The probing can be performed at intervals of an odd number of half-cycles of the AC line frequency so that internal dimmer timer operation is not affected by DC offset.
US09504105B2

A switched mode power supply may include circuitry configured to output a bias signal that turns off and on switching circuitry of the switched mode power supply. The circuitry may wait for a first time period determined by the bias signal, and output the bias signal to turn off the switching circuitry when the time period expires. In addition or alternatively, the circuitry may begin waiting for a second time period when the bias signal turns off the switching circuitry. The circuitry may turn on the switching circuitry either when energy in inductive storage circuitry is depleted or when the second time period expires.
US09504098B2

A furnace system for thermal processing of products and materials is disclosed which is particularly useful in processing touch screens for computer tablets and silicon wafers employed in fabricating solar cells. The system employs a hybrid of microwave and radiant heating of workpieces to provide controlled heating of the workpieces. A plurality of susceptors are disposed a furnace chamber. A plurality of microwave sources are arranged to provide microwave radiation in the chamber to uniformly heat workpieces in the chamber and to provide uniform heating of the susceptors. The susceptors are effective upon microwave heating by the microwave sources to provide uniform radiant heating of the workpieces in the chamber.
US09504094B2

A base station includes plural communication units that each includes a first processing unit that executes physical layer and data link layer processes of radio communication between the base station and a mobile station, and a second processing unit that executes network layer processes of the radio communication; and a third processing unit that is of a network layer and controls a series of radio communication sessions between the base station and the mobile station, based on carrier aggregation using the first processing unit of each of the communication units.
US09504089B2

A station in a basic service set of a wireless network includes layer 2 bridging functionality to one or more nodes in external networks. An access point in the basic service set acts as a control plane for the bridging functionality. The access point includes bridge address learning and a bridging table to map destination addresses and associated bridging stations.
US09504072B2

Generally discussed herein are wireless systems, apparatuses, and methods for pairing a device and a base station. For example, the disclosed techniques may enable communication between a headphone base station (broadcasting an audio signal over a wireless channel) and a headphone set device (receiving an audio signal over a wireless channel) that establish communications using one or more identifiers. In some examples, a device or base station identifier maintained at the base station or device, respectfully, is validated and reprogrammed when it does not match a corresponding provided from the device or base station. In further examples, the validation and reprogramming may occur in response to a condition such as a charging event (such as the placement of the headphone set device onto a charging station provided by the headphone base station).
US09504067B2

The present invention relates to a wireless communication system. More particularly, the present invention relates to a method and apparatus for a terminal to report channel state information in a wireless communication system, the method comprising: a step of transmitting first channel state information according to a first channel state information (CSI) process for reporting the first channel state information periodically for every first period; a step of transmitting second channel state information according to a second CSI process for reporting the second channel state information periodically for every second period; and a step of dropping the transmission of either the first channel state information or the second channel state information on the basis of the CSI process index of each of the first and second CSI processes in the event the first channel state information transmission timing and the second channel state information transmission timing conflict.
US09504066B2

One or multiple bit restricted access window (RAW) end point determination within for single user, multiple user, multiple access, and/or MIMO wireless communications. A RAW is defined in which only devices of the particular class (e.g., low power class, Z class, smart meter station (SMSTA) class, etc.) are allowed access to the communication medium. Indication of the end of such a RAW may be included within one or more bits set within a signal field (SIG) field of a framer packet generated by a given device within the system and transmitted to one or more other devices. After completion of the RAW, other respective devices of at least one other type of class may be provided access to the communication medium. The manner of access to the communication media outside of the RAW may be varied (e.g., scheduled, based on carrier sense multiple access/collision avoidance (CSMA/CA), etc.).
US09504047B2

An apparatus and a method for opportunistic user scheduling of two-cell multiple user Multiple Input Multiple Output (MIMO) by a base station, the method comprising: broadcasting signals through random beams to users; and receiving Channel Quality Information (CQI) from best K user set. The CQI is calculated based on all possible combinations of transmit beamforming vectors.
US09504038B2

Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wide-bandwidth data frame. For example, an apparatus may include a controller to generate at least one wide-bandwidth data frame to be transmitted over a wide-bandwidth millimeter-Wave (mmWave) channel, the wide-bandwidth mmWave channel including a plurality of mmWave channels; and a transmitter to transmit a plurality of reservation frames over the plurality of mmWave channels, a reservation frame of the plurality of reservation frames including a duration value corresponding to a duration of the wide-bandwidth data frame and a wide-bandwidth indication to indicate that the wide-bandwidth data frames are to be transmitted over the wide-bandwidth mmWave channel, the transmitter to transmit the at least one wide-bandwidth data frame over the wide-bandwidth mmWave channel.
US09504035B2

A communication terminal, comprises: a wireless communication unit to which a plurality of channels are allocated; a channel status calculation unit that calculates, when one of the plurality of channels is set as a forwarding channel, a capacity that can be used in the one channel by the communication terminal and a capacity that can be used in the one channel by another communication terminal; and a channel selection unit that determines, when one of the plurality of channels is set as a forwarding channel, whether a capacity that can be used in the one channel by the communication terminal satisfies a required bandwidth and determines, when another communication terminal has set the one channel as a forwarding channel, whether a capacity that can be used in the one channel by the another communication terminal satisfies the required bandwidth.
US09504006B2

A method processes a concurrently triggered response signal at a number of transceivers configured to operate at a channel carrier frequency, where at least some of the transceivers have distinct transmit carrier frequencies offset from the channel carrier frequency. The method includes receiving, at a first receiver, a response signal in response to a trigger signal, the response signal including a combination of a number of transceiver response signals, each transceiver response signal of the number of transceiver response signals corresponding to a different transceiver of the number of transceivers and having a distinct transmit carrier frequency, wherein at least some of the transceiver response signals overlap in time, and determining characteristics of the number of transceivers based on the carrier frequencies of the transceiver response signals, including determining a number of transceivers in the number of transceivers.
US09503997B2

A wireless device is in a closed subscriber group CSG which was selected manually by the user. The wireless device receives an input from a user to initiate automatic PLMN selection in order to attempt to register with a PLMN. The wireless device uses a registered PLMN during the automatic PLMN selection initiated by the user.
US09503996B2

The present invention provides a method and an apparatus for cell search and synchronization for subscriber stations of the Long Term Evolution (LTE) system. The invention uses primary synchronizing signal of primary synchronization code in each frame structure to establish synchronization with the base station when a subscriber station accesses the LTE network. With such synchronization between the subscriber station and the base station, control signals and transmission data may be correctly exchanged between them.
US09503991B2

A method for controlling a transmitter power control system in communication networks that include a modulation scheme having a non-constant amplitude envelope. The method includes generating a transmission signal and transitioning the transmission signal from a first specified power level to a second specified power level and having a transition period therebetween, and generating a constant amplitude envelope modulation of the transmission signal during the transition period. The method may further include generating a non-constant amplitude envelope modulation of the transmission signal at the first specified power level, switching to the constant amplitude envelope modulation of the transmission signal during the transition period and generating the non-constant amplitude envelope modulation of the transmission signal at the second specified power level. A mobile communication device may be used to perform the method.
US09503986B2

Embodiments are provided for resolving, at a user equipment (UE), unnecessary frequent consecutive back and forth reselections between the same two or more network cells. In an embodiment method, upon detecting predefined criteria indicating reaching a threshold frequency of reselections between the same cells, the UE switches to a defined mobility state reducing the frequency of reselections between the same cells. In accordance with the defined mobility state, the method increases a waiting time for cell reselection. The predefined criteria includes detecting the UE in a defined Static-idle state, detecting a serving cell of the UE and a strongest neighbor cell having approximately equal signal quality for a defined duration or a defined number of consecutive measurements, and detecting a number of consecutive reselections between the same cells exceeding a defined minimum threshold.
US09503983B2

A wireless communication system is a wireless communication system including a slave device, and a master device wirelessly connected to the slave device, and the master device includes a master device wireless communicator that performs wireless communication with the slave device, a master device power supply that supplies power to each unit of the master device, a master device interrupt detector that detects various interrupts, and a master device controller that controls the entire master device, the master device interrupt detector supplies power from the master device power supply to each unit of the master device when detecting the interrupt, and the master device controller performs control to continuously transmit a capture signal to the slave device that waits for reception at a reception timing of a predetermined interval, via the master device wireless communicator for time longer than the predetermined interval.
US09503980B2

Besides a time constant circuit 5 that imposes a frequency limit on a wireless signal detected by a power detecting circuit 4 at a preset time constant Ta, there is provided a time constant circuit 8 that imposes a frequency limit on the wireless signal at a time constant Tb greater than the time constant Ta. When the signal level of an intermittent operation signal supplied from a signal input terminal 1 is H level or when a threshold processing circuit 6 decides that the level of the wireless signal is higher than a threshold Th, a logic unit 3 supplies a control signal that instructs starting to the power detecting circuit 4, time constant circuits 5 and 8 and threshold processing circuits 6 and 9.
US09503979B2

Disclosed are methods for delivering data (212) to a wireless station (102). An access point (104), or any other suitable device or system, receives a plurality of association requests (204) from a plurality of wireless stations (102) and transmits a different association identifier (208) to each of the plurality of wireless stations (102). The access point (104) buffers data (212) for a subset of the wireless stations (102). If the number of wireless stations (102) with buffered data (212) at the access point (104) is less than a threshold, then the access point (104) transmits a list of association identifiers indicating that buffered data (212) are held for each wireless station (102) identified by the list. If the number of wireless stations (102) with buffered data (212) at the access point (104) is not less than the threshold, then the access point (104) transmits data indicative of a range of association identifiers indicating that buffered data (212) are held for at least one wireless station (102) identified by the range.
US09503976B2

Provided is a data transceiving method performed by a station (STA) in a wireless LAN system. The method comprises: receiving subgrouping parameter information from an access point (AP); determining whether a frame buffered in the STA subgroup in which the STA is contained exists or not based on the subgrouping parameter information; receiving a TIM element in a channel access interval for the STA subgroup from the AP if the buffered frame exists; and exchanging the AP and the frame in the channel access interval based on the TIM element.
US09503967B2

A method for scanning by a STA can comprise the steps of: the STA unicasting a probe request frame to a target AP from a first channel, the target AP having been determined in accordance with a BSSID comprised in a primitive; the STA processing an ACK transmitted via the first channel within a first ACK transmission time, and determining whether the first ACK for the probe request frame is received; if the first ACK is received within the first ACK transmission time, then the STA monitoring a probe response frame, which is a response to the probe request frame from the first channel; and if the first ACK is not received within the first ACK transmission time, then regardless of a CCA level detected during the first ACK transmission time, the STA switching the scanning channel.
US09503959B2

Methods, apparatuses and systems for transmitting and receiving data based on multipath for transmitting data based on multipath include: establishing WiMAX connection-based multiple paths between a first device and a second device; transmitting data frames in a data queue in the multiple paths; obtaining the quality condition of the multiple paths; and based on the quality condition, adjusting the transmission of the data frames in the data queue in the multiple paths. According to one aspect, there is provided a method for receiving data based on multipath, which includes: establishing WiMAX connection-based multiple paths between a first device and a second device; receiving a plurality of data frames in the multiple paths; processing the received plurality of data frames based on quality condition of the multiple paths. There are further provided corresponding apparatuses and systems.
US09503957B2

A wireless device that utilizes a single network interface to simultaneously connect to an infrastructure network and a mesh network. The device has a driver layer with a media access control module for each network type. A multiplexing module and transceiver module within the driver can direct received information associated with one of the networks to an appropriate media access control and then to an appropriate network adapter. For transmitted data, the multiplexing module can receive data from the application layer through an appropriate network adapter and route it to an appropriate media access control module for processing. The processed data can be interleaved by the transceiver for transmission.
US09503944B2

Inter-radio access technology (IRAT) ping pong handover of a user equipment (UE) connection between a source radio access technology (RAT) communications network, e.g., LTE, and a different target RAT communications network, e.g., UTRAN, is detected. A control node determines IRAT ping pong handover information and evaluates an IRAT handover request message for the UE connection from the source RAT network with respect to the handover ping pong information. Based thereon, the node determines that the UE connection meets one or more ping pong conditions associated with the handover ping pong information and provides an indication of an IRAT ping pong handover condition to a base station in the source RAT network to allow the base station to make mobility adjustments.
US09503938B2

The disclosure discloses a handover method based on a cognitive technology. At least two working areas such as a Primary Working Area (PWA) and a Secondary Working Area (SWA), a RRM and a HOC are configured both in User Equipment (UE) and in a Base Station (BS); after receiving a handover request, according to the current radio environments, the PWA of the BS makes a handover negotiation with the neighboring BSs or with the neighboring BSs and the UE requesting handover, determines the communication parameters satisfying the handover request, and sends the determined communication parameters to the SWA of the BS and the SWA of the UE; the SWA of the BS and the SWA of the UE configure said communication parameters and notify the RRM of the BS after the configuration is finished; the RRM of the BS instructs the HOC of the BS and the HOC of the UE to activate the respective SWAs, and to perform the handover according to the communication parameters configured by the SWA. The disclosure also discloses a handover system based on the cognitive technology. The disclosure improves the resource utilization ratio and the quality of service in the current communication system.
US09503935B2

Systems, apparatuses, and methods for a handover procedure in heterogeneous networks are provided. In particular, an intermediate handover (IHO) is introduced. Certain aspects of the disclosure involve, a method, performed at a serving base station of a wireless communications network, where the serving base station serves a user equipment (UE). The method includes receiving a downlink (DL) signal quality indicator from the UE; and determining, from the signal quality indicator, whether a condition for an intermediate handover (IHO) state is satisfied. If the condition for the intermediate handover state is satisfied, the serving base station can initiate the intermediate handover state.
US09503931B2

Certain aspects of the present disclosure present a technique for enabling a receiver to detect mode of transmission of a signal based on a common field transmitted to all the receivers. The proposed technique includes frame structure in which information about the transmission mode is transmitted in a first portion of a SIG field to all the receivers.
US09503924B2

According to example embodiments, a method for wireless communications by a user equipment (UE) is included. The method generally includes performing channel estimation at a plurality of frequency locations based on reference signals (RS) transmitted from at least one transmission point, computing at least one channel feedback metric for each frequency location, and transmitting the channel feedback metrics to the transmission point. According to certain aspects, a method for wireless communications by a base station (BS) is provided. The BS may receive channel feedback metrics from a UE, calculated at a plurality of frequency locations based on RSs transmitted from the BS. The BS may perform interpolation to determine values for channel feedback metrics for frequency locations between frequency locations of the received channel feedback metrics.
US09503920B2

A base station has a first wireless communication unit that communicates with mobile stations for offering a first radio communication service to the mobile stations, and a second wireless communication unit that communicates with mobile stations for offering a second radio communication service that is different from the first radio communication service to the mobile stations. At the base station, a communication service continuation restrictor is provided that restricts operation of the base station as to whether or not, when it is detected that either one of the first or the second radio communication service is not executable, another radio communication service should be continued. Whether or not the other communication service should be continued can be set at the communication service continuation restrictor.
US09503911B2

Embodiments are provided for enabling a coordinated beamforming (CB) mechanism in WLAN scenarios. In an embodiment, an AP sends a Feedback Request (FBR) frame to each one of the STAs in the OBSSs. The OBSSs comprise the STAs and a plurality of APs including the AP. The AP then receives a feedback frame from each STA of the STAs that participate in the CB transmission. The feedback frame includes channel state information (CSI) of the STA. The CSI enables the sending AP of performing CB on downlink. In an embodiment, the AP receives an initiate CB frame from a second AP initiating a CB transmission, and then sends an ACK frame to the second AP before sending the FBR frame to each one of the STAs. The AP starts the CB transmission with each one of the other APs that participate in the CB transmission.
US09503904B2

The present invention relates to a wireless network, and more specifically, to a method and apparatus for partitioning a coordination area in a wireless network, the method comprising: obtaining antenna directions of respective cells, base station locations of respective cells, and scope of a coordination area within the wireless network; determining an initial coordination area based on the scope of the coordination area and the base station locations in respective cells; partitioning the initial coordination area into an inner area and an outer area; partitioning the outer area into an inward area and an outward area based on the antenna directions of cells within the outer area and the base station locations of cells within the outer area; and combining the inner area and the inward area within the outer area into a new coordination area. The method is simple and easy. It may solve a problem of coordination area edge caused by partitioning a coordination area and meanwhile avoid the association between coordination areas, thereby reducing the complexity of scheduling.
US09503900B2

Provided is a method of protecting files of an electronic device. In the method, a pre-setting return information is read in a wireless communication tag; a setting interface is provided; the files of the electronic device is selected through the setting interface; a predetermined protection time period and a pre-setting return information are set through the setting interface; wireless communication signal having a fixed frequency is transmitted by the electronic device; the selected files are encrypted if no pre-setting return information is obtained by the electronic device from the wireless communication tag; the selected files are deleted upon the condition that the selected files are encrypted for the predetermined protection time period.
US09503898B2

Certain embodiments disclose an integrated dual-device architecture for marrying modern computing devices (e.g. laptops, smartphones and tablets) with standalone tactical radios (e.g. military or first-responder push-to-talk radios) with the goal of leveraging modern mobile devices for improved interfaces and usability (compared to a tactical radio) while reducing the footprint (size, weight, battery power/capacity, and cost) of the tactical radio. Certain embodiments encompass offloading various traditional radio workloads (e.g. voice processing, control/management processing, and cryptographic processing) from the radio onto the mobile device, dramatically simplifying the tactical radio design and cost (e.g. making the radio a “dumb” transceiver only), and physically conjoining the mobile device with the reduced tactical radio into a single, conveniently operated and transported system.
US09503887B1

A wireless transmission system and method is provided for use in a vehicle having an on-board diagnostic (OBD) system configured to provide vehicle speed data and engine operation status data. A transmission apparatus is interfaceable with the on-board diagnostic system. The transmission apparatus is configured to transmit a wireless signal as specified by Bluetooth criteria. A mobile computing device has an input device, a GPS module, and a wireless transceiver configured to receive the wireless signal in accordance with Bluetooth criteria and determine a signal level thereof. The GPS module is configured to provide GPS data as determined by received GPS signals. The mobile computing device operates in accordance with a method for determining is the mobile computing device is with a driver's seating area and disables the input device if the vehicle speed is at or above a threshold value.
US09503877B2

Disclosed is a method for retrieving an EID of a terminal, which includes that a network side stores a corresponding relationship between an RN of the EID of the terminal and the EID of the terminal, and when the terminal responds to a trigger request from an MTC server, the network side retrieves the EID of the terminal which corresponds to the RN according to the RN of the EID of the terminal and the corresponding relationship. A system for retrieving the EID of the terminal is also disclosed. By employing the method and system, the network side can retrieve the EID of the terminal, and use a correct EID to respond to a terminal trigger request from an MTC server.
US09503867B2

Described are dual button push to talk devices that enable a user to simultaneously monitor multiple call nets/voice conferences and selectively respond on each call net that includes a PTT controller that connects to/controls audio streams received from a radio and a voice telephony EUD, selectively routs the audio streams from the radio and the EUD to left and right earpiece outputs simultaneously and selectively routs audio received from microphone input to the radio and the EUD. The PTT receives the radio audio streams through a radio interface and microphone input audio is selectively routed to the radio through the radio interface. The PTT may also include an EUD input, wherein the EUD audio stream is received through the EUD input and a EUD microphone output, in which the audio received from the microphone input is selectively routed to the EUD microphone output.
US09503859B2

A method in a wireless communications device for transmitting location information entails, from within a communication application executing on a processor of the wireless communications device, receiving input on a user interface of the wireless communications device, including location information comprising a current location of the wireless communications device obtained by the wireless communications device and path information delineating a recent path taken by the user, in a communication being generated from within the communication application, and transmitting the communication that includes the current location information. The path information is determined based on recent location fixes for the wireless communications device. Location information, such as maps can be sent directly from an instant messenger without having to separately launch a mapping application.
US09503851B2

Architecture that generates a notification when a user arrives at a location, but without exposing identity of the location. Moreover, the notification can be generated and transmitted at all times. The architecture comprises a reminder service that manages all reminder requests and approvals, a notification engine that notifies a requesting user when target user arrived at a specific location or one of a general category of location, and a user interface that allows the user to set reminders that are displayed when the target user arrives at the point of interest and approves other user reminder requests. The architecture can be run on a mobile phone, and manages user requests and user approvals for location based notifications, alerts a requesting user the target user arrived at one of previously-specified points of interest. Similarly, a general category of destination can be specified, rather than a specific point of interest.
US09503849B1

An exemplary method includes a media content access system maintaining a media content restriction list that specifies a plurality of media content access parameters that govern access to media content processed by a media player, receiving, from a mobile computing device, a request for the media player to stream the media content to the mobile computing device, determining, based on a geolocation key included in the request and a geographic restriction parameter, whether the mobile computing device is within the geographic area specified by the geographic restriction parameter, and performing a media content access operation. The media content access operation may include one of directing the media player to stream the media content to the mobile computing device and preventing the media player from streaming the media content to the mobile computing device. Corresponding methods and systems are also described.
US09503847B2

An uploading method for an electronic apparatus includes: determining whether a current location of the electronic apparatus is recorded on an allowed network information list stored in a storage device; if the current location of the electronic apparatus is recorded on the allowed network information list, uploading the group of files according to an allowed network configuration corresponding to the current location; and if the current location of the electronic apparatus is not recorded on the allowed network information list, performing a network selecting process related to the current location.
US09503846B2

Embedded location tracking systems for sports equipment that include a locator tag embedded within an item of sports equipment in such a fashion that removal of the tag results in severe damage to the sports equipment. The tag is capable of determining its location and continually reporting this location over a wireless data network to a server for use by the owner of the sports equipment. The sports equipment can include any item capable of receiving the locator tag in a fashion manner that would result in serious damage to the equipment upon removal. Examples include skis, a snowboard, watersports equipment, or bicycles.
US09503844B1

Systems and methods are disclosed for collocation detection. In accordance with one implementation, a method is provided for collocation detection. The method includes obtaining a first object observation that includes a first object identifier, a first observation time, and a first observation location. The method also includes obtaining a second object observation that includes a second object identifier, a second observation time, and a second observation location. In addition, the method includes associating the first observation with a first area on a map, associating the second observation with a second area on the map, and determining whether a potential meeting occurred between objects associated with the first object identifier and the second object identifier based on the first and second observation times, and the first and second areas.
US09503837B2

A method and an apparatus for performing hybrid automatic repeat request (HARQ) in a wireless communication system is provided. UEs that use the same application for D2D communications form a sharing group so that reliability of transmission of a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) among terminals that perform the D2D communications is guaranteed. In addition, among the terminals that perform the D2D communications, uplink transmission points in time determined in accordance with TDD configuration are checked and determined (calculated) so that the PUSCH and the PUCCH are correctly transmitted and received.
US09503836B2

A method of processing data in a first mobile terminal, and which includes registering, via a controller of the first mobile terminal, a second mobile terminal as a master device and the first terminal as a slave device; storing, via a memory associated with the first mobile terminal, status information indicating previous success or non-success of receiving a positive response from the second mobile terminal for a request to activate an application on the first mobile terminal; transmitting, via a wireless communication unit of the first mobile terminal, an application activation request signal to the second mobile terminal based on the stored status information; receiving, via the wireless communication unit, a response signal corresponding to the application activation request signal from the second mobile terminal; and activating, via the controller, the application in response to the received response signal.
US09503828B2

Sound based navigation using a portable communications device is presented herein. A portable communications device can include a speaker for generating a sound, and microphone(s) for receiving a reflection of the sound—the reflection including an acoustic wave that has been reflected from an object. Further, the portable communications device can include a timing component configured to determine a time of propagation of the acoustic wave from the speaker to the microphone(s), and a distance component configured to determine a distance of the object from the portable communications device based on the time of propagation of the acoustic wave. Furthermore, the portable communications device can include a mapping component configured to: determine a geographic location of the portable communications device, and create, based on the geographic location and the distance of the object from the portable communications device, a map, indoor map, etc. of objects, structures, etc. comprising the object.
US09503822B2

An electroacoustic transducer comprises a diaphragm body part and a voice coil combined to one side of the diaphragm body part, wherein the diaphragm body part comprises non-conductive base material layers and a conductive metal layer; the metal layer is interposed between any two neighboring layers of the base material layers, and is provided with first conductive terminals conductively combined with the voice coil; each of the base material layers between the metal layer and the voice coil is provided with open holes which are formed by removal of material to allow the passage of the first conductive terminals; the central part of the diaphragm body part is combined with a reinforcing layer; and the reinforcing layer is combined to one side of the diaphragm body part away from the voice coil, and covers the regions where the first conductive terminals are located.
US09503821B2

An electrostatic transducer comprises an electrically conductive first layer (1), a flexible insulating second layer (25) disposed over the first layer, and a flexible electrically conductive third layer (26) disposed over the second layer. Between the first and the second layers are provided spacers (24) and between the second and the third layers are provided spacers (27). The spacers may be provided by strips of adhesive or by bonding the layers together by welding, for example. The first layer (1) is provided with an array of through apertures (5) each having an inlet (6) facing the second layer (2) and an outlet (7). In response to signals applied to the first and third layers, the second and third layers have portions which are displaced towards the outlets of the apertures by electrostatic forces. The apertures (5) may have conducting walls and the walls may converge.
US09503817B2

The sound reproduction device is applied to an acoustic space such as a passenger compartment, and controls the levels of the reproduced sounds at two evaluation points set at the seats in the passenger compartment, for example. Specifically, the sound reproduction device controls the phase of the one channel sound signal inputted from external and supplies it to the pair of speakers. The phase control is performed such that the sum of reproduced sound levels at the two evaluation points becomes larger than the sum of the reproduced sound levels at the two evaluation points in a case where the sound signal is reproduced by only one of the pair of speakers, in an entire audible band.
US09503811B2

A digital microphone includes: a cavity resonator operatable in a micrometer, millimeter, or electromagnetic waveband, the cavity resonator having a metal wall including a conductive membrane 32 that vibrates in response to incident acoustic waves and converts the shift of the membrane 32 into a resonance frequency of the cavity resonator; an FM-signal generator that modulates the resonance frequency of the cavity resonator in response to the shift of the membrane 32 and outputs FM signals from the metal wall other than the membrane; and a ΔΣ-modulated-signal generator that generates ΔΣ-modulated signals from the FM signals. The FM-signal generator includes a slot 36, a micro-strip line 38, and a negative resistive element 40. The ΔΣ-modulated-signal generator includes an edge detector 42.
US09503808B2

A boundary microphone that can reduce the change in its directional property caused by change of a sound collection axis of a microphone unit is provided. The boundary microphone includes a unidirectional microphone unit, a cylindrical unit holding member having a unit accommodating pocket in its peripheral surface to accommodate the unidirectional microphone unit, and a boundary plate to which top face the unit holding member is attached so as to rotate about its axis. When the unidirectional microphone unit is held in the unit holding member, a front acoustic terminal is positioned to face the outside of the peripheral surface of the unit holding member, the sound collection axis intersects the axis of a hollow of the unit holding member, and a rear acoustic terminal communicates with the outside at both side ends of the hollow via the hollow of the unit holding member.
US09503807B2

An acoustic horn arrangement including an acoustic horn, a first sound driver operable to drive the acoustic horn and a second sound driver further operable to drive the acoustic horn. The acoustic horn arrangement also including an interface region where sound from the second sound driver transfers into the acoustic horn to combine with sound from the first sound driver, wherein the interface region is adapted to reduce changes in a beam angle measure of the acoustic horn as a function of frequency.
US09503804B2

The present invention refers to a headset with a Bluetooth device comprising an ear loud speaker (3) with connection means (4) for connection to a detachable ear unit (5, 5a, 5b). The Bluetooth device is equipped with an extra microphone (14) for receiving ambient sound, the microphone is provided with a sound attenuator (15). The invention also refers to an ear unit (5) for an ear loud speaker (3) of a Blue-tooth device. The ear unit (5) being adapted to be fixed onto the ear loud speaker (3) and to be inserted in the user's ear. According to the invention the ear unit (5) is made to be inserted in the auditory canal of the ear and to abut tightly against the auditory canal. The ear unit (5) has a through bore (6) which, when the ear unit (5) is inserted into the auditory canal, extends in the length direction of the auditory canal. The bore (6) is equipped with handle means (1 1, 13) for shape conformed fixation to the ear loud speaker (3).
US09503803B2

A media playback device has programmable signal processing capabilities and an input receiving signals representative of ambient noise. The media playback device identifies an output response characteristic and an attenuation characteristic of a set of headphones associated with the media playback device, predicts a property of audio output by the headphones at a user's ear based on the ambient noise input signal, the output response characteristic, and the attenuation characteristic of the headphones, predicts expected residual ambient noise at the user's ear, when wearing the headphones, derived from the ambient noise input signal and the attenuation characteristic, and modifies masking audio signals to be provided to the headphones such that they will mask the expected residual ambient noise at the user's ear.
US09503792B2

Disclosed are a display apparatus and a method of setting up a channel of the same. The method includes receiving a channel retrieval request on a setting screen displayed on the display apparatus, retrieving a determined frequency band corresponding to the received channel retrieval request, and selecting one of a terrestrial broadcasting mode and a cable broadcasting mode in response to a retrieval result. Thus, automatically retrieving a frequency band corresponding to one connected broadcasting mode of a terrestrial broadcasting mode and a cable broadcasting mode is possible.
US09503789B2

A method for delivering customized navigation or interactive program guide imagery to a user by digitally splicing bitstreams bearing graphics or video imagery and bitstreams bearing navigation or IPG imagery. The resulting combined bitstream is delivered to a user or viewer.
US09503785B2

Systems and methods are disclosed for performing anti-piracy countermeasures in order to prevent unauthorized access of protected content. A conditional access system may be modified to include a counter. The counter is incremented every time the conditional access system receives a request that is a potential indication of pirate activity. The counter may also be decremented every time the conditional access system receives a request indicative of legitimate activity. If the conditional access system receives a management message containing a key required to access content keys, the conditional access system cheeks the counter. If the counter is below a threshold value, the conditional access system obtains the key. However, if the counter is above the threshold value, the conditional access system disregards the key contained in the management message, thereby losing access to protected content.
US09503779B2

A network connection configuration method for a multimedia player includes establishing a Wireless Fidelity (Wi-Fi) connection between a mobile device and a network connection device, such that the mobile device obtains a service set identification (SSID) and a password thereof of the network connection device; utilizing an image capture module of the mobile device to capture an optical image corresponding to the multimedia player, so as to establish a Wi-Fi Direct connection between the mobile device and the multimedia player; and establishing another Wi-Fi connection between the multimedia player and the network connection device according to the Wi-Fi connection between the mobile device and the network connection device as well as the Wi-Fi Direct connection between the mobile device and the multimedia player.
US09503775B2

A content access device includes an interface module that receives a transport stream and outputs a processed transport stream. An input buffer buffers the received transport stream. A polling processor processes the transport stream based on the at least one key to generate the processed transport stream, wherein the polling processor operates to descramble individual packets of the transport stream in a plurality of polling slots of a polling loop. An output buffer buffers the processed transport stream for output by the interface module.
US09503769B2

Exemplary embodiments of the present invention provide methods and systems for supplying rich multimedia metadata usable to generate, e.g., sophisticated entertainment user interfaces in the home. These methods and systems can be implemented as a server-based software application that feeds multiple, diverse clients. The server functionality could be distributed, even co-located physically with one or more clients, or centralized. The server aggregates, filters, validates, augments and links metadata from disparate sources. The server transforms the metadata into a more manageable and extensible internal format. The server communicates with client devices using a schema-independent protocol, providing metadata in the appropriate format that suites the clients needs.
US09503765B2

An adaptive bit rate system uses adaptive streaming to deliver content to client devices capable of adaptive bit rate streaming. Techniques for averting or inhibiting ad skipping by an adaptive bit rate client device that receives media chunks from the adaptive bit rate system may include techniques for both live content and on demand content. Techniques include modifying a buffer size for access to trick plays and/or constructing a manifest file with limited content based on ad breaks.
US09503759B2

An image decoding apparatus that includes a motion compensation prediction circuit configured to conduct motion compensation prediction for each of blocks to be decoded by using the reconstructed image, an inverse transformation circuit configured to conduct inverse orthogonal transformation for the data of the blocks to be decoded, and a determination circuit configured to determine a filtering strength and whether or not to conduct filtering, with respect to each of the boundaries. In addition, the determining circuit is configured to determine filtering is conducted when at least one of the two adjacent blocks is intra-coded, and filtering is not conducted when both of the two adjacent blocks are not intra-coded, a non-zero transformation coefficient is not coded in both of the two adjacent blocks, the two adjacent blocks are predicted by the same reference frame, and an absolute value of a difference between motion vectors of the two adjacent blocks is smaller than a specified threshold value.
US09503758B2

Provided is a method generates an edge index of a current sample, and applies an edge offset corresponding to the edge index to the current sample. The edge index is generated using the differences between a current sample and two neighboring samples determined by an edge offset type. Accordingly, the difference between original samples and reconstructed samples are effectively reduced by generating the optimum edge index. Also, the quantity of bits required for reducing the differences are reduced by fixing the sign of offset to positive or negative.
US09503757B2

Filtering lower quality images or sequences of images with higher quality images or sequences of images. The filtering is utilized in a post-process, decoded, or encoded images including multiple sets of images that are filtered and/or combined. Different image features including, for example, quality, frequency characteristics, temporal resolution, spatial resolution, number of views, or bit-depth are present in the images. In one embodiment, the filtering comprises a multi-hypothesis filtering and the confidence value comprises a difference between the filtered sample and samples lying within a filter support. The post processes images are then stored or distributed.
US09503742B2

Described herein is a MPEG-2 compatible stereoscopic 3D-video image digital decoding method and system. In order to obtain 3D-images from a digital video stream, modifications are made to the current MPEG2 decoders, by means of software and hardware changes in different parts of the decoding process. Namely, the video_sequence structures of the video data stream are modified via software to include the necessary flags at the bit level of the image type in the TDVision® technology. Modifications are also made in the decoding processes as well as in decoding the information via software and hardware, wherein a double output buffer is activated, a parallel and difference decoding selector is activated, the decompression process is executed, the corresponding output buffer is displayed; and the decoder is programmed via software to simultaneously receive and decode two independent program streams, each with an TDVision® stereoscopic identifier.
US09503741B2

A multi-format video decoder includes an entropy decoding device that generates entropy decoded (EDC) data from an encoded video signal. A multi-format video decoding device includes a memory module that stores a plurality of operational instructions including at least one matrix multiply instruction that includes matrix input configuration data. A plurality of vector processor units generate a decoded video signal from the EDC data, wherein at least one of the plurality of vector processors include a matrix multiplier that generates output data based on a multiplication of first input data and second input data in accordance with the matrix input configuration data, wherein the matrix input configuration data indicates the dimensionality of the first input data and the second input data.
US09503739B2

The disclosure is directed to techniques for encoder-assisted adaptive interpolation of video frames. According to the disclosed techniques, an encoder generates information to assist a decoder in interpolation of a skipped video frame, i.e., an S frame. The information permits the decoder to reduce visual artifacts in the interpolated frame and thereby achieve improved visual quality. The information may include interpolation equation labels that identify selected interpolation equations to be used by the decoder for individual video blocks. As an option, to conserve bandwidth, the equation labels may be transmitted for only selected video blocks that meet a criterion for encoder-assisted interpolation. Other video blocks without equation labels may be interpolated according to a default interpolation technique.
US09503733B2

A sampling filter process is provided for scalable video coding. The process provides for re-sampling using video data obtained from an encoder or decoder process of a base layer (BL) in a multi-layer system using adaptive phase shifting to improve quality in Scalable High efficiency Video Coding (SHVC). In order to compensate for phase offsets introduced by downsampling an appropriate phase offset adjustment is made for upsampling in SHVC with an appropriate offset included for proper luma/chroma color space positions. In one approach, an adaptive filter is signaled with its phase offset adjusted to account for the luma/chroma offset.
US09503732B2

A sampling filter process is provided for scalable video coding. The process provides for re-sampling using video data obtained from an encoder or decoder process of a base layer (BL) in a multi-layer system using adaptive phase shifting to improve quality in Scalable High efficiency Video Coding (SHVC). In order to compensate for phase offsets introduced by downsampling an appropriate phase offset adjustment is made for upsampling in SHVC with an appropriate offset included for proper luma/chroma color space positions. In one approach the luma/chroma phase offset is specified and a filter is selected to apply the appropriate phase change.
US09503730B2

A method of generating a reconstructed block is provided. A mode group indicator and a prediction mode index are entropy-decoded. A quantized block is inversely quantized using a quantization parameter and a quantization matrix to generate a transform block. The transform block is inversely transformed to generate a residual block. A Most Probable Mode (MPM) group including three intra prediction modes is constructed using a left intra prediction mode and an above intra prediction mode of a current prediction unit. An intra prediction mode of the current prediction unit is derived using the mode group indicator and the prediction mode index. Reference pixels of a current block are adaptively filtered according to a size of a transform unit and the intra prediction mode. The prediction block is generated according to the intra prediction mode. The reconstructed block is generated using the prediction block and the residual block.
US09503717B2

A method for encoding a video sequence is provided that includes entropy encoding syntax elements representative of transform coefficients generated as the video sequence is processed, wherein entropy encoding syntax elements representative of a transform coefficient includes binarizing the syntax elements representative of the transform coefficient to generate a plurality of binary symbols (bins), coding a portion of the plurality of bins in context coding mode, and coding a remaining portion of the plurality of bins in bypass coding mode. The method further includes reducing the number of bins that are coded in context coding mode for each transform coefficient in a plurality of subsequent transform coefficients that are entropy encoded after a specified number of transform coefficients have been entropy encoded.
US09503716B2

Disclosed are various embodiments for determining a filter length according to a width and height of the reference block and selecting a filter based on the block size. Corresponding pixels from memory may be fetched based on the filter length and the block size. Reference pixels may be interpolated based on the selected filter to generate a prediction.
US09503709B2

Devices, systems and methods employing modular camera arrays are described. A two-dimensional array of cameras may be arranged in a non-rectangular array. A first camera, a second camera, and a third camera in the array may be located approximately equidistant from each other, and/or may be arranged approximately in an equilateral triangle, an isosceles triangle, a scalene triangle, and/or a right triangle.
US09503703B1

The quality of stereoscopic imaging using cameras with wide angle lenses can be improved using various calibration approaches to determine distortions or misalignments between the cameras. A calibration object such as a checkered grid with a determined inclination between portions can be used to provide lateral calibration as well as depth information. Intersections of the checkered regions can be used to determine intersection points for the calibration object in the image. Lines formed by the checkered regions can be located, and the points correlated with these lines, in order to determine correspondence between points in the image. These points are mapped to corresponding points of the calibration object in the real world, to determine system parameters and/or image adjustments to be made when subsequent images are captured, in order to remove the distortions and misalignment when providing a stereo image based on images from the cameras.
US09503685B2

A solution for managing a videoconference is provided. Multiple virtual backgrounds can be stored, and a virtual background can be selected to be used for a first participant when he/she is conducting a videoconference with a second participant. The virtual background can be selected based on one or more attributes of the first and/or second participant, one or more attributes of the videoconference, and/or the like. The virtual backgrounds can be utilized, for example, to provide a desired perception, message, and/or the like, of a business entity to individuals outside of the business entity that are interacting with its personnel via videoconferencing. The virtual background can include static image data, a live video feed, a recorded video feed, a static web page of a business entity, and a non-static web page of the business entity.
US09503680B1

Providing a video session from an agent of a contact center includes initiating by a contact center server an interactive video session to a customer computer, the interactive video session comprising a first video stream transmitted to the customer computer and the first video stream having an image size. The interactive video session also includes inserting an agent video portion within the first video stream, the agent video portion occupying a first part of the image size; providing an agent computer with a script related to a subject of the interactive video session; and inserting an automation within the first video stream; the automation occupying a second part of the image size. Input is received from the customer computer interacting with the automation; and based on the input, the script provided to the agent computer is modified.
US09503671B2

Provided is a display device. The display device includes: a display panel which displays an image; and a housing which supports the display panel, wherein the housing includes: a bottom plate which includes edge regions; and a plurality of sidewalls which are located on the edge regions of the bottom plate and face the display panel, wherein the plurality of sidewalls include a first region and a second region adjacent to the first region and overlap an edge portion of the display panel, and an average height of at least one of the sidewalls on the first region is greater than an average height of at least one of the sidewalls on the second region.
US09503670B2

According to one embodiment, an electronic apparatus includes a data receiver, processing circuitry and an operation information receiver. The data receiver receives first data for displaying an image. The processing circuitry displays, using the first data, the image on a screen of a display. The operation information receiver receives operation information indicating that one of a plurality of buttons provided at a remote control is pressed. The processing circuitry displays, based on the operation information, an enlarged image of a first area of a plurality of divided areas of the image on the screen.
US09503669B2

A smart control device for controlling a television (TV) set includes at least one sensing device and a processor. The sensing device is configured to detect whether a person is in front of the TV set, and generate a first control signal upon determining that at least one person is in front of the TV set, or generate a second control signal upon determining that no people are in front of the TV set. The processor obtains the control signal generated by the sensing device, and turns on the TV set when the control signal is the first control signal and if the TV set was turned off, or turns off the TV set after a first predetermined time period elapsed, when the control signal is the second control signal and if the TV set was turned on.
US09503664B2

A photoelectric conversion element includes: a plurality of AD conversion units that convert respective analog signals representing amounts of charge stored in a plurality of light receiving elements into digital signals in parallel; and a parallel-serial conversion unit that performs parallel-serial conversion on the digital signals into which the analog signals have been converted in parallel by the AD conversion units.
US09503646B2

An image blur correction apparatus includes an shooting state detecting portion that determines a shooting state of a first shooting state or a second shooting state based on an angular velocity signal, and a controller that performs an image blur correction using characteristics depending on a determination result of the shooting state determining portion, and the shooting state determining portion determines that the first shooting state has started when the angular velocity signal exceeds a first threshold value and exceeds a second threshold value having an opposite sign of the first threshold value within a predetermined time after exceeding the first threshold value, and determines that the first shooting state is continuously maintained when the angular velocity signal exceeds a third threshold value and exceeds a fourth threshold value that has an opposite sign of the third threshold value within the predetermined time after exceeding the third threshold value.
US09503643B1

A method of controlling a portable electronic device including a digital camera for setting automatic exposure and automatic white-balance values for capturing a digital image. The method includes identifying an available current for a main flash output of the digital camera for capturing the digital image, in response to determining that the available current for the main flash output is less than a full current value, identifying a corresponding current value for a preflash output based on the available current for the main flash output and setting the current value for the preflash output to the corresponding current value, actuating the preflash output utilizing the corresponding current value and receiving light at an image sensor, and based on the light received at the image sensor, setting automatic exposure and automatic white-balance values for use in capturing the digital image.
US09503642B2

An image capturing device includes a first controller operable to control image capturing; an operation section including a switch; a detector operable to detect a change to an image capturing mode and to send a signal representing the change; a second controller operable to monitor and process the sent signal, the second controller having a power consumption less than that of the first controller; and a power supply operable to supply power to the first controller, the second controller, and a functional section of the device. When the second controller receives the signal sent from the detecting section in a power saving state in which power is supplied from the power supply to the second controller, the power saving state is changed to a power supplying state capable of image capturing by supplying power from the power supply to portions of the device including the first controller.
US09503641B2

The subject disclosure is directed towards energy saving mechanisms of image sensor circuitry (e.g., in a camera). Image quality data, such as provided by an application, is processed to make energy consumption of image sensor circuitry more proportional to output image quality by controlling the operation of one or more controllable power saving mechanisms of the image sensor circuitry. Power saving mechanisms may include a frequency controlled clock, the ability to turn off unneeded components, an inter-frame standby mode that puts the image sensor circuitry into a standby mode between capturing sequential frames, selectable parallel analog chains having different energy usage properties and column circuitry that allows turning off circuitry corresponding to unneeded columns of the sensor array.
US09503640B2

An image generating apparatus including a processor and a memory having instructions stored therein which are executable by the processor to cause the processor to: cause a display to separately and simultaneously display (i) a panoramic image in progress corresponding to images which are captured by an image capturing unit, and (ii) a live-view image corresponding to an image that is newly captured by the image capturing unit while images are being captured by the image capturing unit; receive an instruction to terminate image capture processing for generating panoramic image data while the panoramic image in progress and the live-view image are being displayed; and perform, in response to reception of the instruction, control to record, as a completed panoramic image, panoramic image data generated from the images captured by a time when reception of the instruction is finished, even if images have not yet been captured in a predetermined capture range set in advance for a full panoramic image to be generated.
US09503638B1

The present invention provides a method and apparatus of obtaining single and video, high-resolution, panoramic images of a large field-of-view scene with a single viewpoint. The system consists of a segmented cap lens, multiple imaging sensors and imaging lenses. The cap lens is segmented to capture an individual sub-field of the entire panorama. In addition, the cap lens is optimized to relay the optical centers of the component cameras into a single viewpoint therefore reducing parallax errors. A high-resolution panoramic image with reduced artifacts is reconstructed by mosaicking multiple images taken by component cameras. The entire system is based upon refractive lenses to minimize the path length of light rays, enabling a relatively compact design for practical applications.
US09503636B2

A camera detects devices, such as other cameras, smart devices, and access points, with which the camera may communicate. The camera may alternate between operating as a wireless station and a wireless access point. The camera may connect to and receive credentials from a device for another device to which it is not connected. In one embodiment, the camera is configured to operate as a wireless access point, and is configured to receive credentials from a smart device operating as a wireless station. The camera may then transfer the credentials to additional cameras, each configured to operate as wireless stations. The camera and additional cameras may connect to a smart device directly or indirectly (for instance, through an access point), and the smart device may change the camera mode of the cameras. The initial modes of the cameras may be preserved and restored by the smart device upon disconnection.
US09503633B2

By conventional method, it is not possible to check whether or not a target subject is included in a range in which refocus can be performed at the time of image capturing or at the time of editing a captured image. An image processing apparatus includes a subject of interest specification unit configured to specify a subject of interest within a parallax image obtained by performing image capturing from a plurality of different viewpoints, and a notification unit configured to notify a user of a focused state of the specified subject of interest in an image to be generated by performing image combination processing using the parallax image.
US09503627B2

A handle for a handheld terminal includes a first interface module, a first key module, a first power supply module, and a base handle module. The handle couples with the handheld terminal. The handle makes a wireless connection with the handheld terminal the first interface module or a wired connection with the handheld terminal via the first interface module. The first key module includes one or more user operation command keys. The first power supply module supplies power for the handle. The handle is operable with one hand.
US09503620B2

A method and a system evaluate a security situation in a building. The building has accommodation areas with access authorization for authorized persons. A count of the persons present in the accommodation areas is determined in that, in a radio network which contains a plurality of radio stations arranged spatially distributed in the ceiling, wall or floor, the influencing of the radio field of the radio stations between one another by persons physically present there is evaluated, by a radio tomographic location and detection method. A current count of identifiers which are read by RFID reading devices of RFID transponders is determined, the identifiers being carried by authorized persons. The RFID reading devices are arranged there spatially distributed in the ceiling, wall or floor. Based on the respective counts of personal identifiers and the determined person count, an indicator for evaluating the current security situation in the building is determined.
US09503610B2

An image forming apparatus includes a punch hole detection section, a position calculating section, an image adding section, and an image forming section. The punch hole detection section analyzes image data of a scan image obtained through scanning of an original document to detect two punch hole images. The position calculating section calculates a midpoint between the two punch hole images in the scan image when the two punch hole images are detected. The image adding section adds image data of a midpoint indicating image to the image data of the scan image so that the midpoint indicating image is added to the scan image at a position corresponding to the midpoint. The image forming section performs image formation on a sheet based on the image data of the scan image to which the image data of the midpoint indicating image has been added.
US09503609B2

Data is generated which can prevent content displayed on a screen from being accurately replicated. A data-generating device has: an acquiring means that acquires still image data; a still image data generating means that generates a predetermined number of items of still image data in which at least part of pixel values of the acquired still image data are changed, and that makes an average of pixel values of matching display positions between the predetermined number of items of still image data equal to pixel values of matching display positions in the acquired still image data; and a movie data generating means that generates movie data for which each of the generated still image data is displayed at a predetermined frame rate.
US09503608B2

There are included: a processing-result-information-acquiring-unit that acquires, from each equipment, processing result information associating communication device identification information for identifying a communication device being installed corresponding to the equipment and processing request information regarding a processing request; a layout-information-acquiring-unit that acquires layout information associating, with each piece of the communication device identification information, area information indicating an area where the communication device indicated by the communication device identification information is installed; a proposal-information-acquiring-unit that acquires proposal information associating, for each type of area, a proposal condition and a proposed content; a determining-unit that determines, for each area, whether the proposal condition is satisfied or not, based on a plurality of pieces of the processing result information, the layout information, and the proposal information; and an output-control-unit that causes, when the proposal condition is satisfied, an output unit to output a proposed content associated with the proposal condition.
US09503598B2

Selection of a send job by a user is accepted in an execution history which displays the execution history of a send job for sending data to a destination. It is determined whether the user has an authority to execute the send job displayed in the execution history. If it is determined that the user has the authority, an item for reusing a destination used when the selected send job was executed is displayed in a screen including the execution history.
US09503578B1

A system, method, and computer readable medium for script logic viewing that comprises calculating a script path for at least one script, defining an entry point into the at least one script, determining at least one panel associated with the at least one script, creating a navigation file based upon the calculated script path, the defined entry point and the determined at least one panel, and presenting the created navigation file.
US09503573B1

A call information server registers with a carrier platform to receive call notifications for a telephone number associated with a mobile device. When an incoming communication is made to the registered telephone number, the call information server receives a call notification before the incoming communication arrives at the mobile device. The call information server then determines the caller information associated with the caller telephone number. The caller information for the caller telephone number is information about an entity that controls or is otherwise associated with the caller telephone number. The call information server sends the caller information and the caller telephone number to the mobile device before the incoming communication arrives at the mobile device. The mobile device can then display the caller information when the incoming communication arrives at the mobile device.
US09503568B1

A method to detect dial tone on a telephone line may include taking samples of incoming audio on a telephone line. The method may also include determining volumes of the samples. The method may further include determining whether the volumes of a threshold number of the samples are at or above a threshold volume. The method may also include, in response to determining that the volumes of a threshold number of the samples are at or above a threshold volume, determining that the incoming audio on the telephone line includes a dial tone.
US09503565B2

A method and device for providing an application for an external accessory in a wireless terminal, by which related applications corresponding to a type of an external accessory connected to a wireless terminal can be displayed. Instead of sifting through applications or searching for the appropriate ones for the external accessory, the invention causes them to be displayed. To this end, the device includes a display unit for displaying related applications for an external accessory connected to the wireless terminal and a controller for sensing a type of the external accessory connected to the wireless terminal and extracting and displaying related applications for the external accessory.
US09503562B2

A system for use in controlling operating functions of a controllable device includes a hand-held device and an intermediate device in communication with the hand-held device and the controllable device. The hand-held device is adapted to receive a gesture based input and to transmit a signal having data representative of the gesture based input. The intermediate device has programming for translating the data representative of the gesture based input in a signal received from the hand-held device into a command signal to be communicated to the controllable device wherein the command signal has a format appropriate for controlling an operating function of the controllable device that is associated with the gesture based input.
US09503552B2

A system and method are provided for updating network protocols. A new ASIC is designed to adapt to future network protocols, the ASIC including at least one packet editing program. The ASIC is configured to classify a received packet to determine new protocols to which the packet is to be updated, delete selected existing headers of the packet, insert new headers in the packet based on the classification, and modify selected headers based on the classification.
US09503550B2

Disclosed herein are example embodiments for multi-modality communication modification. By way of example but not limitation, a communication device may interact with a user for a first portion of a communication in a manner corresponding to a first communication modality in accordance with at least one intimacy setting. A communication device may further discern at least one modification to at least one user interaction communication modality of at least one intimacy setting and interact with a user for a second portion of a communication in a manner corresponding to a second communication modality in accordance with the at least one intimacy setting responsive at least partly to the at least one modification.
US09503548B2

Embodiments of the present invention disclose a method, computer program product, and computer system for prioritizing messages based on subscriber preferences. In an embodiment of the invention, an application server computer determines that a subscriber is subscribed to at least one topic space. The application server computer receives one or more topic priority preferences from the subscriber, and a plurality of messages from the at least one topic space. The application server computer prioritizes the plurality of messages based on the received topic priority preference, and sends the prioritized plurality of messages to the subscriber.
US09503537B1

Disclosed are various embodiments for associating clients with user accounts using a unique device identifier. A plurality of identifiers is provided by a client to a device tracker. The device tracker determines if one of the plurality of identifiers matches an identifiers previously stored in association with a user account. If no association exists, the device tracker determines if the client is currently logged into a user account and associates the client with the user account in response to determining that the client is logged into the user account. If the client is not logged into a user account, then the device tracker stores the unique device identifier for the client and waits for the client to log into a user account in the future.
US09503516B2

Disclosed are systems and methods for providing a context-based notification from a first device to a second device. In an embodiment, the first device is associated with a driver travelling to pick up a passenger, and the second device is associated with the passenger. Substantially at a notification point, the first device determines if, how, and when to transmit an auto-notification to the second device based on context. For example, if the passenger is not near the meeting point, then a notification is not sent, whereas if the passenger is in a conference with others, then a text rather than a call is sent. If traffic between the notification point and the meeting point is heavy, then the notification is delayed until the expected amount of travel time remains.
US09503513B2

A method begins by a processing module concurrently encoding a collection of data segments to produce sets of encoded data slices, where each set includes a total number of encoded data slices and where a decode threshold number of encoded data slices is required to recover a corresponding data segment. The method continues with the processing module determining a transmit number to be initially greater than the decode threshold number and less than the total number. The method continues with the processing module selecting a transmit number of encoded data slices from each set of encoded data slices to produce sets of transmit encoded data slices. The method continues with the processing module randomizing ordering of the sets of transmit encoded data slices to produce a random order of encoded data slices and transmitting encoded data slices of the random order of encoded data slices.
US09503510B2

Embodiments of methods, systems and apparatuses for distributing content over a communication network based on a value metric, are disclosed. One method includes managing, by at least one content distribution server, a plurality of content. The method further includes assisting preloading of at least a portion of a content to a storage element as directed by a service provider, wherein the content is selected from the plurality of content based on a value metric, wherein the value metric includes a cost parameter, and wherein the storage element is coupled to the at least one content distribution server over the communication network.
US09503508B2

A computer-implemented method for content management across multiple server computers includes receiving a request to transfer a file between a central server computer and a client device. A list of two or more local server computers is received, wherein the two or more local server computers transfer the file between the central server computer and the client device. Operational information is received that is associated with each of the two or more local server computers and a duration of connectivity between each of the two or more local server computers and the client device. A strategy is determined for the file across the two or more local server computers based, at least in part, on the operational information associated with each of the two or more local server computers.
US09503507B2

When a user purchases digital rights to a media file, or otherwise obtains the right to have a copy of the media file downloaded to the user's wireless device, a link to the media file that is stored in the media database is stored in a user storage database. When the user desires to have the media file downloaded to the user's wireless device, the user sends a request to the network. The network performs a check to determine whether the user is authorized to receive the requested media file, and if so, causes the requested media file to be downloaded to the user's wireless device where the media file is stored in the local memory of the wireless device for playback by the user on the wireless device.
US09503504B2

The present invention generally relates to systems for generating visual identifiers. In particular, the systems and methods herein are configured to generate visual identifiers for representing user response to stimuli. In a preferred embodiment, visual identifiers are generated from primary colors or shapes, wherein the primary colors and/or shapes can be blended or modified based on strength/weakness of the stimuli experienced by a user or across a plurality of users. Preferred embodiments of the invention are further configured to receive text or other non-visual identifier from a user in order to describe the response the user has to a stimuli; wherein the associated system is configured to convert the described response into an appropriate visual identifier.
US09503501B2

An in-browser proxy enables an application in a frame to make a cross domain request. The proxy executes within the browser, which has a first domain. The browser provides a frame in which a client application executes, which has a second domain. The request from the client application is a request for data access to the external domain. The proxy identifies a registration of the client application, and forwards the request to the external domain. The proxy receives a response to the request and provides the response back to the client application within the frame.
US09503495B1

A content delivery (CD) service in a CDN maintains property invalidation information on said CD service including, for each property, a list of one or more group invalidation commands. New group invalidation commands are added by selectively merging one or more invalidation commands to form a merged invalidation command and inserting the merged invalidation command into said list, wherein the merging is based on a length of common prefix of elements in said list. A per property common prefix list is maintained for invalidation commands in each property list.
US09503490B2

A client/receiver downloads data over a network path between a source and the receiver coupled by the network path and stores the media data in a presentation buffer of the receiver and from there it is consumed by a presentation element. The receiver monitors a presentation buffer fill level that represents what portion of the presentation buffer contains media data not yet consumed by a presentation element. The receiver makes requests for additional data to download. If the fill level is above a high fill threshold, the receiver does not make further requests and eventually the fill level goes down. If the fill level is below a low fill threshold, the receiver restarts the downloading and updates the fill level as media data is consumed by the presentation element. The fill level might be measured in units of memory storage capacity and/or units of presentation time.
US09503487B2

A method for establishing for a first smartphone a phone connection with a second smartphone, each smartphone comprising a phone and running a software application (“app”), the method comprising: exchanging, by operating the app, at least one permission message between the first and second smartphones; transmitting a first identifier from the first smartphone and a second identifier from the second smartphone to a call connector, responsive to a successful exchanging of the at least one permission message; and connecting a first phone call and a second phone call to establish a phone connection between the first and second smartphones, if the first phone call matches the first identifier and the second phone call matches the second identifier.
US09503454B2

Provided are a smart card service method and an apparatus for performing the same. The smart card service method includes receiving a certificate generation request from a terminal, transmitting the certificate generation request to an authentication processing device, and storing credential information with respect to the generated certificate in a virtual machine associated with the terminal in response to a certificate generation success message provided from the authentication processing device. Thus, it is possible to reduce costs in accordance with manufacturing smart card hardware, and support smart card services in a more enhanced security environment.
US09503452B1

The method integrates the dynamic and authoritative posture of an authenticated user, a registered device, and a registered service provider as a conclusive proof of identity recognition for affiliation of associated contextual attribution and referential integrity. In addition to relieving the user of the burden of remembering multiple passwords for a plurality of services, the method provides a means to facilitate an affiliation oriented architecture for a broad spectrum of web and cloud based services with affiliation aware content streaming, leveraging the affiliation score as a key trust metric. The method provides protection from user-agnostic delegation and impersonation of identity, social engineering, and compromised passwords, which are exploited by numerous strains of landed malware to launch multi-stage coordinated cyber-attacks on consumer accounts and enterprise systems. The method of affiliation based on identity recognition provides authoritative, contextual, and consensual user information, of relevance in a live transaction, to the service provider.
US09503446B2

An OpenFlow network controller controls an OpenFlow network. A networking connection is established between the OpenFlow network controller and an OpenFlow network device attempting to become part of the OpenFlow network. After establishing the networking connection with the OpenFlow network device, the OpenFlow network controller attempts to authenticate the OpenFlow network device. Where authentication of the OpenFlow network device is successful, the OpenFlow network controller sends a message to the OpenFlow network device to indicate that the authentication was successful and permits the OpenFlow network device to join and perform OpenFlow messaging.
US09503442B1

A processing device comprises a processor coupled to a memory and is configured to obtain a credential associated with a particular access control interval, to determine an application programming interface (API) key based at least in part on the credential, and to utilize the API key in an API key enrollment protocol. The obtaining, determining and utilizing are repeated for one or more additional instances of the API key enrollment protocol corresponding to respective ones of one or more additional access control intervals. The processing device illustratively comprises a service requester device configured to carry out at least a portion of a given instance of the API key enrollment protocol with a service provider device. The API key may comprise, for example, the credential itself, or a function of the credential and other information. The credential may comprise, again by way of example, an intermediate value of a hash chain.
US09503438B2

Authentication of a user or a wireless transmit/receive unit may be based on an obtained measure of authentication strength, which may referred to as an assurance level. For example, a user, via a WTRU, may request access to a service controlled by an access control entity (ACE). The user may be authenticated with a user authenticator and assertion function (UAAF), producing a result. A user assertion may be provided that includes the user authentication result, a user assurance level, and/or a user freshness level. The WTRU may be authenticated with a device authenticator and assertion function (DAAF), producing an associated result. A device assertion may be provided that may include the device authentication result, a device assurance level, and/or a device freshness level. The assertions may be bound together to receive access to a service or resource.
US09503435B2

Techniques to load balance traffic in a network device or switch include a network device or switch having a first interface to receive a data unit or packet, a second interface to transmit the packet, and a mapper to map between virtual ports and physical ports. The network device includes hash value generator configured to generate a hash value based on information included in the packet and based on at least one virtual port. The hash value may be optionally modified to load balance egress traffic of the network device. The network device selects a particular virtual port for egress of the packet, such as by determining an index into an egress table based on the (modified) hash value. The packet is transmitted from the network device using a physical port mapped to the particular virtual port.
US09503433B2

In an embodiment, a system includes a processor that includes private key decryption logic to decrypt an encrypted private key received from a consuming device to produce a private key, and symmetric key decryption logic to receive the private key from the private key decryption logic and to decrypt an encrypted symmetric key received from the consuming device using the private key. The system also includes a dynamic random access memory (DRAM) coupled to the processor. Other embodiments are described and claimed.
US09503427B2

For a host that executes one or more guest virtual machines (GVMs), some embodiments provide a novel virtualization architecture for utilizing a firewall service virtual machine (SVM) on the host to check the packets sent by and/or received for the GVMs. In some embodiments, the GVMs connect to a software forwarding element (e.g., a software switch) that executes on the host to connect to each other and to other devices operating outside of the host. Instead of connecting the firewall SVM to the host's software forwarding element that connects its GVMs, the virtualization architecture of some embodiments provides an SVM interface (SVMI) through which the firewall SVM can be accessed to check the packets sent by and/or received for the GVMs.
US09503417B2

A method for acquiring information includes: receiving an Internet Protocol (IP) address acquisition request or Packet Data Network (PDN) address allocation information sent by User Equipment (UE); determining a PDN address capability according to the IP address acquisition request or the PDN address allocation information; and sending the determined PDN address capability to the UE. An UE and network equipment are also provided. The PDN address capability is determined by the network and is sent to the UE, so as to indicate to the UE the IP address information that may be acquired in a current PDN connection, such that when the network cannot provide an IP address for the UE any more, the UE is prevented from acquiring other IP addresses in other manners, avoiding service abnormality.
US09503414B1

A method performed by a server in a computer network includes supplying tools to specify a live event. Messages associated with the live event are collected. Messages are collected from a social network server. The messages are processed to form ordered messages. Replies to the ordered messages are formatted. The replies include individual messages distributed to the social network server and aggregated replies available on a single page for viewing by client devices.
US09503403B2

Information management and display is enabled. A method can include displaying, via a user interface of a communication device, a dynamically updatable wallpaper comprising a personalized theme personalized to a user of the communication device. The method can also include updating the dynamically updatable wallpaper to display one or more animated icons. Displaying the animated icons can be based, at least, on detected activity of respective contacts associated with the one or more animated icons. An apparatus can comprise a user interface component configured to display images indicative of contacts, wherein the plurality of contacts are predefined by a user of the apparatus. The apparatus can also include a messaging component configured to: integrate different types of text messages for one of the contacts; and provide concurrent display of the text messages and social media information for one of the contacts.
US09503396B2

In one embodiment, packets are sent a packet switching mechanism of a packet switching device, which includes partitioning each particular packet into a plurality of cells with each particular packet and cell derived therefrom associated with a same particular timestamp and a same particular ingress point identifier representing an ingress point of a plurality of ingress points of the packet switching mechanism. These cells are sent through the packet switching mechanism by selecting and forwarding, at each of a plurality of points within the packet switching mechanism. A tie-breaking value is determined based on a manipulation of ingress point identifier associated with said identifiable cell in a manner to vary the tie-breaking selection ordering of ingress point identifiers for different timestamp values. The tie-breaking value is used in selecting a next cell to forward when cells are associated with a same timestamp.
US09503392B2

A method and system for securely provisioning a host, the method including determining, by a provisioning system, a physical path from the host in a cloud to the provisioning system, wherein the physical path includes static mapping for a device between the host and the provisioning system. The provisioning system receives a request to provision a virtual machine on a guest host in a cloud, and sends installation information for the virtual machine via the determined physical path.
US09503387B2

Example embodiments disclosed herein can provide for receiving a compute request for migrating an application from a source environment to a target cloud, determining a configured option of a first resource associated with the application, and determining at least one solution in the target cloud for the application. The solution is based, at least in part, on the configured option. In more specific embodiments, when the configured option indicates the first resource is splittable, a number of second instances of a solution in the target cloud is greater than a number of first instances in the source environment. In further more specific embodiments, when the configured option indicates the first resource is mergeable, a number of second instances of a solution in the target cloud is less than the number of first instances in the source environment.
US09503386B2

A computer-readable recording medium stores a data sharing program that causes a processor of a first terminal to execute a process that includes detecting a communication bandwidth used between the first terminal and a second terminal that are communicably connected in an ad-hoc network; comparing the detected communication bandwidth and a bandwidth related to a storage apparatus of the first terminal; determining an operation scheme related to data sharing of data in the storage apparatus of the first terminal and data in a storage apparatus of the second terminal, based on a comparison result obtained at the comparing; notifying the second terminal of the determined operation scheme; and executing a mounting process that enables access of the storage apparatus of the first terminal by the second terminal, based on the determined operation scheme.
US09503385B2

The present invention discloses a delay request processing method and apparatus that are based on a token bucket and relates to the field of communications technologies, where the method and the apparatus are invented to shorten a scanning period when a delay request is processed. The method includes: receiving a delay request message of a queue corresponding to a token bucket, where the delay request message includes delay request time; determining, according to the delay request time, whether the delay request message needs to be processed preferentially; processing the delay request message in a preferentially processing manner when it is determined that the delay request message needs to be processed preferentially. The present invention may be applied to a delay request processing technology.
US09503378B2

Multipath load-balancing algorithms, which can be used for data center networks (DCNs), are provided. A multipath load-balancing algorithm can be, for example, a distributed multipath load-balancing algorithm or a centralized multipath load-balancing algorithm. Algorithms of the subject invention can be used for, e.g., hierarchical DCNs and/or fat-tree DCNs. Algorithms of the subject invention are effective and scalable and significantly outperform existing solutions.
US09503373B2

A receiving device associates a first one-way function value determined by an operation using a one-way function with a first destination. Next, the receiving device determines a second one-way function value by the operation using the one-way function from identification information stored in the receiving device and element information received from a transmitting device. When the second one-way function value is different from the first one-way function value, the receiving device associates the second one-way function value with a second destination, and returns the identification information to the transmitting device.
US09503368B2

A method of routing a call involving a call party in a telecommunications network via a selected media routing path of a plurality of different media routing paths is provided. The media routing paths communicate media data to and/or from at least one communication device associated with the call party. A call control system in the telecommunications network receives data derived from a media quality test procedure for a given media routing path. The media quality test procedure includes media test data being communicated via the given media routing path and the media test data being analysed. The call control system selects a preferred media routing path from the plurality of media routing paths for communicating media data associated with the call to and/or from one or more of the at least one communication devices associated with the call party on the basis of at least the received data.
US09503365B2

A packet-forwarding network node can process a programmable packet based on a reputation value for a name prefix to perform a customized operation on a local resource. The programmable packet can include a name prefix, and a header comprising reputation criteria for the packet's name prefix and one or more resource fields. A resource field can include instructions that perform an operation on a corresponding resource of the network node. When the network node receives the programmable packet, the node determines a reputation value for the name prefix at the local node, and compares this reputation value to the packet's reputation criteria. If the reputation value for the name prefix at the local node satisfies the reputation criteria, the node proceeds to execute the one or more instructions of the respective resource field to perform the operation on the corresponding resource.
US09503361B2

Delivering every packet of a stream simultaneously along two different paths gives a high assurance that the destination will receive at least one of them, even if a single failure occurs. The present idea uses the topology protocols to know when to regenerate a dual stream after one failure occurs, so that the dual delivery, and thus assurance against further failures, is maintained.
US09503356B2

Provided is a method for determining topology of a network, including: all links of the network are divided into link sets L(V1), . . . , L(Vn) according to rate levels V1, . . . , Vn of links of the network, wherein n is a positive integer equal to or larger than 1; a link set L(Vx) is divided into link subsets L(Vx)1, . . . , L(Vx)k according to connectivities of the links, wherein 1≦x≦n and k is a positive integer equal to or larger than 1; and a network layer to which a link subset L(Vx)y is attributed is determined, wherein 1≦y≦k. The disclosure solves the problem that it is difficult to divide artificially all links (and then nodes of respective links) to various network layers of respective layered networks when the networks have relatively large scale, it enables automatic calculation of a network layer to which a node is attributed, then enables automatic calculation of a networking structure of each layer of network and a number of nodes therein, thereby providing basic data to subsequent topology optimization of the network.
US09503343B2

A method for detecting a topology change in a communication network. The method includes measuring a minimum latency value of a communication between two devices in the communication network for each of a plurality of time cycles, identifying an increase in the minimum latency values among the plurality of time cycles, and detecting a topology change in response to a determination that the increase in minimum latency values is maintained for more than a predetermined number of time cycles.
US09503341B2

A monitoring system is arranged for automatically and dynamically discovering local applications running on servers in an enterprise-scale service environment as well as discovering external resources (both partitioned and non-partitioned resources) that the local applications use. The discovered objects and their dependencies are instantiated into a health map and the map is dynamically updated as applications and resources are added to and deleted from the enterprise-scale service environment. Health indicators such as events, performance counters, synthetic transactions, and SysLog and SNMP (Simple Network Management Protocol) service events for the mapped objects are monitored. The monitored health indicators are attributed to either the health of a local application or that of an external resource. Upon detection of a fault, the health map enables performance of root cause analyses and determination of the impact of the fault on the objects in the environment so that appropriate alerts can be raised.
US09503338B2

A method, a network element, and a network operating an Ethernet service include transmitting information related to an operational speed of a first connection to the second switch, wherein the first switch is connected to a first Customer Premises Equipment (CPE) device through the first connection and the second switch is connected to a second CPE device through a second connection; receiving information related to an operational speed of the second connection; and triggering a modification to the Ethernet service, responsive to a mismatch between the operational speed of the first connection and the operational speed of the second connection.
US09503336B2

This invention discloses method and apparatus for obtaining channel state information, and relates to the field of communication techniques, capable of reducing signaling and feedback overheads and lowering UE operation complexity. According to the solutions provided in embodiments of this invention, a RS predetermined transmission time and a RS predetermined frequency are transmitted to a UE by any one cell of at least two cells; each cell or cell group out of the at least two cells, according to the RS predetermined transmission time and the RS predetermined frequency, transmits a RS to the UE on different RS resources; the measurement result transmitted by the UE is received, which comprises CSI between any one cell or cell group out of at least two cells and the UE. The solutions provided in embodiments of this invention are applicable when it is required to obtain CSI between multiple cells and a UE.
US09503335B2

Technologies are generally described to provide a passive monitoring system employing a logging schema to track usage data in order to analyze performance and reliability of a service. The logging schema may be configured to track user requests as each request is received and processed at individual subsystems of the collaborative service. A logging entry may be created at a data store of the service, where the logging entry includes a subsystem name, an operation performed by the subsystem to fulfill the request, and start and end times of the operation. The logging schema may also detect errors fulfilling the requests, and may classify detected errors into a bucket, where each bucket denotes a failure scenario. Reliability of the service may be calculated based on analysis of the buckets to compute error rates. Reports may be generated to enable continuous monitoring of a performance and reliability of the system.
US09503332B2

A method comprising storing identification information in a memory medium of a portable computing device, communicating with a network access point to gain access to a network, sending the identification information from the portable computing device to the network access point, and receiving at the portable computing device access to the network through the network access point based on the identification information.
US09503330B2

Displaying a hierarchy. A method includes identifying a set of nodes representing sites in a hierarchy. The set of nodes share one or more common characteristics not shared by any other nodes in the hierarchy. The method further includes determining that the set of nodes, as a set, meet a predetermined condition. As a result of the nodes sharing the one or more common characteristics not shared by any other nodes in the hierarchy and as a result of the set meeting the predetermined condition, the method further includes aggregating at least a portion of the set of nodes. The method further includes displaying in a graphical user interface a representation of the hierarchy including displaying the aggregated portion as a single entity in the hierarchy.
US09503326B2

There is provided a control apparatus including a setting unit configured to set a network configuration by assigning a network connection to between each of a plurality of network switches and each of a plurality of nodes based on disposition of the network switches and the nodes in a network having the network switches and the nodes, and a notification control unit configured to notify the network switches and the nodes of the set network configuration.
US09503318B2

A method of transmitting a message from a security system to a central station receiver includes receiving at the security system an IP address associated with the central station receiver. An attempt is made to transmit the message from the security system to the central station receiver by use of the IP address. In response to a failure to receive at the security system an acknowledgement from the central station receiver that the message was received, the security system is used to query a Domain Name Server for a current IP address associated with the central station receiver. The query is dependent upon a domain name of the central station receiver. The current IP address associated with the central station receiver is received and used to re-attempt the transmitting of the message from the security system to the central station receiver.
US09503305B1

It is possible to compress log likelihood ratios (LLRs) by exploiting the mapping symmetry between bits in the same symbol. For example, two LLRs corresponding to the same dimension of a square Quadrature Amplitude Modulation (QAM) symbol can be compressed into a single compressed LLR that excludes the magnitude bits of one of the LLRs because the magnitude component of LLRs for bits corresponding to the same dimension of a square QAM symbol exhibit a piecewise linear relationship with one another. Similar techniques can be used to exploit piecewise linear relationships between a subset of constellation points in a non-square QAM constellation.
US09503302B2

The present invention provides a method for calibrating a communication circuit. In an embodiment, the method may include: cooperating start of a calibration procedure, and, by the communication circuit, signaling a calibration signal between a test equipment and the communication circuit. The calibration signal may include a plurality of coexisting component signals respectively at a plurality of calibration frequencies. Associated communication circuit is also disclosed.
US09503300B2

Methods and apparatus are provided for inserting data symbols and pilot symbols in an OFDM (orthogonal frequency division multiplexing) transmission resource utilizing frequency hopping patterns for the data symbols and/or the pilot symbols. Data symbols and pilot symbols are allocated for down link (base station to mobile station) and up link (mobile station to bases station) transmission resources in a two-dimensional time-frequency pattern. For each antenna of a MIMO-OFDM (multiple input multiple output OFDM) communication system, pilot symbols are inserted in a scattered pattern in time-frequency and data symbols are inserted in an identical frequency-hopping pattern in time-frequency as that of other antennas.
US09503282B2

The positions of orthodontic appliances such as brackets and buccal tubes on a patient's teeth are determined using digital data that represents the shapes of the patient's teeth. Certain landmarks of the teeth such as the marginal ridges are determined using software, and the software adjusts positions of the virtual appliances on the teeth as needed in order to bring the marginal ridges into proper alignment at the conclusion of treatment. The resulting positions are optionally used to determine the location of the appliances in an indirect bonding apparatus such as a transfer tray.
US09503275B2

A house monitoring system includes at least one sensor that detects a predetermined event, a master device that communicates with the sensor, and is connected to a fixed telephone network so as to perform calls to other fixed telephones, and a mobile phone terminal that includes a display/input unit, performs wireless communication with the master device by using a wireless router, and is connected to other mobile phones via a mobile phone network. When the sensor detects the predetermined event, the master device transmits information regarding the sensor having detected the predetermined event to the mobile phone terminal, and the mobile phone terminal displays the information regarding the sensor having detected the predetermined event transmitted from the master device on the display/input unit.
US09503274B2

A communication system facilitating the establishment of a channel of communication for multiple electronic communication devices includes a registration server. The system also includes a plurality of enabled electronic communication devices in communication with the registration server. Each of the plurality of enabled electronic communication devices including an application programming interface enabling communication with the registration server. The communication server further includes a local communication network and a global communication network. If the plurality of enabled electronic communication devices are in the local communication network, communication amongst the plurality of enabled electronic communication device is established using the local communication network and if the plurality of electronic communication devices are not in the local communication network, communication amongst the plurality of enabled electronic communication device is established using the global communication network.
US09503272B2

In one embodiment, a method includes discovering at a first edge device in a first network that a multicast source has moved from the first network to a second network, the first edge device in communication through a core network with a plurality of edge devices belonging to a multicast group comprising the multicast source, transmitting from the first edge device to a second edge device in the second network, a join request for the multicast group comprising the multicast source at the second network, receiving multicast traffic for the multicast group at the first edge device on a transient multicast tree extending from the second edge device to the plurality of edge devices, and forwarding the multicast traffic to the plurality of edge devices. An apparatus and logic are also disclosed herein.
US09503271B2

A method is presented for providing a Customer hosted chat invitation to a browsing user. A service provider provides a Customer with a set of interactive invitation input objects, and the Customer creates and stores a set of customized invitation setup data from interacting with the input objects. The service provider runs custom code to generate, from the set of customized invitation setup data, an invitation program code module characterized by a set of programmatic invitation criteria. The invitation program code module is connected to a web page creating program code that resides on a web server operatively associated with the Customer site so that the browsing user's choices can be monitored and stored and, when selected invitation criteria are met by these choices, an invitation event is triggered. System claims to related subject matter are also presented.
US09503270B2

A communication device and a power saving method in a data transmission system are provided that can achieve the prevention of element deterioration occurring when a check signal is transmitted during sleep, as well as reductions of transmission noise and power consumption. The communication device, which is connected to another communication device through transmission/reception links corresponding to multiple channels, respectively, includes communication sections corresponding to the multiple channels, respectively, and a control section that interrupts transmission outputs of the communication element when there is no data for transmission, and sequentially changes, among the multiple channels, a channel that transmits a check signal for checking a link state during a period in which the transmission outputs are kept interrupted.
US09503267B2

Methods, systems, and computer programs for generating a digital signature are disclosed. In some aspects, a symmetric key is accessed. The symmetric key is based on an ephemeral public key. The ephemeral public key is associated with an ephemeral private key. A ciphertext is generated based on the symmetric key and a message. An input value is obtained based on the ciphertext independent of a hash function. A digital signature is generated from the ephemeral private key, the input value, and a long term private key.
US09503254B2

A loop filter in a modified phase locked loop has a proportional path generating first output signal that is proportional to an input signal and an integral path for generating a second output signal that is an integral of the input signal. An additional functional path generates a third output signal that is a predetermined function of the input signal. The predetermined function is of the form f(s)/g(s), where f and g are polynomial functions. An adder combines the first, second, and third output signals into a common output signal.
US09503253B2

Transmission circuit for transmitting serial data with superposed clock signal includes encoder to scramble parallel data of information and apply predetermined coding scheme to generate D symbols having clock signal embedded therein, and to output alternately continuous predetermined number of the D symbols and one of K symbols as synchronization control codes for the scrambling; and parallel-to-serial converter configured to convert the D symbols and the K symbols output from the encoder into serial data, wherein, for each period of the scrambling, the encoder outputs K symbols, each of which is allocated to one of the first code indicating beginning of the period of the scrambling, the second code allocated at equal interval among remaining ones of the K symbols other than that for the first code, and a third code allocated among remaining ones of the K symbols other than those for the first code and the second code.
US09503248B2

The present disclosure is directed to a user equipment and a base station which use a dynamic time division duplex (TDD) configuration mechanism. The present disclosure proposes implementing the dynamic TDD mechanism by imposing a restriction to the dynamic TDD configurations to adhere to a set of allowable dynamic TDD configurations. The uplink and downlink HARQ timing reference configurations could be derived from the set of allowable dynamic TDD configurations. The set of allowable TDD configurations, the uplink HARQ timing reference configuration and the downlink HARQ timing reference configuration could be derived based on specific rules. The maximum number of downlink HARQ processes for TDD would follow the downlink HARQ timing reference configuration.
US09503246B2

The technology presented in this disclosure pertains to telecommunication. For example, there is presented a method of operating a wireless terminal 30. A timing advance command (TAC) control element (CE) is received over a radio interface (from a network node 28). Upon receipt of the TAC CE, the method continues by updating UL (uplink) transmission timing for cells in a timing advance (TA) group even when a TA timer for the associated TA group is not running.
US09503242B2

Systems and methods for a device-to-device communications mode are described. When two user equipment are within proximity of each other and other requirements are met, the user equipment are configured by their associated nodes to enter a device-to-device communication mode. In that mode, the user equipment receives messages from the other user equipment without the messages traversing the core network between their associated nodes.
US09503241B2

Embodiments are provided for configuring channel measurements and reporting by a user equipment (UE). The embodiments avoid unnecessary cell measurements and resulting reporting transmissions by the UE in network scenarios with restricted downlink transmissions from serving cells. A method by a network component includes sending, to the UE, a data transmission pattern for transmissions on downlinks from multiple cells serving the UE. The data transmission pattern indicates a plurality of subframes including one or more restricted subframes where transmissions from one of the cells are restricted. The method further includes sending, to the UE, a measurement pattern allocating measurements and reports for a cell from the UE to the cells at corresponding designated subframes of the subframes in the data transmission pattern. The UE transmits measurement reports to an assisting serving cell during the one or more restricted subframes.
US09503240B2

A method and apparatus for providing a data service by using a broadcasting signal are provided. To transmit the broadcasting signal by an Access Point (AP) located within a coverage area of a base station (eNB), the AP transmits configuration information, used for transmission of the broadcasting signal on the same frequency band as that of the eNB, to the eNB, receives broadcasting signal transmission information, based on the configuration information, from the eNB, and transmits the broadcasting signal according to the broadcasting signal transmission information.
US09503236B2

A method for transmitting reference signals for eight or fewer antenna ports includes mapping a portion of common reference signals (CRSs) for four or fewer antenna ports into a downlink subframe including 1st slot and 2nd slot with a normal cyclic prefix configuration; mapping channel status information reference signals (CSI-RSs) for eight or fewer antenna ports into the downlink subframe according to a preset pattern; and transmitting the downlink subframe into which the CRSs and the CSI-RSs are mapped, wherein the preset pattern defines the CSI-RSs for eight or fewer antenna ports to be mapped onto two OFDM symbols of the data region in the downlink subframe, with the two OFDM symbols being spaced apart by one OFDM symbol, and wherein the portion of the CRSs for four or fewer antenna ports is limited to the CRSs for two or fewer antenna ports.
US09503234B2

The present invention relates to a wireless communication system. A method for receiving data by a user equipment (UE) in a cooperative multi-point (CoMP) wireless communication system includes receiving downlink control information (DCI) that does not contain information indicating a transmission base station (BS) that actually transmits data among a plurality of BSs that participate in CoMP, receiving information about zero-power channel state information-reference signal (CSI-RS) of each of the plural BSs, and assuming that data is not mapped to a resource element of zero-power CSI-RS with a lowest index and receiving the data through a physical downlink control channel (PDSCH).
US09503233B2

Systems and methods of enhanced real-time communications between WiFi devices. In one embodiment of the present invention a method for enhanced payload protection in a WiFi system includes transmitting multiple copies of data packets in successive frame body transmissions. In another embodiment, a method for enhanced communications over a WiFi link includes examining a unit ID packet to determine a destination of a data payload when errors are detected in IP and/or MAC headers. If a destination is determined, the packet is corrected and forwarded to the device based on the unit ID determination. In another embodiment, a method for enhanced real-time communications in a WiFi network includes establishing a communications frame that includes an active timeslot, preferably based on U-APSD, for a WiFi device to use for transmission of successive audio data packets transmitted between the WiFi handset and AP.
US09503229B2

A transmitting apparatus is provided. The transmitting apparatus includes: a frame generator configured to generate a frame including a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and a guard interval (GI) inserter configured to insert GIs into the generated frame, wherein the plurality of OFDM symbols are divided into a bootstrap, a preamble, and a payload, and the GI inserter inserts first GIs having a size corresponding to a fast Fourier transform (FFT) size of each of OFDM symbols configuring the payload into front ends of each of the OFDM symbols, inserts second GIs having a size corresponding to a quotient obtained by dividing an extra region of the payload calculated based on the FFT size of the OFDM symbols configuring the payload, the number of OFDM symbols, and the size of the first GIs by the number of OFDM symbols into front ends of each of the first GIs, and inserts a cyclic postfix (CP) having a size corresponding to the remainder remaining after dividing the extra region of the payload by the number of OFDM symbols into a rear end of a final OFDM symbol configuring the payload.
US09503220B2

A process, a computer program product, and a computer system for redelivering a subset of messages in a packet to a receiver application are provided. The present invention enables the partially received packet to be delivered to the application layer (LLM) and allow LLM to decide whether it has to request for full packet retransmission or partial retransmission of the packet. The present invention allows the LLM of the receiver to generate a PNACK (partial negative-acknowledgement) based on the subset of the messages consumed from within the partial packet. The present invention allows the LLM of the transmitter to process the PNACK, to regenerate a new packet from the original packet to contain only a subset of the messages, and to send this new packet to the receiver who has generated the PNACK.
US09503215B2

An interference signal control information acquisition method and apparatus for use in the wireless communication system is provided. The interference signal information detection method of a terminal for use in a wireless communication system includes acquiring a first control information part and a second control information part of other users from a received signal, generating a first control information candidate identical in bit length with the first control information part, blindly decoding first control information based on the first control information candidate, and detecting and removing interference signals of the other users from the received signal based on the blindly decoded first control information.
US09503214B2

Management frame map directed operational parameters within multiple user, multiple access, and/or MIMO wireless communications. A management frame map may be generated within and transmitted from a first wireless communication device to a group of other wireless communication devices. Thereafter, certain subsequently transmitted packets may be analyzed and processed by the receiving wireless communication devices based on that earlier received management frame map. One or more operational parameters are determined for a subsequently transmitted packet based on the previously received management frame map. The operational parameters govern the manner in which at least a portion of the subsequently transmitted packet is processed.
US09503211B2

A signal detection circuit includes: a first optical filter configured to filter an optical signal carrying a frequency modulated signal with a first transmission band; a second optical filter configured to filter the optical signal with a second transmission band; a first photo detector configured to convert the output light of the first optical filter into a first electrical signal; a second photo detector configured to convert the output light of the second optical filter into a second electrical signal; a difference circuit configured to output a signal representing a difference between the first electrical signal and the second electrical signal; and a detector configured to detect the frequency modulated signal based on the output signal of the difference circuit.
US09503210B2

Disclosed are a sequence report method and a sequence report device for reducing a signaling amount for reporting a Zadoff-Chu sequence or a GCL sequence allocated for a cell. Indexes starting at 1 are correlated to different ZC sequences and are allocated for cells so that the indexes are continuous. When such ZC sequences are reported from BS to UE, a start index indicating the start of the continuous indexes is combined with the number of allocated sequences and they are reported as allocation sequence information by a report channel. The UE and the BS share the correlation between the ZC sequences and the indexes and the UE identifies a usable sequence number according to the correlation and the allocation sequence information reported from the BS.
US09503206B2

A polling arrangement where polling frequency and/or rates may be adjusted according to activities of end stations or other elements being polled. The ability to adjust the polling activities may be used to facilitate reducing or otherwise controlling network resources allocated to the supporting the polling or other messaging depending operations.
US09503203B2

Interference cancellation circuitry is provided for reconstructing a wirelessly transmitted modulated signal in a receiver using output of a decoder for calculating per-bit probabilities corresponding to bit-by-bit estimates of a coded message from which one bit hard decisions and multi-bit soft decision can be derived. A soft modulator reconstructs the transmitted modulated signal by calculating a weighted superposition depending upon the hard decisions and at least one combined value computed by combining two or more of the multi-bit soft decisions corresponding to different bits of the coded message. A soft modulation method using combined value(s) in a weighted superposition of hard decisions and computer program code for calculating the combined values and regenerated modulated signal are also provided. Other embodiments may be described and claimed.
US09503191B2

The disclosure discloses a Generic Mapping Procedure (GMP) mapping method for an Optical channel Data Unit (ODU), including: caching low-level ODUk data to a memory according to the rate of low-level ODUk data stream; generating an adjustment byte in a mapping process and encoding the adjustment byte; generating read enable of the cached data by an algorithm according to the adjustment byte, reading the cached low-level ODUk data, and generating Optical channel Data Tributary Unit (ODTU) data according to the read data; and crossing a time slot of the ODTU data in multiple channels to that of a high-level ODU payload, and forming the data in the time slot of the high-level ODU payload and the encoded adjustment byte into a completed high-level ODU frame. The disclosure may further provide a GMP mapping apparatus for an ODU. According to a technical solution of the disclosure, the GMP mapping of the ODU can be implemented according to the dynamic change of a service rate.
US09503173B2

A system and method for sharing antennas of a wireless communication device is provided. The wireless communication device leverages cellular antennas to improve data throughput by creating a multiple-in, multiple out (MIMO) operation for a wireless local area network (WLAN) connection. Antenna resources are dynamically allocated between the cellular antennas and the wireless antenna to provide improved throughput.
US09503171B2

Disclosed is a method for transmitting radio frequency signals. In the method according to the present invention, a plurality of antenna groups may be arranged for achieving array gain and multiplexing gain at the same time, and the plurality of antenna groups are located far from each other so that they have no correlation, and antennas of the same group are located adjacent to each other so that they have correlation. Accordingly, system capacity as well as capacity of data channel and control channel may be significantly increased through mitigation of inter-cell interference and enhancement of cell edge performance.
US09503170B2

A multipath communication system forms a complex weighted compound signal for transmission through a channel environment wherein the compound signal includes a complex variable weighted compound signal related to a count of available antennas, a power constraint related to each said antenna, and a channel state characteristic.
US09503167B2

The present invention provides a method of transmitting broadcast signals. The method includes, formatting input streams into Data Pipe, DP, data; Low-Density Parity-Check, LDPC, encoding the DP data according to a code rate; bit interleaving the LDPC encoded DP data; mapping the bit interleaved DP data onto constellations according to one of QAM (Quadrature Amplitude Modulation), NUQ (Non-Uniform QAM) or NUC (Non-Uniform Constellation); Multi-Input Multi-Output, MIMO, encoding the mapped DP data by using a MIMO encoding matrix having a MIMO encoding parameter; building at least one signal frame by mapping the MIMO encoded DP data; and modulating data in the built signal frame by an Orthogonal Frequency Division Multiplexing, OFDM, method and transmitting the broadcast signals having the modulated data.
US09503165B2

A wireless communication device includes circuitry and capability to perform carrier frequency offset (CFO) estimation based on signals received from one or more other wireless communication devices. In an orthogonal frequency division multiple access (OFDMA) implementation, the wireless communication device receives two or more OFDMA symbols from first and second other wireless communication devices that include data and a copy/repeat of that data from each of the respective first and second other wireless communication devices within specified one or more sub-carriers. The sub-carrier assignment for the first and second other wireless communication devices is made such that the first wireless communication device transmits first data and the copy of that first data using a first at least one sub-carrier, and the second wireless communication device transmits second data and the copy of that second data using a second at least one sub-carrier.
US09503158B2

Embodiments of methods for adaptive sub-band point-to-point communication are presented. In one embodiment a method includes performing functions using a power line communication (PLC) transmitter device. The method may include receiving a first data packet having a first adaptive sub-band information set, the first sub-band information set comprising information from a PLC transmitter. The method may also include extracting the first sub-band information set from the first data packet. Additionally, the method may include analyzing the first sub-band information set to determine a transmitter sub-band hopping pattern. The method may further include setting a corresponding receiver sub-band hopping pattern synchronized to the sub-band hopping patter used by the PLC transmitter and hopping to a subsequent sub-band as defined by the receiver sub-band hopping pattern.
US09503143B2

An electronic device performs a method for controlling a transmission output based on an input mode entrance. The electronic device includes a display configured to detect an input and a processor configured to control a transmission output according to whether an input is detected by the display.
US09503138B2

A circuit comprises a vector separator circuit to generate a first extracted signal according to (i) a first correlation signal, (ii) a second correlation signal, and (iii) a relative response signal. The first correlation signal corresponds to a first correlation between an input signal and a first test signal. The first test signal has a first frequency, and the input signal includes a first spur having the first frequency. The second correlation signal corresponds to a second correlation between the input signal and a second test signal. The second test signal has a second frequency. The relative response signal corresponds to a relative response of the second frequency in the first correlation signal.
US09503132B2

A wireless communication apparatus includes an amplifying unit that amplifies an input signal that includes signals with different frequencies of a first frequency and the second frequency; a measuring unit that measures a level of inter modulation distortion generated in a signal obtained by the input signal being amplified by the amplifying unit; a determining unit that determines whether the level of the inter modulation distortion measured by the measuring unit is equal to or greater than a regulation value that is previously stored; and a control unit that decreases, when a result of the determination obtained by the determining unit indicates that the level of the inter modulation distortion is equal to or greater than the regulation value, a level of a signal input to the amplifying unit.
US09503131B2

An antenna for communicating with a remote communication system. The antenna comprises main and sub reflectors, a beam shaping element facing the sub reflector and having a plurality of feeding points, a plurality of ortho-mode transducers (OMTs), and a plurality of waveguides each having a proximal end connected to another of the plurality of OMTs and a distal end connected to one of the plurality of feeding points. The beam shaping element is sized and shaped to form an ellipsoidal beam creating a first elliptical spot on the sub reflector by combining a plurality of polarized intermediate transmission signals; each of the polarized intermediate transmission signals is originated from another of the plurality of OMTs.
US09503129B2

A first User Equipment (UE), a second UE, a first Radio Network Node (RNN), and methods therein for controlling interference between transmissions in a first system and transmissions in a second system. The first system comprises the first UE and the first RNN serving the first UE. The second system comprises the second UE and a second RNN serving the second UE. The first system has a first priority in a first part of a shared spectrum and the second system has a second priority in the first part of the shared spectrum, wherein the first priority is higher than the second priority. The method in the first UE comprises transmitting a signal to a second RNN that is to perform a downlink transmission to the second UE, which signal is configured to control the transmission of the second RNN.
US09503123B1

Methods and apparatus are provided for random access to compressed data using bitwise indices, enabling interaction with compressed data as if interaction were with an uncompressed version thereof. A compressed file is decompressed using an index table comprising a bitwise mapping between individual bits in the compressed file and corresponding portions of an uncompressed version of the compressed file; and decompressing at least a portion of the compressed file using the index table. Different data types within a file are optionally managed by separate index tables. A block-based file system can process index tables to provide transparent access to the compressed file. The index tables support dynamic index granularities, without decompressing the compressed file and recompressing it. The decompressed portion of the compressed file is optionally stored in a cache, possibly with neighbor portions pre-fetched using the index tables. Multi-resolution compression and quality-based decompression are also provided without space overhead.
US09503114B1

A multi-lane analog to digital converter (ADC) samples an analog input according to multiple phases of a sampling clock. Ideally, the multiple phases of the sampling clock are non-overlapping. The multi-lane ADC includes one or more reset switches to remove any residual samples that can remain after their conversion from an analog signal domain to a digital signal domain. As a result of this removal, the multiple phases of the sampling clock need not to ideally coincide with one other. Rather, some overlap between the multiple phases of the sampling clock can exist while having digital output samples still accurately represent the analog input.
US09503113B1

Apparatus and associated methods are disclosed for gain and offset trimming. In one exemplary embodiment, an apparatus includes a first circuit that includes a first transconductance stage to generate a first current. The first circuit has an output offset. The apparatus further includes an offset trim circuit, which includes a second circuit to provide an output voltage selectable from a plurality of voltage values, and a second transconductance stage to generate a second current in response to the output voltage of the second circuit. The output offset of the first circuit is trimmed by adding the second current to the first current.
US09503090B2

A high speed VPP level translator circuit using thin-oxide field effect transistors (FETs) and methods of use are disclosed. The level translator includes a resistor divider and a one-shot circuit in parallel with the resistor divider. The one-shot circuit conducts to assist a transition from a first state to a second state, and is non-conducting during the transition from the second state to the first state.
US09503085B1

A magneto-electric (ME) magnetic tunnel junction (MTJ) Exclusive-OR (XOR) gate is provided. The ME MTJ XOR gate includes an insulator separating a top ferromagnetic (FM) layer and a bottom FM layer, a top ME layer on the top FM layer, and a bottom ME layer on the bottom FM layer. The ME MTJ XOR gate also includes a top electrode coupled to the top ME layer and a bottom electrode coupled to the bottom ME layer where a voltage between the top electrode and the top FM layer is a first input, a voltage between the bottom electrode and the bottom FM layer is a second input, and a resistance between the top FM layer and the bottom FM layer is indicative of the XOR of the first input and the second input. The ME MTJ XOR has reduced energy consumption, smaller area, faster switching times, and is non-volatile.
US09503076B2

A gate potential control circuit includes a driving switching element, a first gate potential supply part, a first switching element, a first resistor, and a first operational amplifier. The first operational amplifier includes an output portion connected to a gate of the first switching element, an inverting input into which a first reference potential is input, and a non-inverting input into which a closer one of a first value and a second value to a potential of the first gate potential supply part is input. The first value is based on a potential difference obtained by subtracting a potential of a terminal of the first resistor on a driving switching element side from a potential of a terminal of the first resistor on a first gate potential supply part side. The second value is based on a potential of a terminal of the first switching element.
US09503071B2

A circuit for providing a dummy load includes first to fifth resistors, a comparator, and first to fifth electronic switches. When a power good signal from a power supply is at a low level signal, the first electronic switch is turned off. The second to fourth electronic switches are turned on. The fifth electronic switch is turned off. When the power good signal from the power supply is at a high level signal, the first electronic switch is turned on. The second to fourth electronic switches are turned off. The fifth electronic switch is turned off.
US09503067B1

A circuit includes first and second gated buffers, respectively receiving and outputting logic signals, including a delayed signal. A finite state machine receives the delayed signal and a clock signal and assumes first or second machine states. The first gated buffer is conditionally enabled based on a state of the finite state machine, while the second gated buffer is enabled regardless of the state of the finite state machine. A method includes receiving and generating logic signals via first and second gated buffers, including a delayed signal. The method includes receiving the delayed signal and a clock signal in a finite state machine. The method further includes enabling the first gated buffer depending on whether the state machine is in a first or a second machine state, and enabling the second gated buffer when the finite state machine is either in the first or the second machine state.
US09503065B1

Example circuitry includes: a first sampling circuit configured to operate based on a first clock signal, to receive data, and to sample the data, where the first clock signal is calibrated to compensate for a first timing error in a rising edge of the data; a second sampling circuit configured to operate based on a second clock signal, to receive the data, and to sample the data, where the second first clock signal is calibrated to compensate for a second timing error in a falling edge of the data; and a third sampling circuit to receive the data and a third clock signal, to sample the data based on the third clock signal to produce sampled data, and to control an output of the circuitry based on the sampled data to be either an output of the first sampling circuit or an output of the second sampling circuit.
US09503058B1

Various example implementations are directed to circuits and methods for generating a clock signal. According to an example embodiment, a circuit arrangement includes a relaxation oscillator configured to output a clock signal. The clock signal has an oscillation frequency dependent on a reference current provided to the relaxation oscillator, an operating temperature of the relaxation oscillator, and a supply voltage used to power the relaxation oscillator. The circuit arrangement also includes a current source coupled to the relaxation oscillator and configured to generate the reference current. The current source is configured to adjust the reference current, in response to a change in one or more of the temperature of the relaxation oscillator and the supply voltage, to inhibit change in the oscillation frequency of the clock signal.
US09503051B2

A filter unit of a high-frequency module includes SAW resonators connected in series with first and second series connection terminals therebetween, first and second shunt connection terminals, and additional SAW resonators. One end of one SAW resonator is connected to a connection node of other SAW resonators via a connection conductor, and the other end of the one SAW resonator is connected to the first shunt connection terminal via a connection conductor. The first shunt connection terminal is connected to ground via an inductor. A matching element is connected between the second series connection terminal and the second external connection terminal. The matching element is inductively coupled or capacitively coupled to the connection conductor.
US09503050B2

An elastic wave device that can be downsized. Certain examples of the elastic wave device include a substrate, an IDT electrode provided above the substrate, a wiring electrode provided above the substrate and connected to the IDT electrode, a sealing body sealing an excitation space in which the IDT electrode excites an elastic wave, and a sealing wall provided above the wiring electrode and forming a part of the sealing body. An outer periphery of the wiring electrode includes a protrusion. In one example, the wiring electrode includes a first wiring electrode provided on an upper surface of the substrate and a second wiring electrode provided on an upper surface of the first wiring electrode, an outer periphery of the second wiring electrode being provided with the protrusion.
US09503045B2

A resonator element includes a thick section, a middle section and a thin section, in which at least the thick section performs thickness shear vibration, in which a first step difference is provided at a boundary between the thick section and the middle section, and a second step difference is provided at a boundary between the middle section and the thin section, on one side of a direction of the thickness shear vibration, in which a first antinode of flexural vibration is located between the first step difference and the second step difference, and in which, a distance between the first antinode and the first step difference is indicated by d1, a distance between the first antinode and the second step difference is indicated by d2, and a wavelength of the flexural vibration is indicated by λ, a relationship of 0≦d1≦λ/8 and 0≦d2≦λ/8 is satisfied.
US09503039B2

A method for adjusting common mode rejection ratio (CMRR) and gain error of a current sense (CS) amplifier, comprising: measuring a first referred to input (RTI) offset voltage while presenting a given common mode (CM) input voltage; adding a first trim resistor of a plurality of selectable trim resistors within an adjustable feedback resistor chain to a feedback electrical path; measuring a second RTI offset voltage while presenting the given CM input voltage; estimating, based upon the first and second RTI offset voltages, a third RTI offset voltage value that would result by adding a second trim resistor of the plurality of selectable trim resistors to the feedback electrical path; using the first, second and third RTI offset voltage values to identify the combination of selectable trim resistors that achieves an RTI offset voltage closest to zero volts; and adding the identified selectable trim resistors to the feedback electrical path.
US09503027B2

An integrated circuit may have two signal paths: an open-loop modulator (which may comprise a digital-input Class-D amplifier) and a closed-loop modulator (which may comprise an analog-input Class-D amplifier). A control subsystem may be capable of selecting either of the open-loop modulator or the closed-loop modulator as a selected path based on one or more characteristics (e.g., signal magnitude) of an input audio signal. For example, for higher-magnitude signals, the closed-loop modulator may be selected while the open-loop modulator may be selected for lower-magnitude signals. In some instances, when the open-loop modulator is selected as the selected path, the closed-loop modulator may power off, which may reduce power consumption. In addition, one or more techniques may be applied to reduce or eliminate user-perceptible audio artifacts caused by switching between the open-loop modulator and the closed-loop modulator, and vice versa.
US09503017B1

The described devices, systems and methods include a voltage controlled oscillator. The voltage controlled oscillator includes a fine-tuning varactor network, a switch capacitor array having a first plurality of binary capacitor array elements and a second plurality of thermometer code capacitor array elements, and a tank inductor network including a first inductor in parallel with a second inductor.
US09503006B2

In some aspects, a power supply system for a plasma application and/or an induction heating system includes at least two controllable power generators of different types. Each controllable power generator includes an associated identifier, and at least one operating unit for controlling at least one of the power generators, the operating unit includes an operating application to import the respective identifiers from the power generators that are connected to the operating application, and based on generator-specific configuration data that are stored for each power generator and the identifiers, the operating application constructs a graphic user interface on a display device of the operating unit.
US09502998B1

Systems and methods are disclosed for controlling a torque output by an AC motor drawing power from a DC bus. According to certain embodiments, the system for controlling the torque output has a controller and an inverter. The controller further has an operation status detector, a basic voltage vector calculator, and a voltage command generator. The operation status detector is configured to determine a DC bus voltage and a rotor field vector. The basic voltage vector calculator is configured to calculate a plurality of basic voltage vectors having a magnitude proportional to the DC bus voltage. The voltage command generator is configured to generate a voltage command for producing a stator field vector. Producing the stator field vector includes at least one of maintaining a constant angle between the stator field vector and the rotor field vector, and setting a magnitude of the stator field vector equal to the magnitude of the plurality of basic voltage vectors. The inverter is electrically connected to the controller and configured to receive the voltage command. The inverter is also configured to convert the DC bus voltage to one or more AC voltage signals according to the voltage command. The inverter is further configured to apply the one or more AC voltage signals to the AC motor to produce the stator field vector.
US09502995B2

A micro-hydraulic device includes an enclosure. The enclosure includes a substrate having a first surface and a second surface distal to the first surface. The enclosure further includes a chamber defined between the first surface and the second surface. The chamber is defined by a wall substantially from the first surface to the second surface. The enclosure includes a first flexible membrane sealingly connected to the first surface and disposed over the chamber; and a second flexible membrane sealingly connected to the second surface disposed over the chamber distal to the first flexible membrane. The device further includes an internal fluid retained within the enclosure and a rigid electrode fixed within the chamber having an aperture therein. A flexible electrode is disposed on the second flexible membrane opposite the rigid electrode.
US09502993B2

Methods, apparatuses, and systems are disclosed for a transducer. The transducer can include a bottom plate formed from a first sheet of material, a top plate formed from a second sheet of material, and a middle portion. The middle portion includes a mid-upper element formed from a third sheet of material, with a mid-upper frame, a mid-upper mass, and a plurality of mid-upper attachment members coupling the mid-upper mass to the mid-upper frame. The middle portion can also include a central element formed from a fourth sheet of material, with the central element having a central frame and a central mass.
US09502987B1

A resonant DC/DC power converter is provided with isolated primary and secondary circuits. The primary circuit includes at least four switches as first and second pairs in a bridge configuration, an isolation transformer having at least one primary and at least one secondary winding, and a resonant tank including a resonant capacitor and a split resonant inductor having two separate windings. In one embodiment, the split resonant inductor windings are substantially identical. Synchronous switching of diagonally opposed switch pairs in the bridge configuration thereby produces a center point voltage of the primary transformer winding is substantially free of stepwise voltage changes.
US09502982B2

The present invention proposes a method for controlling an adaptive power converter. The method comprises: generating an output-sense signal by sampling a reflected voltage of a transformer; receiving a feedback signal related to an output power of the adaptive power converter; generating a clock signal in response to the feedback signal and the output-sense signal; generating a switching signal for switching the transformer and regulating an output voltage of the adaptive power converter. The reflected voltage is correlated to the output voltage of the adaptive power converter. The switching signal is generated in response to the feedback signal. The frequency of the switching signal is determined by the clock signal. The frequency of the switching signal is decreased in response to a decrement of the feedback signal.
US09502971B2

A charge pump circuit for generating a negative voltage has: a clock generator arranged to output at least one clock signal; a switched capacitor voltage inverter circuit including capacitive elements wherein the switched capacitor voltage inverter circuit receives the at least one clock signal and generates a negative voltage therefrom. The charge pump circuit further has a regulation control loop providing a feedback path from an output of the switched capacitor voltage inverter circuit to a supply input of the switched capacitor voltage inverter circuit, and an output arranged to output a generated negative voltage. The feedback path has an operational amplifier configured to generate a maximum charging supply voltage from a fed back level-shifted negative voltage and apply the maximum charging supply voltage to the input supply of the switched capacitor voltage inverter to charge at least one of the capacitive elements during a loop start up.
US09502964B2

A voltage converter system is disclosed. The system has a control unit, a multiphase converter, and a measuring unit. The control unit is configured to generate one or more converter parameter adjustments from a feedback signal. The multiphase converter is configured to selectively generate an output signal at a selected voltage and to adjust one or more converter parameters using the one or more converter parameter adjustments to mitigate generation of spurs in the output signal. The measuring unit is configured to measure the output signal and generate the feedback signal from the output signal.
US09502959B2

An exemplary method for detecting a three-phase islanding state in a three-phase electricity network includes supplying power to a three-phase electricity network via a power supply assembly, controlling an output frequency of the power supply assembly with a frequency reference signal adapted to deviate the output frequency of the power supply assembly from a grid frequency representing a frequency of a common electricity network whose portion of the three-phase electricity network is in normal operating conditions. The method also includes detecting a three-phase islanding state in the electricity network if the output frequency of the power supply assembly is outside an allowable value range. During a normal operating state of the electricity network, the frequency reference signal depends on an active output current of the power supply assembly.
US09502958B2

During a start-up phase, each corresponding test current is delivered to a corresponding chain of loads of a plurality of chain of loads. Each chain of loads is coupled between a common node and a corresponding output node. Each chain of loads includes N series-coupled loads, where N is an integer greater than one. A maximum voltage is determined from among the output voltages, where the output voltages are the voltages at the output nodes. Also, a minimum voltage is determined from among the output voltages. The maximum voltage from among the output voltages is compared with the minimum voltage from among the output voltages to make a determination as to whether the maximum voltage exceeds the minimum voltage by a threshold. An indication is output based on a result of the determination.
US09502954B2

A signal transmission circuit includes, in each of a first circuit connected to a first coil of an insulating transformer and a second circuit connected to a second coil of the insulating transformer, a transmitting circuit, a receiving circuit, a coil-side switching circuit, an input/output-side switching circuit, an abnormality detection circuit, a delay circuit, and a direction control section. In the signal transmission circuit, the direction control section controls the switching circuit to switch a signal direction between input and output, and the switching circuit switches between transmission and reception. The delay circuit delays a received signal and returns the resultant signal to the transmitting side, and the abnormality detection circuit detects abnormality to perform self-diagnosis.
US09502953B2

A covering is easily mounted and/or demounted to envelop an overall sliding device with onboard moving-magnet linear motor. The covering helps improved propulsion, high velocity and response of a table even with small in dimension, compact in construction. End blocks are installed in opposite ends of a bed and a linear motor is placed between the bed and the table. The end blocks are made in solid bodies which are tightened to the bed together with a coil board. The end blocks have butting surfaces which can come into abutment against the ends of the table to protect the table from getting out of the bed. The end blocks have locking recesses which mate with locking jaws on the covering to fasten the covering to the end blocks.
US09502951B2

An electrical machine including a stator and a rotor rotatable relative to the stator with an air gap therebetween. The stator includes a first plurality of sources of magnetic field, which is equally spaced in a circumferential configuration over the stator. The rotor includes a second plurality of sources of magnetic field, which is equally spaced in a circumferential configuration over the rotor. The magnetic sources of at least one plurality are electromagnets and electromagnet includes at least one magnet coil resting on a magnet conductor. The magnetic conductor includes at least one member made of magnetically isotropic and/or anisotropic materials.
US09502947B2

Provided is an AC generator for a vehicle, which is improved in heat-radiation performance and vibration resistance with a simple configuration. The AC generator for a vehicle includes a rectifier which is mounted to a rear bracket (2) and is electrically connected to a stator, for rectifying an alternating current generated in the stator into a direct current. The rear bracket (2) includes a bracket main body (30) having intake windows (32) and exhaust windows (34) partitioned by ribs (33), and a bearing housing portion (41) for housing a bearing therein, a mounting leg portion (31) extending radially outward from the bracket main body (30) so as to be mounted to a mounting target member, and an expanded portion (37) expanding radially from the mounting leg portion (31) toward a circumferential edge portion of the bracket main body (30).
US09502940B2

An objective of the present invention is to provide a connection terminal in which the number of parts is reduced and a contact failure hardly occurs. A connection terminal is conducted to a windings wound around tooth of a stator having a cylindrical shape. The connection terminal includes an insertion part that is inserted in a concave part formed in the stator of a motor and a connection part that extends from the insertion part. In the insertion part, a contact part that comes into contact with an end part of the winding when the insertion part is inserted in the concave part, is formed. The insertion part and the connection part are integrally formed.
US09502926B2

A differential load detection apparatus and method are provided for detecting a wireless power receiver in a wireless power network. The differential load detection method includes transmitting first detection power for detecting the wireless power receiver, transmitting second detection power when an impedance variation greater than a first predetermined threshold value and equal to or less than a second threshold value is detected, and waiting for a reception of an advertisement signal according to the transmission of the second detection power from the wireless power receiver.
US09502916B2

The processor of a power leveling control device acquires electric cell residue of an electric cell device in each monitoring time, calculates an electric cell residue representative value representing a transition of an electric cell residue in the period based on an acquired electric cell residue, and determines a variation with respect to the current leveling target value based on the electric cell residue representative value. The processor determines a leveling target value changed by the determined variation for power leveling for use in the next period, and controls the power to be supplied from a power supply and an electric cell device to a load based on the leveling target value for power leveling in the next period. Thus, the leveling control may be performed depending on the power supply and the power use situation of a load.
US09502915B2

Embodiments provide a charging and discharging apparatus and a terminal. The charging and discharging apparatus includes a charging and discharging interface and a interface wire; the charging and discharging interface includes a charging and discharging circuit; the charging and discharging circuit includes a battery connection end, a current input end, and a current output end; one end of the interface wire for external connection is electrically connected to the battery connection end, and the other end is connected to a battery of a first terminal; the current input end is configured to be connected to a current output end; the second charging and discharging apparatus is electrically connected to a second terminal; the current output end is configured to be connected to a current input end. Embodiments are used to realize mutual charging between terminals.
US09502914B2

A charging apparatus for recognizing an adaptor is applied to an alternating current to direct current adaptor. The charging apparatus includes an input side universal serial bus interface, a data voltage detection unit, a microcontroller and a first charging power output unit. The data voltage detection unit detects a kind of the alternating current to direct current adaptor. The microcontroller determines an overall output charging power of the charging apparatus according to the kind of the alternating current to direct current adaptor. The microcontroller is configured to control the first charging power output unit to output the overall output charging power to a first battery.
US09502913B2

The invention concerns a transport and/or storage container with integrated charging function for rechargeable wireless earphones comprising a container housing, at least one receiving unit for at least partially receiving a rechargeable wireless earphone, and an electrical container charging contact for connecting the transport and/or storage container to an electrical energy source, wherein the receiving unit has an electrical coupling contact cooperating with an electrical earphone charging contact of a rechargeable wireless earphone when it is placed in the receiving unit for recharging and wherein the electrical container charging contact and the electrical coupling contact are in the form of mutually complementary electrical contacts.
US09502909B2

Exemplary embodiments are directed to wireless power management. A method may include detecting one or more wireless chargers for charging an energy storage device of one or more monitored energy storage devices if the energy storage device drops below a threshold value. Moreover, the method may include selecting a charging scheme for an electronic device associated with the energy storage device.
US09502906B2

A relay unit electrically opens and closes between a power supply and a power-consuming device. The relay unit includes electronic components in a housing including a case and a cover, the electronic components including a resistor, a first relay connected in series with the resistor, and a second relay, the second relay connecting the power supply and the power-consuming device through an external connection terminal and being connected in parallel with the resistor and the first relay.
US09502903B2

Example energy management systems and methods are described. In one implementation, a system includes an inverter and a combiner module coupled to the inverter. The combiner module receives DC signals from multiple DC sources and delivers a DC output signal. A control module manages a voltage and a current associated with the DC output signal delivered by the combiner module.
US09502900B2

A voltage stability monitoring apparatus monitors the voltage stability of a transmission corridor through which power flows between different parts of a power system. The apparatus monitors an equivalent load impedance at an interface between the transmission corridor and a part of the power system designated as generating the power. This equivalent load impedance at the interface comprises a ratio of a voltage phasor at the interface to a current phasor at the interface. The apparatus tracks a Thevenin equivalent voltage and impedance of the designated part by separately updating that voltage and impedance. Notably, the apparatus updates the Thevenin equivalent voltage to reflect the magnitude of any changes in the voltage phasor that are associated with large variations in the magnitude of the equivalent load impedance at the interface. The apparatus computes an index indicating the voltage stability as a function of this tracked Thevenin equivalent voltage and impedance.
US09502898B2

A system and method of determining priorities for restoration of power in a power distribution system includes collecting customer prioritization data for a set of customers. An inconvenience factor is determined from the customer prioritization data for each customer. A zone restoration factor is then determined from the inconvenience factor for each customer. The inconvenience factor takes into account the estimated outage time, the customer's back-up time, the willingness of the customer to use back-up devices, and customer's priority for the estimated outage time.
US09502897B2

A method and system are disclosed for producing electricity from solar radiation using a solar panel that efficiently produces electricity and is protected against cell burnout in partial shaded conditions. Short length substrings are independently connected to corresponding collector circuits to provide electricity at less than the burnout threshold of a shaded cell. Direct current power from each substring is independently optimized, collected and may be inverted to alternating current.
US09502896B2

A power re-set device that includes two or more solid state switched outlet circuits and two or more timer delay circuits. The circuits are housed within a power outlet enclosure and allow the user to connect a modem, a router, and a computer to direct their sequential activation on a time delayed basis. The system includes displays and timer set buttons to program timed delays into the system for activation of specific switched outlet circuits. The device includes connection to an AC power outlet through a surge protection circuit. The system includes a manual power cycle button that allows the user to re-set the entire system through a single action. The user may program the system to sequentially activate the electronic devices in a manner that allows boot up of the devices in an order that accommodates the interconnections between the devices, such as through a network. Operation of the system includes programming the device to delay activation of a modem and then to delay activation of a router within the system. Thereafter, a further time delay may be implemented before a computer within the system is powered up. The device may monitor power and network signal condition.
US09502895B1

A photo-voltaic (PV) power generating system and a control system for PV array string-level control and PV modules serially-connected into strings of PV modules. The system includes plural parallel strings of serially-connected powergenerating photovoltaic modules that form a PV array, DC/DC micro-converters that are coupled to a DC voltage buss and to the output of a corresponding photovoltaic module or to the output of a string of photovoltaic modules; a gating or central inverter; and a control system. The micro-converters are structured and arranged to include at least one of: an active clamp device, a ground fault detection device, and a fractional power converter that injects power in series or in parallel with voltage or current from the power-generating portion onto the DC buss.
US09502892B2

A device includes a first power transistor, a second power transistor electrically connected in series with the first power transistor, a first electrostatic discharge (ESD) detection circuit, and a first control circuit electrically connected to the first ESD detection circuit and the first power transistor.
US09502885B2

Systems and methods of detecting arcing in DC power systems that can differentiate between DC arcs and load-switching noise. The systems and methods can determine, within a plurality of predetermined time intervals, at least the pulse count (PC) per predetermined time interval, and the pulse duration (PD) per predetermined time interval, in which the PC and the PD can correspond to the number and the intensity of potential arcing events in a DC power system, respectively. The systems and methods can process the PC and PD using one or more arc fault detection algorithms, thereby differentiating between DC arcs and load-switching noise with increased reliability.
US09502884B2

Methods and systems for protecting DC circuits are provided. In an aspect, a method for controlling at least one protection circuit is disclosed. The method can monitor one or more parameters of the at least one protection circuit. One or more control signals can be selectively provided to a plurality of switches in the at least one protection circuit based on one or more parameters of the at least one protection circuit, in order to implement the appropriate protective topology based on one or more parameters of the at least one protection circuit. The method can be used to control a plurality of switches in the protection circuit and protect the DC circuit against short circuit, instabilities, and bus outages, and the like.
US09502863B2

Provided is a surface-emitting semiconductor laser including a substrate; a first semiconductor multilayer reflector of a first conductivity type formed on the substrate, the first semiconductor multilayer reflector including plural pairs of a low-refractive-index layer and a high-refractive-index layer; a cavity region formed on the first semiconductor multilayer reflector; a second semiconductor multilayer reflector of a second conductivity type formed on the cavity region, the second semiconductor multilayer reflector including plural pairs of a low-refractive-index layer and a high-refractive-index layer; a columnar structure extending from the second semiconductor multilayer reflector to the cavity region; and a current confinement layer formed inside the columnar structure by selective oxidation of a semiconductor layer containing Al. The cavity region includes an active region; and a cavity extension region interposed between the active region and the first semiconductor multilayer reflector.
US09502857B2

A wafer is formed having a plurality of laser-to-slider submount features on a first surface. An etching process is used to form scribe lines between the submounts on the first surface of the wafer. The wafer is separated at the scribe lines to form the submounts.
US09502854B1

A self-seeding high power laser includes a spatial filter; an optical relay for circulating a low power un-distorted optical beam, an adaptive optic optically coupled to the output of the optical relay; a high power amplifier optically coupled to an output of the adaptive optic phase control element, wherein adaptively modified phasefront injected by the adaptive optic cancels distortions produced by the high power amplifier; a beamsplitter optically coupled to the high power amplifier for splitting the high power un-distorted optical beam into a high power output beam as the output of the self-seeding high power laser, and a low power beam; a focusing lens; a detector for detecting a metric of the low power beam; and a controller for adaptively controlling the adaptive optic to maximize the power of the high power amplifier, based on the detected metric.
US09502853B2

A gas laser device having a function for properly controlling the gas pressure of a laser oscillator after an alarm is generated. A controller of the laser device has an alarm monitoring part which monitors as to whether an alarm is generated in the oscillator, by which discharge in the oscillator should be stopped; an alarm judging part which discriminates a type of the alarm generated in the oscillator; a gas pressure controlling part which controls a pressure of laser gas within a discharge tube of the oscillator; and a power supply controlling part which controls a power supply of the oscillator. The gas pressure controlling part controls the pressure of the laser gas within the discharge tube to an appropriate value, after the alarm is generated, based on one of a plurality of control patterns predetermined corresponding to the respective types of the alarm.
US09502847B2

A connector assembly includes a main body, a plug, and a positioning base mounted to the main body and engaged with the plug. The plug includes at least one pin and a plurality of first latching portions. The positioning base includes a plurality of second latching portions corresponding to the first latching portions. The second latching portions are selectively engaged with the first latching portions in a first relationship to secure the plug on the positioning base at a first orientation with respect to the positioning base, when the second latching portions are engaged with the first latching portions in a second relationship different to the first relationship, the plug is located at a second orientation different from the first orientation with respect to the positioning base from the positioning base.
US09502843B2

A receptacle block defines one or more sockets at which plugs may be received. Each socket contains a first set of contacts and a second set of contacts. Each socket also includes a sensing contact that interacts with the second set of contacts to close an electrical switch. For example, the sensing contact can interact with an arm extending from one of the contacts of the second set. Closure of the switch can be detected and interpreted to indicate that a plug has been received at the respective socket.
US09502840B2

An electrical receptacle connector includes an insulated housing, upper-row receptacle terminals, and lower-row receptacle terminals. The insulated housing includes a base portion and a tongue portion extended from one side of the base portion. The tongue portion has an upper surface, a lower surface, and a front lateral surface. The lower-row receptacle terminals correspond to the upper-row receptacle terminals and include signal terminals which include high speed transmitting terminals. Each of the high speed transmitting terminals includes a bending portion, an extension portion, and a cutout portion. The bending portion is extended upward from the front end of the flat contact portion and inserted into the tongue portion, the extension portion is extended forward from the top of the bending portion toward the front lateral surface, and the cutout portion is defined at the extension portion and near to the bending portion.
US09502835B2

An electrical connector includes: an insulative housing including a first insulative base with a first contact-receiving slot and a second contact-receiving slot and a second insulative base mounted to the first insulative base; an insulative cap attached to the insulative housing; a metal shell covering the insulative housing and the insulative cap; a static terminal received in the first contact-receiving slot; and a movable terminal received in the second contact-receiving slot. The movable terminal includes a resisting portion connecting and a pair of extension arms extending from the resisting portion. The second contact-receiving slot includes an engaging groove and a holding groove crossing with the engaging groove, the engaging groove defines a bottom wall inclining upwardly from a middle thereof to outer ends thereof to support the free ends of the extension arms. And the resisting portion is operable to be in touch with the bottom wall.
US09502831B2

An electronic device is provided. The electronic device includes a connection member mounted on a circuit board and a first connector coupled to the connection member, in which a signal terminal of the first connector is electrically connected to the circuit board through the connection member, and a ground terminal of the first connector is connected to a ground of the circuit board. The electronic device may be implemented variously.
US09502830B2

A multimedia faceplate includes a frame having a front face and a rear face and at least one connector mounting aperture therein, a non-Ethernet connector mounted in the connector mounting aperture, an Ethernet conversion unit that is electrically connected to the non-Ethernet connector and a plurality of wire connection contacts that are electrically connected to the Ethernet conversion unit. The Ethernet conversion unit is configured to draw an electrical power signal from either an AC to DC power conversion unit or from a Power-over-Ethernet power signal received from an Ethernet cable that is connected to the wire connection contacts.
US09502822B1

A ball-lock axial connector assembly includes a receiving member, and a sleeve having one end is received in the receiving member. The sleeve has three apertures defined radially through the wall thereof so as to receive a bead in each of the apertures. A portion of the bead is located within the sleeve. A guide face extends from each of the apertures and toward the receiving member. A positioning member and a push member are mounted to the sleeve. A first resilient member is biased between the positioning member and the push member. The push member has three protrusions which extend through the positioning member and contact the beads respectively. A case is movably mounted to the positioning member and the push member. A second resilient member is located between the bead and the receiving member. The beads are pushed to be removed from the apertures by pushing the case.
US09502821B2

An electrical connector includes an insulative housing defining a forwardly extending mating tongue, a plurality of contacts with contacting sections exposed upon the mating tongue and a metallic shield enclosing the insulative housing to define a mating cavity. A metallic shielding plate is embedded within the mating tongue and forms a pair of locking notches in two opposite lateral sides. The mating tongue further includes in two opposite lateral sides a pair of recesses aligned with and intimately located inside of the pair of locking notches, respectively, in the transverse direction. The housing and the corresponding contacts commonly form the terminal module which is composed of an upper terminal module, a lower terminal module commonly sandwiching a shielding plate module therebetween in the vertical direction. The metallic shield optionally defines a clip structure by folding an extension on a rear lower edge thereof.
US09502817B2

A connection device of a portable terminal is provided. The connection device includes one or more coupling slots provided on a lateral side of the portable terminal, one or more metal pads mounted on a bottom of the one or more coupling slots, and a plug including one or more magnets corresponding to the one or more pads. The one or more magnets are arranged to protrude toward a predetermined side of the plug, and inserted into the one or more coupling slots by an attractive force produced between the one or more metal pads and the one or more magnets, thereby coupling the plug to the lateral side of the portable terminal.
US09502814B2

A connector cover holds altogether a plurality of insertion connectors, the insertion connectors being provided at corresponding ends of cables and inserted into reception connectors. The connector cover includes a cover part in which a plurality of holding openings that hold the insertion connectors with ends thereof being exposed are formed so that the insertion connectors can be inserted into the reception connectors. The cover part can be divided along a dividing surface including the holding openings. The cover part is formed with a lock-lever pressing part that presses a lock lever of corresponding one of the insertion connectors held by the holding openings to fix the insertion connectors in an unlocked state for each of the holding openings.
US09502812B2

A connector includes a pair of connector housings, a fitting part provided in one connector housing of the pair of connector housings, and a fitted part provided in another connector housing and to which the fitting part is fitted. The fitted part has a frame and a movable housing. The movable housing is arranged within the frame, and is movable in a fitting direction. Timing to complete fitting between the movable housing and the fitting part is different from timing to complete fitting between the frame and the fitting part. The frame and the movable housing have a locking part which temporarily locks the movable housing within the frame. The locking part is restored by releasing the temporary locking in a state in which the fitting between the fitting part and the movable housing is completed. A periphery of the restored locking part is covered with a protection part.
US09502795B1

A clamping wire structure of a terminal block includes an insertion base (10) and a spring (20). The insertion base (10) includes an insertion slot (12), a contact section (13), a linking piece (14), a first connection portion (15), an extension element (16), a connection slot (161), and a conductive pin (17). The insertion base (10) bends, so that the insertion slot (12) is positioned correspondingly above the extension element (16), and the linking piece (14) is inserted in the connection slot (161) to allow the insertion slot (12) and the extension element (16) to surroundingly form an insertion space (100). The spring (20) is bent into a V-shaped spring. The spring (20) is inserted in the insertion space (100).
US09502793B2

Provided is an assembly structure of an electrical junction box which makes it possible to fit an electrical component attachment block into an insulation case without provision of a lock mechanism. Included are a housing (15) provided in an insulation case (5) and configured to house an electrical component attachment block (7); contact walls (19, 20) provided in an inner wall of the housing (15), and configured to come into contact with the housed electrical component attachment block (7); a terminal receiving portion (23) provided to the insulation case (5), on which to place a connection terminal (8); and a fastening module (9) configure to screw-fix the connection terminal (8) placed on the terminal receiving portion (23) to a conduction bus bar (37) in the electrical component attachment block (7) housed in the housing (15). The electrical component attachment block (7) is fitted into the insulation case (5) by fixing the connection terminal (8) to the conductor bus bar (37) by use of the fastening module (9) with the electrical component attachment block (7) put in contact with the contact walls (19, 20).
US09502785B2

An electrical terminal is disclosed having a crimp barrel. The crimp barrel has a base; and opposing side walls extending from the base and each has an opposing end region. The opposing side walls have a conductor receiving region in which the sidewalls have an F-crimp when crimped to stripped conductors of a wire; a wire insulation receiving region for receiving an insulation covered portion of the wire; and a transition region positioned between the conductor receiving region, and the wire insulation receiving region. The opposing end regions in the transition region are overlapped in the circumferential direction when crimped to surround the wire.
US09502784B2

A conductor of an aluminum electric wire having a solder coating film thereon is placed on a conductor crimping part. The conductor crimping part includes a strongly crimped part where solder coating film of the conductor part is crimped with a strength to allow a break to occur due to application of a crimping force, and a weakly crimped part where solder coating film of the conductor part is crimped with a strength to prevent a break from occurring due to application of the crimping force. The conductor part and the conductor crimping part are electrically connected.
US09502773B2

A mobile device includes a ground plane, a ground branch, a supporting element, and a circuit element. The ground branch is coupled to the ground plane. A slot is formed between the ground branch and the ground plane. The supporting element is positioned above the ground branch, and a vertical projection of the supporting element at least partially overlaps the ground branch. The circuit element is coupled between the ground branch and the ground plane. A first antenna structure is formed by the ground branch. The first antenna structure is excited by a first signal source. A second antenna structure is disposed on the supporting element. The second antenna structure is excited by a second signal source.
US09502767B2

An antenna is configured to operate with circularly-polarized electromagnetic radiation in a low-frequency band and in a high-frequency band. The antenna comprises a ground plane and a radiator. The radiator comprises four pairs of radiating elements disposed as pairs of spiral segments on a cylindrical surface having a longitudinal axis orthogonal to the ground plane. Each pair of radiating elements comprises a low-frequency radiating element and a high-frequency radiating element. The low-frequency radiating element comprises a low-frequency conductive strip. The high-frequency radiating element comprises an electrically-connected series of at least one high-frequency conductive strip and at least one high-frequency capacitor. The electrical path lengths of the low-frequency radiating elements and the electrical path lengths of the high-frequency radiating elements are equal.
US09502766B2

A monopulse beam former for an array antenna composed of a plurality of sub-arrays. In one embodiment, a monopulse beam former includes, for each sub-array, a sum feed network and a delta feed network, each feeding an analog processor. The delta beam former includes a plurality of couplers with coupling coefficients increasing linearly across the sub-array. The analog processor includes a first gain-phase module in line with the output of the delta feed network, and a second gain-phase module adjusting the gain and phase of a portion of the output of the sum feed network added to the delta signal. The gain settings and phase settings of the first and second gain-phase modules are adjusted to provide a piecewise-linear approximation to a desired antenna pattern.
US09502763B2

A stabilization control method for a satellite tracking antenna disclosed herein includes outputting a monopulse signal and a gyro signal through a satellite tracking antenna having a gyro mounted thereto, under a situation that disturbance is applied to the satellite tracking antenna, inputting the output monopulse signal and gyro signal into a Kalman filter for stabilization of the satellite tracking antenna, defining a state vector of the Kalman filter based on a pointing-error angle for the satellite tracking, corresponding to the monopulse signal, and a pointing-error angular velocity for the satellite tracking, corresponding to the gyro signal, predicting an original monopulse signal corresponding to a state prior to distortion of the monopulse signal based on the defined state vector, and continuously updating the prediction of the original monopulse signal, and carrying out the stabilization control for the satellite tracking antenna by using the predicted original monopulse signal as a pointing-error-correcting input value.
US09502761B2

A vertical split ring resonator antenna is disclosed, comprising a substrate having an upper surface and lower surface, an interdigitated capacitor coupled to the upper surface of the substrate and ground coupled to the lower surface. The interdigitated capacitor includes a first planar segment and a second planar segment, each having interdigitated fingers that are separated by a gap disposed between the first planar segment and second planar segment. The interdigitated capacitor is coupled to the substrate to form a vertical split ring resonator.
US09502756B2

An antenna driving device includes an antenna driving circuit arranged to generate driving current of a transmission antenna, a power supply circuit arranged to generate an output voltage from an input voltage so as to supply the output voltage to the antenna driving circuit, and a logic circuit arranged to control the antenna driving circuit and the power supply circuit. The power supply circuit has a function of temporarily disabling current feedback control so as to perform voltage feedback control using a reference value just before halting the drive of the transmission antenna when the power supply circuit restarts to drive the transmission antenna, or has a function of performing variable control of a reference value for current feedback control in accordance with a rising edge of the driving current when the power supply circuit restarts to drive the transmission antenna.
US09502742B2

An electrical energy store having at least one stack with in each case at least one storage cell. Each storage cell has an air electrode, which is connected to an air supply apparatus, and a storage electrode. The storage electrode adjoins channels which contain a storage medium and a steam/hydrogen mixture. A reservoir of steam/hydrogen is provided, the reservoir being directly connected to the channels.
US09502738B2

A power storage device includes a battery containing body, an electronic device unit, and a chassis for housing them, wherein at a side surface portion of the chassis, an opening for inserting and removing the battery containing body and the electronic device unit is provided; an openable and closable pivoting member is provided inside the opening, the pivoting member, when closed, preventing removal of the battery containing body, and when opened, preventing insertion of the electronic device unit as removed; and the electronic device unit is housed and disposed adjacent to the battery containing body, and includes an opening prevention guide capable of engaging with the pivoting member and thereby preventing the pivoting member from being opened when the electronic device unit is housed.
US09502730B2

Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy as electrical energy.
US09502729B2

An ion-conducting composite electrolyte is provided comprising path-engineered ion-conducting ceramic electrolyte particles and a solid polymeric matrix. The path-engineered particles are characterized by an anisotropic crystalline structure and the ionic conductivity of the crystalline structure in a preferred conductivity direction H associated with one of the crystal planes of the path-engineered particle is larger than the ionic conductivity of the crystalline structure in a reduced conductivity direction L associated with another of the crystal planes of the path-engineered particle. The path-engineered particles are sized and positioned in the polymeric matrix such that a majority of the path-engineered particles breach both of the opposite major faces of the matrix body and are oriented in the polymeric matrix such that the preferred conductivity direction H is more closely aligned with a minimum path length spanning a thickness of the matrix body than is the reduced conductivity direction L.
US09502727B2

In a fuel cell system that includes a reformer adapted to reform a feedstock, and a fuel cell that uses fuel gas contained in the reformed gas produced by this reformer to generate electricity, aims to improve generation efficiency in the fuel cell through a relatively simple feature. The fuel cell system includes a feedstock supplying section such as a pressurizing pump for supplying the feedstock to the reformer; a burner adapted to combust the fuel gas that was not consumed by electricity generation in the fuel cell, and heat the reformer; a temperature sensor for sensing the temperature of the burner; and a control unit adapted to control on the basis of the sensed temperature the feed rate of the feedstock supplied from the feedstock supplying section to the reformer, so as to maintain the temperature of the reformer within a prescribed temperature range optimized for reforming the feedstock.
US09502723B2

A method of operating a fuel cell in a vehicle includes the steps of initially charging a waste tank with a gas that is readily absorbable in water. A supply of fuel is passed across one electrode in a fuel cell, and a supply of oxygen containing gas across another electrode generating water from operation of the fuel cell. The water is delivered into the tank. A vehicle is also disclosed.
US09502722B2

The present invention provides a heating device for an end plate of a fuel cell stack, which can prevent a decrease in temperature of unit cells around the ends of the fuel cell stack by providing a structure for circulating high temperature coolant discharged from the fuel cell stack in the end plate. Non-uniform temperature distribution in the fuel cell stack can thereby be prevented. In particular, a heating device for an end plate of a fuel cell stack is provided wherein high temperature coolant flowing from the upstream of a coolant outlet manifold to the downstream is allowed to circulate through the inside of the end plate and to be discharged to the outside such that the thermal energy of the coolant is supplied to the end plate and, at the same time, transferred to unit cells adjacent to the end plate.
US09502714B2

Disclosed is a mixed metal oxide comprising Na, M1, and M2, where M1 represents at least one element selected from the group consisting of Mg, Ca, Sr, and Ba; and M2 represents at least one element selected from the group consisting of Mn, Fe, Co, and Ni, wherein the molar ratio of Na:M1:M2 is a:b:1, where a is a value within the range of not less than 0.5 and less than 1; b is a value within the range of more than 0 and not more than 0.5; and “a+b” is a value within the range of more than 0.5 and not more than 1. An electrode having an active material containing the mixed metal oxide is also disclosed. Further disclosed is an electrode containing the electrode active material as well as a sodium secondary battery comprising the electrode as a positive electrode.
US09502713B2

An anode active material for a lithium secondary battery and a lithium secondary battery having the same are disclosed. The anode active material for a lithium secondary battery includes a silicon alloy consisting of silicon and at least two kinds of metals other than silicon, each having the heat of mixing with the silicon of −23 kJ/mol or less. The anode active material for a lithium secondary battery has a high capacity, and thus, is useful in fabricating a high-capacity lithium secondary battery. Also, the anode active material for a lithium secondary battery has a small crystal size of a silicon phase and consequently a small change in volume during charging/discharging, and thus, ensures excellent cycle life characteristics in applications to batteries.
US09502706B2

An electric storage device includes a plurality of storage modules and a first storage-module busbar. The plurality of storage modules each include a storage-cell busbar and a plurality of storage cells. The storage-cell busbar includes a first storage-module terminal at a first end of the storage-cell busbar. The plurality of storage cells are electrically connected to each other with the storage-cell busbar. The first storage-module terminal provided in one of the plurality of storage modules is electrically connected to the first storage-module terminal provided in another of the plurality of storage modules with the first storage-module busbar. The first storage-module terminal includes a first stud bolt which extends through a bolt hole provided in the first storage-module busbar and to which a nut is fastened.
US09502682B2

An optoelectronic device is provided which comprises a functional layer stack (6), an encapsulation layer (7) provided for encapsulating the layer stack, and at least one metal layer (8), wherein the functional layer stack comprises at least one organic active layer (63), which emits electromagnetic radiation when the device is in operation, the encapsulation layer completely covers the at least one organic active layer when viewed in plan view onto the layer stack, and the metal layer is arranged on a side of the encapsulation layer remote from the layer stack.
US09502679B2

A high-quality light emitting device is provided which has a long-lasting light emitting element free from the problems of conventional ones because of a structure that allows less degradation, and a method of manufacturing the light emitting device is provided. After a bank is formed, an exposed anode surface is wiped using a PVA (polyvinyl alcohol)-based porous substance or the like to level the surface and remove dusts from the surface. An insulating film is formed between an interlayer insulating film on a TFT and the anode. Alternatively, plasma treatment is performed on the surface of the interlayer insulating film on the TFT for surface modification.
US09502671B2

Tridentate cyclometalated complexes with rigid six-membered coordination rings of General Formula I having tunable emission wavelengths in the visible range. These emitters are suitable for full color displays and lighting applications.
US09502659B2

A nanotube-based flexible field effect transistor and its method of manufacture is provided. The field effect transistor according to the invention comprises at least two contact electrodes, respectively drain and source electrodes, an electrical conduction zone connected to the contact electrodes, said zone comprising a plurality of single-wall carbon nanotubes that are substantially aligned, a gate electrode for controlling the electric current circulating in said zone and a flexible substrate on which the contact and gate electrodes are deposited. The nanotube density in the conduction zone is strictly greater than 10 nanotubes per micrometer.
US09502658B2

The invention relates to improved fullerene derivatives, to methods for their synthesis and any educts or intermediates used in such methods, to compositions and formulations containing fullerene derivatives, to the use of the fullerene derivatives, compositions and formulations in, or for the preparation of, organic electronic (OE) devices like for example organic photovoltaic (OPV) devices or organic photodetectors (OPD), and to OE, OPV and OPD devices comprising, or being prepared from, these fullerene derivatives, compositions or formulations.
US09502657B2

In an organic electroluminescence device (100), a hole transport layer (22) is formed of a cured resin obtained by a ring opening polymerization of a polymerizable compound (a) containing a ring opening polymerizable group in the presence of a polymerization initiator (b). In addition, both of a maximum peak height Rp and a maximum valley depth Rv in an upper surface of the hole transport layer (22) are less than or equal to 14 nm. Accordingly, an organic electroluminescence device having excellent mass productivity and high luminescent efficiency is realized.
US09502650B2

Embodiments include but are not limited to apparatuses and systems including memory having a memory cell including a variable resistance memory layer, and a selector switch in direct contact with the memory cell, and configured to facilitate access to the memory cell. Other embodiments may be described and claimed.
US09502648B2

A method for fabricating a semiconductor apparatus includes forming a variable resistor region, and forming a spacer having a top linewidth and a bottom linewidth substantially equal to each other in the variable resistor region. The forming of the spacer includes forming a first insulating layer in the variable resistor region through a first method, forming a second insulating layer along a surface of the first insulating layer in the variable resistor region through a second method for providing step coverage superior to the first method, and etching the first and second insulating layers.
US09502645B2

A method for manufacturing a semiconductor device may include the following steps: preparing a substrate; preparing a first insulating layer on the substrate; preparing an electrode in the first insulating layer; preparing a second insulating layer on the first insulating layer; removing (e.g., using a dry etching process or a wet etching process) a portion of the second insulating layer to form a hole that at least partially exposes the electrode; providing a phase change material layer that may cover the electrode; and removing (e.g., using a sputtering process such as an argon sputtering process), a portion of the phase change material layer positioned inside the hole to form a phase change member that may expose a first portion of (a top side of) the electrode and may directly contact a second portion of (the top side of) the electrode.
US09502636B2

Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
US09502635B2

The present invention relates to a device comprising an elongate resonator beam extending between first and second ends. A base is connected to the resonator beam at the first end with the second end extending from the base as a structural layer. The elongate resonator beam comprises either: (1) a first oxide layer on a first piezoelectric stack layer over a structural layer on a second oxide layer over a second piezoelectric stack layer on a third oxide layer or (2) a first oxide layer on a first piezoelectric stack layer over a second oxide layer on a structural layer over a third oxide layer on a second piezoelectric stack over a fourth oxide layer. Also disclosed is a system comprising an apparatus and the device, as well as methods of making and using the device.
US09502633B2

Method for controlling a piezoelectric actuator acting on valve elements to open or close a fuel injector respectively allowing or preventing fuel injection into a combustion chamber of an engine, the method includes: applying to the piezoelectric actuator a nominal electrical charge to open the injector, as a function of the torque required and the engine speed, to open the valve elements for fuel injection, thereafter applying to the actuator at least one electrical polarization charge, to polarize the actuator during an opening phase of the injector and fuel injection into the combustion chamber, thereafter commanding the closure of the injector by applying to the actuator at least one electrical discharge to close the valve elements, the step of applying the electrical polarization charge including a prior step of increasing the value of the charge current to a value greater than that of the nominal charge.
US09502631B2

End-group components for superconducting accelerator cavity used in acceleration of charged particles are manufactured by subjecting pure niobium sheet materials to press forming composed mainly of flat-bottomed cylindrical drawing, preferably by simultaneously conducting control of slide velocity and/or its motion and control of tool die temperature and/or its distribution/gradient in the above press forming, further preferably by dynamically controlling blank holding force in accordance with the variation of flange area, flange thickness and deformed characteristics of niobium sheet materials during the press forming, more preferably by preparing an anisotropically shaped blank instead of a circular blank by use of servo press forming machine, servo-die cushion temperature control equipment, water-soluble solid coating type lubricant, and a tooling die.
US09502621B2

The present invention includes a safety indication structure a high energy invisible light light emitting structure and two potential applying layers. The high energy invisible light light emitting structure includes a high energy invisible light light emitting layer that receives a forward to emit invisible light, and a P-type semiconductor layer and an N-type semiconductor layer respectively disposed at two sides of the high energy invisible light light emitting layer. The two potential applying layers are respectively in contact with the P-type semiconductor layer and the N-type semiconductor layer. The safety indication structure includes a photoluminescent light emitting layer disposed on the high energy invisible light light emitting structure. When the high energy invisible light light emitting structure emits invisible light, the photoluminescent light emitting layer absorbs and converts the invisible light to visible light, which serves as a signal warning for danger to ensure user safety.
US09502618B2

An LED module includes: an LED chip; and a resin case having a reflective surface surrounding the LED chip. An area contact inhibitor to inhibit area contact with an adjacent LED module is formed on an outer surface of the resin case.
US09502616B2

The present invention relates to a light-emitting diode (LED), which comprises electrodes having a single metal reflective layer. The single metal reflective layer is thicker than the active layer of the LED. Thereby, at least a portion of light emitted from the active layer is reflected by the single metal reflective layer, and thus enhancing the light-emitting efficiency of the LED.
US09502609B2

Techniques for integrating spalling into layer transfer processes involving optical device semiconductor materials are provided. In one aspect, a layer transfer method for an optical device semiconductor material includes forming the optical device semiconductor material on a first substrate; depositing a metal stressor layer on top of the optical device semiconductor material; attaching a first handle layer to the metal stressor layer; removing the optical device semiconductor material from the first substrate by pulling the first handle layer away from the first substrate; attaching a second handle layer to the optical device semiconductor material; removing the first handle layer from the stack; and forming a second substrate on the stressor layer. Vertical LED devices and techniques for formation thereof are also provided.
US09502604B2

A backplane for a flat panel display apparatus, includes: a thin film transistor (TFT) on a substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode; a light-blocking layer between the substrate and the TFT; a first insulating layer between the light-blocking layer and the TFT; a capacitor including a first electrode on the same plane as the light-blocking layer, and a second electrode on the first electrode, wherein the first insulating layer is between the first electrode and the second electrode; and a pixel electrode on the same plane as the light-blocking layer.
US09502602B2

A structure of high electron mobility light emitting transistor comprises a substrate, a HEMT region disposed on the substrate, and a gallium nitride LED (GaN-LED) region disposed on the substrate. A two-dimensional electron gas layer is present in each of the HEMI region and the LED region, and the HEMT region is coupled to the LED region through the two-dimensional electron gas layer.
US09502598B2

A monolithic multiple solar cell includes at least three partial cells, with a semiconductor mirror placed between two partial cells. The aim of the invention is to improve the radiation stability of said solar cell. For this purpose, the semiconductor mirror has a high degree of reflection in at least one part of a spectral absorption area of the partial cell which is arranged above the semiconductor mirror and a high degree of transmission within the spectral absorption range of the partial cell arranged below the semiconductor mirror.
US09502594B2

A method for providing a textured layer in an optoelectronic device is disclosed. The method includes depositing a template layer on a first layer. The template layer has significant inhomogeneity either in thickness or in composition, or both, including the possibility of forming one or more islands to provide at least one textured surface of the island layer. The method also includes exposing the template layer and the first layer to an etching process to create or alter at least one textured surface. The altered at least one textured surface is operative to cause scattering of light.
US09502588B2

A solar cell module comprises a solar cell and sealing material provided on the rear surface side of the solar cell. The sealing material includes a colored layer that reflects light from the light-receiving surface side of the solar cell, and a transparent layer that is provided between the colored layer and the solar cell. The transparent layer has, in a space between adjacent solar cells, a side surface raised along the rear surface-side corner portion of the solar cell.
US09502583B2

A method for forming a semiconductor device includes providing a substrate structure, which includes a nanowire structure supported by two isolation regions on a substrate. The nanowire structure includes a first nanowire and a second nanowire having different high mobility semiconductor materials and conductivity types. A multi-layer film structure is formed surrounding the nanowire structure and includes a conductive material layer sandwiched between two dielectric layers. A plurality of first electrodes are formed surrounding the multi-layer film structure surrounding a channel region of the first nanowire, and a plurality of second electrodes are formed surrounding the multi-layer film structure surrounding a channel region of the second nanowire. A third electrode is formed to contact one end of the nanowire structure, and a fourth electrode is formed to contact the other end of the nanowire structure. A fifth electrode is formed and coupled to a center portion of the nanowire structure.
US09502573B2

A pixel structure and a method of manufacturing a pixel structure are provided. The pixel structure includes an active device, a gate insulation layer, a dielectric insulation layer, a capacitance electrode, a protection layer and a pixel electrode. The active device includes a gate, a semiconductor channel layer, a source and a drain. The dielectric insulation layer covers the semiconductor channel layer. A dielectric index of the dielectric insulation layer is greater than a dielectric index of the gate insulation layer. The capacitance electrode is overlapped with the drain. The capacitance electrode, the drain and the dielectric insulation layer between the two constitute a storage capacitor structure. The protection layer is disposed on the dielectric insulation layer and the capacitance electrode is located between the protection layer and the dielectric insulation layer. The pixel electrode is disposed on the protection layer and connected to the drain of the active device.
US09502567B2

A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate and a fin structure formed over the substrate. The semiconductor structure further includes an isolation structure formed around the fin structure and a gate structure formed across the fin structure. In addition, the gate structure includes a first portion formed over the fin structure and a second portion formed over the isolation structure, and the second portion of the gate structure includes an extending portion extending into the isolation structure.
US09502563B2

In a semiconductor device, a first active region has a first Σ-shape, and the second active region has a second Σ-shape. When a line that is perpendicular to the substrate and passes a side surface of a first gate electrode in the first region is defined as a first vertical line, when a line that is perpendicular to the substrate and passes a side surface of a second gate electrode in the second region is defined as a second vertical line, when a shortest distance between the first vertical line and the first trench is defined as a first horizontal distance, and when a shortest distance between the second vertical line and the second trench is defined as a second horizontal distance, a difference between the first horizontal distance and the second horizontal distance is equal to or less than 1 nm.
US09502550B2

In one embodiment, Group III-nitride materials are used to form a semiconductor device. A fin structure is formed in the Group III-nitride material, and a gate structure, source electrodes and drain electrodes are formed in spaced relationship to the fin structure. The fin structure provides both polar and semi-polar 2DEG regions. In one embodiment, the gate structure is configured to control current flow in the polar 2DEG region. Shield conductor layers are included above the gate structure and in spaced relationship with drain regions of the semiconductor device.
US09502549B2

A nitride semiconductor device includes the followings. A semiconductor multilayer structure is above a substrate and includes a first nitride semiconductor layer and a second nitride semiconductor layer. A source electrode, a drain electrode, and a gate electrode are on the semiconductor multilayer structure. A gate wiring line transmits a gate driving signal to gate electrodes. A first shield structure is on the semiconductor multilayer structure between the drain electrode and the gate electrode or between the drain electrode and the gate wiring line in a non-channel region where an actual current path from the drain electrode to the source electrode is not formed in the semiconductor multilayer structure. The first shield structure is a normally-off structure, suppresses a current flowing from the semiconductor multilayer structure, and is set to have a substantially same potential as a potential of the source electrode.
US09502544B2

A vertical JFET includes a III-nitride substrate and a III-nitride epitaxial layer of a first conductivity type coupled to the III-nitride substrate. The first III-nitride epitaxial layer has a first dopant concentration. The vertical JFET also includes a III-nitride epitaxial structure coupled to the first III-nitride epitaxial layer. The III-nitride epitaxial structure includes a set of channels of the first conductivity type and having a second dopant concentration, a set of sources of the first conductivity type, having a third dopant concentration greater than the first dopant concentration, and each characterized by a contact surface, and a set of regrown gates interspersed between the set of channels. An upper surface of the set of regrown gates is substantially coplanar with the contact surfaces of the set of sources.
US09502542B2

A FinFET having fin back biasing and methods of forming the same are disclosed. The FinFET includes a substrate and a fin over the substrate. The fin includes a source region, a drain region, a channel region, and a biasing region. The source and drain regions sandwich the channel region. The channel region and the biasing region sandwich one of the source and drain regions. The FinFET further includes a gate over the substrate. The gate engages the fin adjacent to the channel region, thereby forming a field effect transistor (FET). The biasing region is configured to bias the FET body effect when a voltage is applied to the biasing region. From a cross sectional view, the source region and the biasing region each have a substantially rectangular profile, wherein the source region is taller and wider than the biasing region.
US09502540B1

A method of making a semiconductor device includes forming a first fin in a first semiconducting material layer disposed over a substrate, the first semiconducting material layer comprising an element in a first concentration; and forming a second fin in a second semiconducting material layer disposed over the substrate and adjacent to the first semiconducting material layer, the second semiconducting material layer comprising the element in a second concentration; wherein the first concentration is different than the second concentration.
US09502535B2

Semiconductor structures are disclosed for monolithically integrating multiple III-N transistors with different threshold voltages on a common substrate. A semiconductor structure includes a cap layer comprising a plurality of selectively etchable sublayers, wherein each sublayer is selectively etchable with respect to the sublayer immediately below, wherein each sublayer comprises a material AlxInyGazN (0≦x, y, z≦1), and wherein at least one selectively etchable sublayer has a non-zero Ga content (0
US09502531B2

A semiconductor device includes a substrate having a first region and a second region, a first MOS transistor including a first fin structure and a first gate electrode in the first region, the first fin structure having a first buffer pattern, a second buffer pattern, and a first channel pattern which are sequentially stacked on the substrate, and a second MOS transistor including a second fin structure and a second gate electrode in the second region, the second fin structure having a third buffer pattern and a second channel pattern which are sequentially stacked on the substrate. Related fabrication methods are also discussed.
US09502523B1

A semiconductor device includes a semiconductor-on-insulator wafer having a buried oxide layer. The buried oxide layer includes therein opposing etch barrier regions and a gate region between the etch barrier regions. The semiconductor device further includes at least one nanowire having a channel portion interposed between opposing source/drain portions. The channel portion is suspended in the gate region. A gate electrode is formed in the gate region, and completely surrounds all surfaces of the suspended nanowire. The buried oxide layer comprises a first electrical insulating material, and the etch barrier regions comprising a second electrical insulating material different from the first electrical insulating material.
US09502520B2

A method for producing a semiconductor device includes a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate and forming a first insulating film around the fin-shaped semiconductor layer; a second step of forming a pillar-shaped semiconductor layer and a first dummy gate formed of a first polysilicon; a third step of forming a second dummy gate on side walls of the first dummy gate and the pillar-shaped semiconductor layer; a fourth step of forming a side wall formed of a fifth insulating film around the second dummy gate, forming a second diffusion layer in an upper portion of the fin-shaped semiconductor layer and a lower portion of the pillar-shaped semiconductor layer, and forming a metal-semiconductor compound on the second diffusion layer; a fifth step of forming a gate electrode and a gate line; and a sixth step of depositing a sixth insulating film, forming a third resist for forming a contact hole on the pillar-shaped semiconductor layer, etching the sixth insulating film to form a contact hole on the pillar-shaped semiconductor layer, removing the third resist, depositing a second gate insulating film, depositing a second metal, etching back the second metal, removing the second gate insulating film on the pillar-shaped semiconductor layer so as to form a metal side wall on a side wall of an upper portion of the pillar-shaped semiconductor layer, and depositing a third metal so as to form a contact that connects an upper portion of the metal side wall to an upper portion of the pillar-shaped semiconductor layer.
US09502519B2

A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first dielectric layer and a second dielectric layer thereon; forming a drain layer in the first dielectric layer and the second dielectric layer; forming a gate layer on the second dielectric layer; forming a channel layer in the gate layer; forming a third dielectric layer and a fourth dielectric layer on the gate layer and the channel layer; and forming a source layer in the third dielectric layer and the fourth dielectric layer.
US09502515B2

A method of manufacturing a split gate flash memory cell is provided. A select gate is formed on a semiconductor substrate. A sacrificial spacer is formed laterally adjacent to the select gate and on a first side of the select gate. A charge trapping layer is formed lining upper surfaces of the select gate and the sacrificial spacer, and further lining a sidewall surface of the select gate on a second side of the select gate that is opposite the first side of the select gate. A memory gate is formed over the charge trapping layer and on the second side of the select gate. The sacrificial spacer is removed. The resulting semiconductor structure is also provided.
US09502514B2

A device comprises a control gate structure over a substrate, a memory gate structure over the substrate, wherein a charge storage layer formed between the control gate structure and the memory gate structure, a first spacer along a sidewall of the memory gate structure, a second spacer over a top surface of the memory gate structure, a first drain/source region formed in the substrate and adjacent to the memory gate structure and a second drain/source region formed in the substrate and adjacent to the control gate structure.
US09502512B2

An edge terminal structure of a trench power semiconductor device includes a first conductive-type substrate, a first conductive-type epitaxial layer thereon, a first electrode on a surface of the first conductive-type epitaxial layer, a second electrode on a back of the first conductive-type substrate, a first and a second field plates. The trench power semiconductor device includes an active area and an edge terminal area. A trench is in the surface of the first conductive-type epitaxial layer. The first field plate includes an L-shaped electric-plate, a gate insulation layer below the L-shaped electric-plate, and the first electrode on the L-shaped electric-plate. The second field plate includes a portion of the first electrode and an insulation layer between the portion of the first electrode and the first conductive-type epitaxial layer. The insulation layer covers the tail of the trench and completely covers the L-shaped electric-plate.
US09502500B2

A method for forming a multi-stack nanowire device includes forming a common release layer on a substrate, the common release layer comprising a common release material. The method also includes forming a first multi-layer stack on a first portion of the common release layer, the first multi-layer stack comprising at least two layers separated by at least one layer comprising the common release material, and forming a second multi-layer stack on a second portion of the common release layer, the second multi-layer stack comprising at least two layers separated by at least one layer comprising the common release material. The method further includes patterning each of the first multi-layer stack and the second multi-layer stack into one or more fins and forming two or more multi-stack nanowires from the one or more fins by removing the common release material using a common etch process.
US09502496B2

A semiconductor device includes a vertical trench gate element portion and a lateral n-channel element portion for control which includes a well diffusion region, and a junction edge termination region which surrounds the vertical trench gate element portion and the lateral n-channel element portion for control. The junction edge termination region includes an oxide layer, a sustain region in contact with a trench provided at the end, and a diffusion region in contact with the sustain region. The diffusion region is deeper than the base region and has low concentration. The sustain region is shallower than the diffusion region and has high concentration. The well diffusion region is deeper than the base region and the sustain region and has low concentration. The breakdown voltage of the junction edge termination region and the well diffusion region is higher than that of the vertical trench gate element portion.
US09502491B2

A multilayer capacitor is provided that includes a plurality of vias configured to receive interconnects from a die.
US09502487B2

An organic electroluminescent device includes a substrate including a plurality of pixel regions each having a light emission region and an element region; a plurality of thin film transistors (TFTs) including at least one switching TFT and at least one driving TFT in each element region; a planarization layer on the plurality of TFTs; a first electrode on the planarization layer and including first to third portions connected to one another, wherein the first and second portions are at each pixel region, and the third portion is at a neighboring pixel region; an organic light emitting layer on the first electrode; and a second electrode on the organic light emitting layer, wherein an end of the third portion overlaps the driving TFT of the neighboring pixel region.
US09502482B2

An electro-optical device includes a reflective layer, a light emitting element including a light emitting layer formed between an anode and a cathode, and a driving transistor configured to control a current flowing through the light emitting element. In the same layer as the reflective layer, a relay electrode included in a current path from the driving transistor to the anode is formed with a gap between the relay electrode and the reflective layer. A contact electrode electrically connecting the relay electrode and the anode is formed as a light shielding layer that blocks light entering the gap.
US09502480B2

An organic light-emitting diode (OLED) display device includes a substrate, a first electrode on the substrate, a pixel defining layer on the substrate and having an opening that partially exposes the first electrode, an organic layer on the first electrode, and a second electrode on the organic layer and the pixel defining layer, wherein the opening includes a lower region adjacent to the first electrode, an upper region adjacent to the second electrode, and a middle region between the lower region and the upper region, wherein the middle region has a width that is greater than a width of the lower region and is greater than a width of the upper region.
US09502472B2

An image sensor and a method of manufacturing the same. The image sensor includes a plurality of photoelectric conversion units that are horizontally arranged and selectively emit electric signals by absorbing color beams.
US09502470B2

According to one embodiment, a semiconductor memory device includes a substrate including a major surface; a plurality of first films having conductivity or semiconductivity, the first films being provided above the substrate and extending in a first direction inclined with respect to the major surface; a plurality of second films having conductivity, the second films being provided above the substrate and extending in a second direction inclined with respect to the major surface and crossing the first direction; and a plurality of storage films provided in crossing sections of the first films and the second films.
US09502467B2

A semiconductor device includes: a first member including a selection transistor on a front surface side of a first substrate; and a second member including a resistance change device and a connection layer that comes in contact with the resistance change device, the connection layer being bonded to a back surface of the first member.
US09502466B1

The present disclosure relates an integrated circuit (IC). The IC comprises a plurality of lower metal lines disposed within a lower inter-layer dielectric (ILD) layer over the substrate. The IC further comprises a plurality of memory cells disposed over the ILD layer and the lower metal lines at a memory region, a memory cell comprising a top electrode and a bottom electrode separated by a resistance switching element. The IC further comprises a dummy structure arranged directly above a first lower metal line at a logic region adjacent to the memory region, comprising a dummy bottom electrode and a dielectric mask on the dummy bottom electrode. The IC further comprises a top etch stop layer disposed on a bottom etch stop layer and extending upwardly along sidewalls of the dummy structure and overlying an upper surface of the dummy structure.
US09502451B2

An imaging device includes a plurality of pixels arranged in a pixel region, each of the plurality of pixels including a photoelectric conversion element including a first electrode provided above a substrate, a second electrode provided above the first electrode and a photoelectric conversion layer provided between the first electrode and the second electrode, an interconnection layer provided between the substrate and the first electrode, the interconnection layer including a first conductive member extending in a first direction, and a second conductive member arranged at a level lower than the first conductive member and extending in a second direction intersecting the first direction, a first contact portion provided in the pixel region, the first contact portion electrically connecting the second electrode and the first conductive member, and a second contact portion electrically connecting the first conductive member and the second conductive member.
US09502446B2

Provided are a poly-silicon thin film transistor (TFT), a poly-silicon array substrate and a preparing method thereof, and a display device for solving the problems of excessive mask plates, complicated process and high costs in a conventional technology. The method of preparing the poly-silicon TFT comprising a doped region comprises steps: forming a poly-silicon layer on a substrate, forming an active layer by a patterning process; forming a first insulating layer; forming, by a patterning process, via holes exposing the active layer, the source electrode and the drain electrode being connected through the via holes to the active layer; doping the active layer through the via holes by a doping process to form a doped region; forming a source-drain metal layer, and forming the source electrode and the drain electrode by a patterning process.
US09502437B2

A method of manufacturing an array substrate, an array substrate and a display device are provided. The method of manufacturing the array substrate includes: forming a pattern of a gate metal layer including a gate line and a gate electrode and preserving photoresist at a position on the pattern of the gate metal layer corresponding to a gate lead hole; sequentially forming a gate insulating thin film, a semiconductor thin film and a source/drain metal thin film; removing the photoresist preserved at the position on the pattern of the gate metal layer corresponding to the gate lead hole, and forming the gate lead hole; forming a pattern of a source/drain metal layer including a source electrode, a drain electrode and a data line and a semiconductor layer; and forming a pattern including a pixel electrode layer and a channel.
US09502425B2

The inventive concepts provide semiconductor devices and methods of manufacturing the same. One semiconductor device includes a substrate, a device isolation layer disposed on the substrate, a fin-type active pattern defined by the device isolation layer and having a top surface higher than a top surface of the device isolation layer, a first conductive line disposed on an edge portion of the fin-type active pattern and on the device isolation layer adjacent to the edge portion of the fin-type active pattern, and an insulating thin layer disposed between the fin-type active pattern and the first conductive line. The first conductive line forms a gate electrode of an anti-fuse that may be applied with a write voltage.
US09502422B2

A semiconductor device includes an insulating layer on a semiconductor substrate, a bit line including TiAl and disposed on the insulating layer, a sidewall layer disposed on opposite sides of the bit line, a word line including TiN and disposed on the sidewall layer intersecting the bit line, and an air gap in an intersection region of the bit line and the word line. The thickness of the sidewall layer is larger than the thickness of the bit line. By having the TiAl bit line and TiN word line, the uniformity of the bit line and word line can be easily controlled to improve the performance of the semiconductor device.
US09502409B2

A multi-gate semiconductor device is formed including a semiconductor substrate. The multi-gate semiconductor device also includes a first transistor including a first fin portion extending above the semiconductor substrate. The first transistor has a first channel region formed therein. The first channel region includes a first channel region portion doped at a first concentration of a first dopant type and a second channel region portion doped at a second concentration of the first dopant type. The second concentration is higher than the first concentration. The first transistor further includes a first gate electrode layer formed over the first channel region. The first gate electrode layer may be of a second dopant type. The first dopant type may be N-type and the second dopant type may be P-type. The second channel region portion may be formed over the first channel region portion.
US09502407B1

One embodiment provides a method of integrating a planar field-effect transistor (FET) with a vertical FET. The method comprises masking and etching a semiconductor of the vertical FET to form a fin, and providing additional masking, additional etching, doping and depositions to isolate a bottom source/drain (S/D) region. A dielectric is formed on the bottom S/D region to form a spacer. The method further comprises depositing gate metals, etching a vertical gate for the vertical FET and a planar gate for the planar FET using a shared gate mask, depositing dielectric, etching the dielectric to expose one or more portions of the fin, growing epitaxy on a top S/D region, masking and etching S/D contact openings for the bottom S/D region, forming silicide regions in S/D regions, depositing contact metal in the silicide regions to form contacts, and planarizing the contacts.
US09502404B2

The embodiments of mechanisms for forming source/drain (S/D) regions of field effect transistors (FETs) described enable forming an epitaxially grown silicon-containing material without using GeH4 in an etch gas mixture of an etch process for a cyclic deposition/etch (CDE) process. The etch process is performed at a temperature different form the deposition process to make the etch gas more efficient. As a result, the etch time is reduced and the throughput is increased.
US09502387B2

Disclosed herein is a device comprising a first package having a first side with a plurality of connectors disposed thereon and a second package mounted on the first package by the connectors. A molding compound is disposed on the first side of the first package and between the first package and the second package. A plurality of stress relief structures (SRSs) are disposed in the molding compound, the plurality of SRSs each comprising a cavity free of metal in the molding compound and spaced apart from each of the plurality of connectors.
US09502375B2

A semiconductor device with plated pillars and leads is disclosed and may include a semiconductor die comprising a conductive pillar, a conductive lead electrically coupled to the conductive pillar, a metal plating layer covering the conductive lead and conductive pillar, and an encapsulant material encapsulating the semiconductor die and at least a portion of the plating layer. The pillar, lead, and plating layer may comprise copper, for example. The plating layer may fill a gap between the pillar and the lead. A portion of the metal plating layer may, for example, comprise an external lead. The metal plating layer may cover a side surface of the pillar and a top surface, side surface, and at least a portion of a bottom surface of the lead. The metal plating layer may cover side and bottom surfaces of the pillar and top, side, and at least a portion of bottom surfaces of the conductive lead.
US09502371B2

A method of forming a wire interconnect structure includes the steps of: (a) forming a wire bond at a bonding location on a substrate using a wire bonding tool; (b) extending a length of wire, continuous with the wire bond, to another location; (c) pressing a portion of the length of wire against the other location using the wire bonding tool; (d) moving the wire bonding tool, and the pressed portion of the length of wire, to a position above the wire bond; and (e) separating the length of wire from a wire supply at the pressed portion, thereby providing a wire interconnect structure bonded to the bonding location.
US09502363B2

Wafer level packages and methods for producing wafer level packages having delamination-resistant redistribution layers are provided. In one embodiment, the method includes building inner redistribution layers over a semiconductor die. Inner redistribution layers include a body of dielectric material containing metal routing features. A routing-free dielectric block is formed in the body of dielectric material and is uninterrupted by the metal routing features. An outer redistribution layer is produced over the inner redistribution layers and contains a metal plane, which is patterned to include one or more outgassing openings overlying the routing-free dielectric block. The routing-free dielectric block has a minimum width, length, and depth each at least twice the thickness of the outer redistribution layer.
US09502361B2

An electronic device includes a first and a second integrated-circuit chip that are stacked at a distance from one another, and a plurality of electrical connection pillars and at least one protective barrier interposed between the chips. The protective barrier delimits a free space between mutually opposing local regions of the chips, and an encapsulation block extends around the chip that has the smaller mounting face and over the periphery of the mounting face of the other chip. The electrical connection pillars and the protective barrier are made of at least one identical metallic material with a view to simultaneous fabrication.
US09502358B2

An integrated circuit includes a signal line and a plurality of shielding structures. The signal line is routed along a first direction and is in a first metallization layer. Each shielding structure includes a plurality of non-contiguous shielding patterns aligned along the first direction. The plurality of shielding structures includes a first and a second shielding structures in a second metallization layer that adjoins the first metallization layer and a third and a fourth shielding structures in a third metallization layer that adjoins the first metallization layer. The first metallization layer is between the second and the third metallization layers. The first and the second shielding structures are separated from each other along a second direction perpendicular to the first direction. The third and the fourth shielding structures are separated from each other along the second direction.
US09502356B1

A physical unclonable function device, an encryptable electronic device, and a process for fabricating the physical unclonable function device are described. In an implementation, a physical unclonable function device includes an integrated circuit device including an active layer, the active layer including an electrode array with multiple electrodes; and a physical unclonable function coating disposed on the active layer, wherein the physical unclonable function coating includes a physical unclonable material arranged in a random configuration.
US09502346B2

An integrated circuit that includes a substrate, a metal layer over the substrate and a first dielectric layer over the metal layer. The first dielectric layer includes a via. A sidewall layer that includes a silicon compound is in the via. A second dielectric layer is over the sidewall layer and an ultra-thick metal (UTM) layer is in the via.
US09502335B2

A package structure is provided, which includes: a chip carrier having a plurality of conductive connection portions; at least an electronic element disposed on the chip carrier; a plurality of conductive wires erectly positioned on the conductive connection portions, respectively; an encapsulant formed on the chip carrier for encapsulating the conductive wires and the electronic element, wherein one ends of the conductive wires are exposed from the encapsulant; and a circuit layer formed on the encapsulant and electrically connected to exposed ends of the conductive wires. According to the present invention, the conductive wires serve as an interconnection structure. Since the wire diameter of the conductive wires is small and the pitch between the conductive wires can be minimized, the present invention reduces the size of the chip carrier and meets the miniaturization requirement.
US09502328B2

A semiconductor device that does not produce nonlinearities attributed to a high resistivity silicon handle interfaced with a dielectric region of a buried oxide (BOX) layer is disclosed. The semiconductor device includes a semiconductor stack structure with a first surface and a second surface wherein the second surface is on an opposite side of the semiconductor stack structure from the first surface. At least one device terminal is included in the semiconductor stack structure and at least one electrical contact extends from the second surface and is electrically coupled to the at least one device terminal. The semiconductor stack is protected by a polymer disposed on the first surface of the semiconductor stack. The polymer has high thermal conductivity and high electrical resistivity.
US09502320B2

A semiconductor device includes an insulating substrate including a metal plate, an insulating plate, and a circuit plate laminated sequentially in order; a semiconductor element fixed to the circuit plate; a wiring member connected to an electrode provided on a surface of the semiconductor element, the circuit plate, or the electrode and the circuit plate; a plastic housing having a hollow shape to receive the insulating substrate, the semiconductor element, and the wiring member therein, the plastic housing having an inner frame on an inner surface and a step formed in a front end of the inner frame; and a sealing material made of a thermosetting resin to seal the insulating substrate, the semiconductor element, and the wiring member inside the plastic housing.
US09502319B2

A driver integrated circuit chip includes a plurality of monitoring bumps, a plurality of output bumps, a plurality of first inner wires electrically connected to the output bumps, a plurality of second inner wires, and a plurality of switching circuits are electrically connected to the second inner wires. Each of the second inner wires is electrically connected between an adjacent pair of monitoring bumps. Each of the switching circuits controls a connection between adjacent monitoring bumps.
US09502317B2

A method for manufacturing a light emitting device includes providing a wafer including a substrate, a light emitting structure layer and a plurality of electrodes, forming a phosphor layer so as to cover a surface of the wafer on a side of the substrate, dividing the wafer and the phosphor layer so as to form a plurality of light emitting elements, measuring a luminescent chromaticity of the plurality of light emitting elements so as to classify into a first light emitting element having a luminescent chromaticity within a required chromaticity range and a second light emitting element having a luminescent chromaticity outside the required chromaticity range, and forming a second light emitting device that includes the plurality ones of the second light emitting element and the luminescent chromaticity within the required chromaticity range by using the second light emitting element.
US09502316B2

A method for producing a plurality of optoelectronic components may include measuring at least one measurement parameter for a first optoelectronic component and a second optoelectronic component, and processing the first optoelectronic component and the second optoelectronic component taking account of the measured measurement parameter value of the first optoelectronic component and the measured measurement parameter value of the second optoelectronic component, such that the optoelectronic properties of the first optoelectronic component and the optoelectronic properties of the second optoelectronic component are changed in a different way toward at least one common predefined optoelectronic target property. The processing of at least one value of a measurement parameter of the optoelectronic properties of the first optoelectronic component or of the optoelectronic properties of the second optoelectronic component toward the optoelectronic target property is formed by means of a compensation element. The compensation element is formed as a film.
US09502306B2

The present invention provides a pattern formation method of forming a pattern on a substrate by partially removing a line and space pattern formed on the substrate, comprising a first formation step of forming a first layer including a plurality of first openings on the line and space pattern, a second step of forming, on the first layer, a second layer including a second opening for exposing one or more first openings, which are used to partially remove the line and space pattern, among the plurality of first openings, and a removing step of partially removing the line and space pattern through the second opening and the first opening, wherein the plurality of first openings are located on a plurality of lines of the line and space pattern.
US09502303B2

A method for manufacturing a semiconductor device is provided. A substrate with an insulation formed thereon is provided, wherein the insulation has plural trenches, and the adjacent trenches are spaced apart from each other. A barrier layer is formed on an upper surface of the insulation and in sidewalls of the trenches, and the barrier layer comprises overhung portions corresponding to the trenches. A seed layer is formed on the barrier layer. Then, an upper portion of the seed layer formed on an upper surface of the barrier layer is removed. An upper portion of the barrier layer is removed for exposing the upper surface of the insulation. Afterwards, the conductors are deposited along the seed layer for filling up the trenches, wherein the top surfaces of the conductors are substantially aligned with the upper surface of the insulation.
US09502298B2

The embodiments of mechanisms for forming source/drain (S/D) regions of field effect transistors (FETs) described uses Cl2 as an etchant during the epitaxial formation of the S/D regions. The mechanisms involve using an asymmetric cyclic deposition and etch (ACDE) process that forms a preparation layer enable epitaxial growth of the following epitaxial layer with transistor dopants. The mechanisms also involve soaking the surface of substrate with dopant-containing precursors to enable sufficient incorporation of transistor dopants during the epitaxial growth of the S/D regions. By using Cl2 as etchants, the mechanisms also enables high throughput of the epitaxial growth of the S/D regions.
US09502292B2

A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.
US09502289B2

Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on copper instead of insulating or dielectric materials. In some embodiments, a first precursor forms a layer on the first surface and is subsequently reacted or converted to form a metallic layer. The deposition temperature may be selected such that a selectivity of above about 50% or even about 90% is achieved.
US09502286B2

One method disclosed includes, among other things, forming a structure comprised of an island of a first insulating material positioned between the gate structures above the source/drain region and under a masking layer feature of a patterned masking layer, forming a liner layer that contacts the island of insulating material and the masking layer feature, selectively removing the masking layer feature to thereby form an initial opening that is defined by the liner layer, performing at least one isotropic etching process through the initial opening to remove the island of first insulating material and thereby define a contact opening that exposes the source/drain region, and forming a conductive contact structure in the contact opening that is conductively coupled to the source/drain region.
US09502280B2

Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
US09502275B1

A system for processing substrates is provided, comprising: a wafer transport assembly that is configured to transport wafers to and from one or more process modules, the wafer transport assembly having at least one wafer transport module, wherein lateral sides of the at least one wafer transport module are configured to couple to the one or more process modules; a service floor defined below the wafer transport assembly, the service floor being defined at a height that is less than a height of a fabrication facility floor in which the system is disposed.
US09502274B2

Embodiments of the present inventive concepts provide a wafer loader having one or more buffer zones to prevent damage to a wafer loaded in the wafer loader. The wafer loader may include a plurality of loading sections that protrude from a main body and are configured to be arranged at various locations along an edge of the wafer. Each of the loading sections may include a groove into which the edge of the wafer may be inserted. The loading section may include first and second protrusions having first and second inner sides, respectively, that face each other to define the groove therebetween. At least one of the first and second inner sides may include a recess to define the buffer zone.
US09502265B1

An embodiment method includes forming a nanowire extending upwards from a substrate, wherein the nanowire includes: a bottom semiconductor region; a middle semiconductor region over the bottom semiconductor region; and a top semiconductor region over the middle semiconductor region. The method also includes forming a dielectric layer around and extending over the nanowire and forming a chemical mechanical polish-stop (CMP-stop) layer within the dielectric layer using an implantation process. After forming the CMP-stop layer, the dielectric layer is planarized.
US09502262B2

A nanocrystalline diamond layer for use in forming a semiconductor device and methods for using the same are disclosed herein. The device can include a substrate with a processing surface and a supporting surface, a device layer formed on the processing surface and a nanocrystalline diamond layer formed on the processing layer, the nanocrystalline diamond layer having an average grain size of between 2 nm and 5 nm. The method can include positioning a substrate in a process chamber, depositing a device layer on a processing surface, depositing a nanocrystalline diamond layer on the device layer, the nanocrystalline diamond layer having an average grain size of between 2 nm and 5 nm, patterning and etching the nanocrystalline diamond layer, etching the device layer to form a feature and ashing the nanocrystalline diamond layer from the surface of the device layer.
US09502252B2

A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having at least one fin-shaped structure thereon, in which the fin-shaped structure comprises a top portion and a bottom portion; and forming a doped layer and a first liner around the bottom portion of the fin-shaped structure.
US09502248B1

According to various embodiments, a method may include: forming a first layer on a surface using a first lift-off process; forming a second layer over the first layer using a second lift-off process; wherein the second lift-off process is configured such that the second layer covers at least one sidewall of the first layer at least partially.
US09502245B1

A method of forming a semiconductor in a long trench. The method may include; forming a first semiconductor on a substrate and in a long trench; forming a first spacer along sidewalls of the long trench and above the first semiconductor, a portion of the first semiconductor remains exposed; recessing the exposed portion of the first semiconductor; forming an insulator layer on the recessed portion of the first semiconductor; forming a second semiconductor on the insulator layer; forming a second spacer on sidewalls of the first spacer and above the second semiconductor, a portion of the second semiconductor remains exposed; removing the exposed portion of the second semiconductor; and removing a frond end and a back end of the first semiconductor and the second semiconductor, wherein the front end and back end are separated by a central region and the central region extends across the width of the long trench.
US09502244B2

The present invention provides a method for forming a semiconductor structure, comprising: firstly, a substrate is provided, next, a first dry etching process is performed, to form a recess in the substrate. Afterwards, an ion implantation process is performed to a bottom surface of the recess, a wet etching process is then performed, to etch partial sidewalls of the recess, so as to form at least two tips on two sides of the recess respectively, and a second dry etching process is performed, to etch partial bottom surface of the recess, wherein after the second dry etching process is performed, a lower portion of the recess has a U-shaped cross section profile.
US09502241B2

Provided is a high-quality Group III nitride crystal of excellent processability. A Group III nitride crystal is produced by forming a film is composed of an oxide, hydroxide and/or oxyhydroxide containing a Group III element by heat-treating a Group III nitride single crystal at 1000° C. or above, and removing the film.
US09502238B2

Methods for depositing conformal films using a halogen-containing etchant during atomic layer deposition are provided. Methods involve exposing a substrate to a halogen-containing etchant such as nitrogen trifluoride between exposing the substrate to a first precursor and exposing the substrate to a second plasma-activated reactant. Examples of conformal films that may be deposited include silicon-containing films and metal-containing films. Related apparatuses are also provided.
US09502236B2

There is provided a method of manufacturing a semiconductor device by processing a substrate by alternately supplying a first processing gas and a second processing gas plasmatized by a plasma unit to a processing container. The method includes: starting a supply of an electric power to plasmatize the second processing gas to the plasma unit without supplying the second processing gas to the plasma unit; and starting a supply of the second processing gas with the electric power being supplied to the plasma unit.
US09502232B2

Methods for fabricating a layered circuit structure are provided, which include, for instance: depositing a first material layer above a substrate, the first material layer having an oxidized upper surface; providing a second material layer over the oxidized upper surface of the first material layer; and inhibiting diffusion of one or more elements from the oxidized upper surface of the first material layer into either the first material layer or the second material layer during the providing of the second material layer over the oxidized upper surface of the first material layer. The inhibiting may include one or more of modifying a characteristic(s) of the first material layer, forming a protective layer over the oxidized upper surface of the first material layer, or altering at least one process parameter employed in providing the second material layer.
US09502231B2

A system and method for middle layers is provided. In an embodiment the middle layer comprises a floating component in order to form a floating region along a top surface of the middle layer after the middle layer has dispersed. The floating component may be a polymer with a floating group incorporated into the polymer. The floating group may comprise a fluorine atom.
US09502227B2

A method captures cellular components from a single cell and performs mass spectrometry on the components. The method includes inserting a nanospray ionization capillary tip into a specific region of the cell under observation with a microscope. The nanospray ionization capillary tip can include a filament in the interior. The method further includes capturing the cellular components of the specific region of the cell into the opening of the nanospray ionization capillary tip and keeping the components at the nanospray ionization capillary tip, supplying an ionization supporting solvent from a back-end of the nanospray ionization capillary tip, applying an electric field between a sample inlet of a mass spectrometer and the nanospray ionization capillary tip, whereby nanospray ionization to the cellular components is implemented, and performing the mass spectrometry on the cellular components captured at the nanospray ionization capillary tip.
US09502225B2

Methods, systems and devices that generate differential axial transport in a fluidic device having at least one fluidic sample separation flow channel and at least one ESI emitter in communication with the at least one sample separation flow channel. In response to the generated differential axial transport, the at least one target analyte contained in a sample reservoir in communication with the sample separation channel is selectively transported to the at least one ESI emitter while inhibiting transport of contaminant materials contained in the sample reservoir toward the at least one ESI emitter thereby preferentially directing analyte molecules out of the at least one ESI emitter. The methods, systems and devices are particularly suitable for use with a mass spectrometer.
US09502220B2

A plasma processing apparatus that performs plasma processing on a substrate held on a transport carrier including an annular frame and a holding sheet. The apparatus includes: a process chamber; a plasma excitation device that generates plasma; a stage in the chamber; a cooling mechanism for cooling the stage; a cover that partly covers the holding sheet and the frame and has a window section through which the substrate is partly exposed to plasma; and a movement device that moves a relative position of the cover to the frame. The cover has a roof section, a cylindrical circumferential side section extending from a circumferential edge of the roof section toward the stage, and a correction member that protrudes from the roof section and/or the circumferential side section toward the frame and presses the frame onto the stage to correct warpage of the frame.
US09502219B2

The present disclosure provides a method of performing a plasma processing on a substrate by using a plasma processing apparatus including a processing container; an outer upper electrode provided to face a lower electrode; an inner upper electrode disposed inside the outer upper electrode; a first high-frequency power supply; a first power feeding unit; a second power feeding unit; and a variable condenser. The first and second power feeding units, a fixed condenser formed between the outer upper electrode and the inner upper electrode, and a closed circuit including the variable condenser become a resonance state when the variable condenser has a capacitance value in a predetermined resonance region. The method includes selectively using a capacitance value in a first region lower than the resonance region of the variable condenser and a capacitance value in a second region higher than the resonance region to perform the plasma processing.
US09502202B2

Systems and methods for generating a coherent matterwave beam are provided. In some aspects, a system includes a plurality of beam generating units. Each of the plurality of beam generating units is configured to generate a stream of charged particles. The system also includes a magnetic field generator configured to expose the plurality of streams to a magnetic field such that (i) the charged particles of the plurality of streams undergo phase synchronization with one another in response to a vector potential associated with the magnetic field and (ii) the plurality of streams is directed along one or more channels to combine with one another and produce a coherent matterwave beam.
US09502194B2

A plastic-shell-encased circuit breaker having an automatic locking function comprises a plastic-shell-encased circuit breaker body, a user input unit for inputting a lock code or an unlock code; an authentication processing unit for receiving the lock code or the unlock code from the user input unit, and for outputting a control signal after authentication; a locking action unit for receiving the control signal from the authentication processing unit, and for enabling the plastic-shell-encased circuit breaker body to produce a self-locking or unlocking action. Utilization of the plastic-shell-encased circuit breaker having the automatic locking function is capable of preventing the circuit breaker from being switched on without careful consideration, so as to ensure security of operators.
US09502186B2

In an electrochemical cell including a cathode 7, an anode 6, electrolyte 10, a hollow container 1 accommodating these members, and terminals extending from the inside to the outside of the hollow container 1, the terminals include a plurality of inner terminals 5a formed on the inner surface of the hollow container 1, a cathode outer terminal 5b 1 formed on the outer surface of the hollow container 1, and an inner layer wire 5c formed on the inner layer of the hollow container 1 for commonly connecting the plurality of inner terminals 5a to the cathode outer terminal 5b1.
US09502181B2

A low-height multilayer ceramic capacitor offering excellent flexure strength meets the condition “t11c
US09502176B2

A contactless power transfer transformer includes main body. The main body includes magnetic pole core members, winding wire core member, and wire. The winding wire core member is orthogonal to the magnetic pole core members and connects one portion of each of the pair of parallel magnetic pole core members with each other. The main body is fixed to fixing plate having a magnetic shield function and heat dissipation function. The connecting position of the winding wire core member with respect to the magnetic pole core members is located toward one side from a center in the longitudinal direction of the magnetic pole core members. At least a space between the pair of the magnetic coil core members each containing an end portion longer in distance to the connecting position is used as an arrangement space of component electrically connected to the electric wire.
US09502175B2

A circuit device includes a semiconductor substrate, a first inductor provided over the semiconductor substrate, and a second inductor provided over the semiconductor substrate and coupled to the first inductor. The first inductor and second inductor are wound in a same direction with each other from respective inner end portions to respective outer end portions thereof.
US09502169B2

A common mode choke coil has a core including a winding base, and a first and a second wire wound around the winding base side by side. The winding base includes a first area and a second area. The first area is from a first end of a region where the first wire is in contact with the winding base to a first point in the region. The second area is from a second end, which is opposite to the first end, of the region to a second point in the region. The second area does not overlap with the first area. When the first and second wires on a same turn are compared with each other, in the first area, the first wire is located nearer the first end, and in the second area, the first wire is located nearer the second end.
US09502165B2

A permanent magnet includes: a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10.5≦p≦12.5 at %, 23≦q≦40 at %, 0.88≦r≦4.5 at %, 4.5≦t≦10.7 at %); and a metal structure containing a Th2Zn17 crystal phase and a Cu-rich phase having a Cu concentration higher than that of the Th2Zn17 crystal phase. In a cross section including a c-axis of the Th2Zn17 crystal phase, a number of intersections of the Cu-rich phases existing in an area of 1 μm square is 10 or more.
US09502164B2

A permanent magnet includes: a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10.5≦p≦12.5 at %, 23≦q≦40 at %, 0.88≦r≦4.5 at %, 4.5≦t≦10.7 at %); and a metal structure containing a cell phase having a Th2Zn17 crystal phase, a cell wall phase, an M-rich platelet phase formed vertically to a c-axis of the Th2Zn17 crystal phase, and a Cu-rich platelet phase formed along the M-rich platelet phase.
US09502129B1

According to one embodiment, a controller executes first refreshing in a case where a first value of a first block is larger than a first threshold and less than a second threshold. The first refreshing includes reprogramming a plurality of second memory cells among a plurality of first memory cells included in the first block.
US09502124B2

A nonvolatile memory device includes a voltage generator that sequentially provides a first setup voltage and second setup voltage to a word line of a memory cell array, and control logic including a time control unit that determines a word line setup time for the word line in relation to the second setup voltage based on a difference between the first and second setup voltages.
US09502118B2

Technology for performing addressing in a NAND memory is described. A defined number of address cycles supported at either a memory controller or a NAND memory to address individual memory units in the NAND memory can be identified. The defined number of address cycles in which to operate can be selected in order to address the individual memory units in the NAND memory. Either the memory controller or the NAND memory can be configured to operate at the selected number of address cycles where the individual memory units in the NAND memory are uniquely addressable using a multi die select (MDS).
US09502112B2

A semiconductor memory device capable of a high-accuracy data search is provided. Each of the memory cells can hold two bits of information and includes a first cell and a second cell. The semiconductor memory device also includes a match line and a search line pair to transfer search data. The semiconductor memory device further includes a logic operation cell to drive the match line based on comparison results between information held in the first and the second cell and search data transferred by the search line pair and a search line driver to drive the search line pair. In a state with the search line pair precharged to a third voltage between a first voltage and a second voltage, the search line driver drives, according to the search data, one and the other search line included in the search line pair to the first and the second voltage, respectively.
US09502111B2

In some implementations, network traffic can be routed along equal cost paths based on weights assigned to each path. For example, weighted equal cost multipath routing can be implemented by assigning weights to each equal cost path (e.g., uplink, next hop node) to a destination device. When the network device receives a packet, the network device can generate a key (e.g., a random value, a hash value based on packet data, a value between 0 and n, etc.). The key can be used to select an uplink or path upon which to forward the packet. A key can be generated for a packet flow or flowlet. Each flow can be associated with the same key so that each packet in a flow will be forwarded along the same path. Each flowlet can be forwarded along a different uplink.
US09502109B2

Provided is a non-volatile semiconductor memory device capable of reliably preventing a malfunction of a read transistor without increasing the number of bit lines. In a non-volatile semi conductor memory device (1), program transistors (5a, 5b) and erase transistors (3a, 3b) serving as charge transfer paths during data programming and erasure are provided while a second bit line (BLN1) connected to the program transistor (5a) in a first cell (2a) for performing data programming also serves as a reading bit line in the other second cell (2b) by switching switch transistors (SWa, SWb) so that malfunctions of read transistors (4a, 4b) that occur because the read transistors are used for data programming and erasure can be reliably prevented without the number of bit lines being increased.
US09502103B1

A semiconductor memory device according to an embodiment includes: a semiconductor substrate; and a memory cell array which is arranged above the semiconductor substrate in a first direction. The memory cell array includes: a semiconductor layer which extends in the first direction; a first conductive line which extends in a second direction crossing the first direction; a variable resistance film which is arranged at an intersection between the semiconductor layer and the first conductive line; a plurality of second conductive lines which are arranged in the second direction sandwiching the semiconductor layer and extend in the first direction; and a plurality of third conductive lines which are electrically connected to the second conductive lines. Two of the second conductive lines neighboring to each other in the second direction with the semiconductor layer interposed therebetween are electrically connected to different third conductive lines.
US09502100B2

A method of maintaining a voltage level of a bit line of a sense amplifier circuit includes providing a power supply voltage at a power supply node, receiving the power supply voltage from the power supply node with an NMOS transistor, and maintaining a voltage level of the bit line by supplying sufficient current with the NMOS transistor to compensate a leakage current of the bit line. The method includes receiving the voltage level of the bit line with a noise threshold control circuit, inverting the voltage level with the noise threshold control circuit, and driving a sense amplifier output with the noise threshold control circuit.
US09502093B2

A spin-torque magnetoresistive memory includes array read circuits and array write circuits coupled to an array of magnetic bits. The array read circuits sample magnetic bits in the array, apply a write current pulse to the magnetic bits to set them to a first logic state, resample the magnetic bits using an additional offset current, and compare the results of sampling and resampling to determine the bit state for each magnetic bit. For each of the magnetic bits in the page having the second logic state, the array write circuits initiate a write-back, wherein the write-back includes applying a second write current pulse having opposite polarity in comparison with the first write current pulse to set the magnetic bit to the second state. A read or write operation may be received after initiation of the write-back where the write-back can be aborted for a portion of the bits in the case of a write operation. The write-back may be performed such that different portions of the magnetic bits are written back at different times, thereby staggering the write-back current pulses in time.
US09502091B1

A sensing system may include a sense amplifier, a sensing circuit configured to sense a current difference, a data cell selectively coupled to the sensing circuit, a first reference cell selectively coupled to the sensing circuit, and a second reference cell selectively coupled to the sensing circuit. The resistance of the first reference cell and the second reference cell are different.
US09502080B2

According to one embodiment, a semiconductor memory device includes a memory cell array in which memory cells are disposed in a matrix, each memory cell being connectable to any one of a plurality of bit lines, and a capacitance that suppresses coupling noise among the plurality of bit lines, the capacitance being added to at least one of the plurality of bit lines.
US09502074B2

A system and method for a media processor separates the functions of topology creation and maintenance from the functions of processing data through a topology. The system includes a control layer including a topology generating element to generate a topology describing a set of input multimedia streams, one or more sources for the input multimedia streams, a sequence of operations to perform on the multimedia data, and a set of output multimedia streams, and a media processor to govern the passing of the multimedia data as described in the topology and govern the performance of the sequence of multimedia operations on the multimedia data to create the set of output multimedia streams. The core layer includes the input media streams, the sources for the input multimedia streams, one or more transforms to operate on the multimedia data, stream sinks, and media sinks to provide the set of output multimedia streams.
US09502070B2

A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium (Er), ytterbium (Yb), promethium (Pm), neodymium (Nd cobalt (Co), cerium (Ce), lanthanum (La), praseodymium (Pr), or combinations thereof.
US09502059B2

A head assembly according to one embodiment includes at least one module having magnetic transducers for reading and/or writing to a magnetic tape; electronics electrically coupled to the transducers, the electronics comprising at least one of amplifiers; bias circuitry; write drivers; write resistors; a memory device; and a chip with at least one of identification information about the head assembly, customization data, and firmware; and a connector for detachably interfacing to a drive having a head region for receiving the head assembly. A method according to one embodiment includes inserting a head assembly in a head region of a magnetic tape drive, the head assembly having one or more modules containing a plurality magnetic transducers and one of amplifiers, write drives, or bias circuitry; wherein upon receiving the head assembly the drive is at least one of a functional drive, an updated drive, and a legacy drive.
US09502048B2

The present technology provides adaptive noise reduction of an acoustic signal using a sophisticated level of control to balance the tradeoff between speech loss distortion and noise reduction. The energy level of a noise component in a sub-band signal of the acoustic signal is reduced based on an estimated signal-to-noise ratio of the sub-band signal, and further on an estimated threshold level of speech distortion in the sub-band signal. In various embodiments, the energy level of the noise component in the sub-band signal may be reduced to no less than a residual noise target level. Such a target level may be defined as a level at which the noise component ceases to be perceptible.
US09502043B2

A method for processing an audio signal at an audio decoder, the method including receiving a downmix signal, a residual signal, and object information; extracting a background-object signal and a foreground-object signal from the downmix signal using the residual signal and object information; receiving mix information including gain information for the background-object signal; generating a downmix processing information based on the object information and the mix information; and generating an output signal including a modified background-object signal and a modified foreground-object signal. The modified background-object signal is obtained by modifying a gain of the background-object signal using the mix information. The modified foreground-object signal is obtained by modifying a gain of the foreground-object signal using the downmix processing information.
US09502033B2

A speech recognition client sends a speech stream and control stream in parallel to a server-side speech recognizer over a network. The network may be an unreliable, low-latency network. The server-side speech recognizer recognizes the speech stream continuously. The speech recognition client receives recognition results from the server-side recognizer in response to requests from the client. The client may remotely reconfigure the state of the server-side recognizer during recognition.
US09502026B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, receiving audio data; determining that an initial portion of the audio data corresponds to an initial portion of a hotword; in response to determining that the initial portion of the audio data corresponds to the initial portion of the hotword, selecting, from among a set of one or more actions that are performed when the entire hotword is detected, a subset of the one or more actions; and causing one or more actions of the subset to be performed.
US09502023B2

Matching layers configured for use with ultrasound transducers are disclosed herein. In one embodiment, a transducer stack can include a capacitive micromachined ultrasound transducer (CMUT), an acoustic lens, and a matching layer therebetween. The matching layer can be made from a compliant material (e.g. an elastomer and/or an liquid) and configured for use with CMUTs. The matching layer can include a bottom surface overlying a top surface of the transducer and a top surface underlying a bottom surface of the lens.
US09502019B2

A MEMS microphone package is described that includes a first node and a second node having nearly equivalent 3D parasitic capacitances relative to a preamplifier of the microphone package, such that any noise generated on the first node is equivalent to any noise generated on the second node. An external power supply is connected to the first node and provides a bias voltage signal to the MEMS microphone package via the first node. An inverting amplifier is connected between the power supply and the second node. A third node is connected to the first node through a packaging parasitic capacitor, while the second node is connected to the third node through either an intended parasitic capacitor or an explicit capacitor. The noise coupled from the external power supply to the third node is then cancelled by summing the inverted power supply noise into the third node.
US09502004B2

A support assembly including a support rotatably disposed with respect to a frame, a repetition lever hinge mounted to the support, and a repetition lever supported by the repetition lever hinge and rotatably disposed with respect to the support, wherein the repetition lever has a contact surface and the contact surface contacts a hammer shank roller provided to a hammer shank for rotating a hammer, and the repetition lever hinge is mounted to the support in a mounting direction that crosses with a tangent-line direction of a line tangent to the hammer shank roller at the contact between the hammer shank roller and the contact surface.
US09502000B2

A timing controller for a display apparatus includes a dithering unit outputting a first signal in which bit widths of image signals are reduced, an image pattern detector detecting an image pattern of the image signals and outputting a dithering off signal corresponding to the detected image pattern, a dithering selector receiving the first signal and converts the first signal to a second signal in response to the dithering off signal, and a response time compensator generating a present image signal from the second signal and compensates a liquid crystal response time in accordance with a difference between the present image signal and a first previous image signal to output a data signal.
US09501998B2

A display circuit includes a graphics display unit for generating a graphics display signal; a first BIOS and a second BIOS electrically connected to the graphics display unit, and respectively storing a first BIOS program code and a second BIOS program code; a BIOS switch electrically for enabling one of the first BIOS and the second BIOS and disabling the other; an output switch electrically connected to the graphics display unit; a first output port and a second output port electrically connected to the output switch. When the graphics display unit loads the first BIOS program code, the output switch is switched to electrically connect the first output port to the graphics display unit; when the graphics display unit loads the second BIOS program code, the output switch is switched to electrically connect the second output port to the graphics display unit.
US09501996B2

An electrowetting element includes a first fluid and a second fluid immiscible with the first fluid, as well as a surface, wherein display effects depend on an extent that the first and second fluids adjoin the surface, in dependence on applied voltage. Operation includes receiving data representing a first display effect for display; receiving data representing a subsequent display effect for display after display of the first display effect; comparing data representing the first display effect with data representing said subsequent display effect to determine a difference indicative of a change of the extent the second fluid adjoins the surface between display of the first display effect and display of the subsequent display effect; and depending on said difference, selectively outputting data for driving the electrowetting element to display a different display effect, instead of the subsequent display effect, consecutively after displaying the first display effect.
US09501994B2

The present disclosure discloses a liquid crystal display panel and a driving method thereof. The liquid crystal display panel comprises a plurality of pixel units, each pixel unit comprising: a data line, a first scanning line, a second scanning line, a first switch, a second switch, and a pixel electrode. One pixel presenting different voltages during different time of one frame can be realized through the new liquid crystal display panel and the driving method proposed by the present disclosure. Moreover, the aperture ratio and the penetration of the LCD panel would not be reduced by the design of the pixel unit.
US09501987B2

Disclosed is an LCD device. The LCD device includes a panel in which a plurality of gate lines cross a plurality of data lines, a source driving IC configured to alternately output a current data voltage and a current common voltage, a common electrode connected to the source driving IC through at least two or more common voltage lines, and a timing controller configured to generate current image data used to generate the current data voltage and common voltage data used to generate the current common voltage to be outputted to the source driving IC in correspondence with the current data voltage.
US09501985B2

In an image signal writing period, a first image signal is supplied to a first liquid crystal element and a first capacitor from a first signal line. In a backlight lighting period, display is performed in a light-transmitting pixel portion in response to the first image signal. In a black grayscale signal writing period, a signal for black display is supplied to a second liquid crystal element and a second capacitor from a second signal line. In a still image signal writing period, a second image signal is supplied to the first liquid crystal element, the first capacitor, the second liquid crystal element, and the second capacitor from the first signal line. In a still image signal holding period, display is performed in the reflective pixel portion in response to the second image signal.
US09501983B2

According to an aspect, a color conversion device includes a signal processing unit and a signal output unit. When a color specified in a predetermined color space by color data based on input signals is a color outside a defined color gamut defined in the color space, the signal processing unit generates in-defined-gamut data, and when the color specified in the color space by the color data based on the input signals is a color on a border of or inside the defined color gamut, the signal processing unit does not convert the color data based on the input signals into color data of a color different from that specified by the color data based on the input signals, and generates in-defined-gamut data identical to the color data based on the input signals, and. The signal processing unit generates output signals based on the in-defined-gamut data.
US09501981B2

The present invention provides driving methods for electrophoretic color display devices. The backplane system used for the driving methods is found to be simpler which renders color display devices more cost effective. More specifically, the driving method comprises first driving all pixels towards a color state by modulating only the common electrode, followed by driving all pixels towards their desired color states by maintaining the common electrode grounded and applying different voltages to the pixel electrodes.
US09501977B2

The present invention relates to an image display device and a method for repairing a short circuit failure. The present invention is applicable to, for example, an active matrix type image display device using an organic EL device, and a short circuit location between wiring patterns is able to be repaired. In a scanning line WSL or a signal line DTL, a bypass wiring pattern BP for bypassing a region where the signal line DTL and the scanning line WSL intersect with each other is provided. By using the bypass wiring pattern BP, a short circuit location between wiring patterns is repaired.
US09501976B2

A pixel circuit for an organic light emitting display includes first, second, third, fourth, fifth, and sixth MOS transistors, a first capacitor, and an organic light emitting diode. The gate electrode of the first MOS transistor receives a first scanning signal. A first electrode of the first MOS transistor receives a data signal. The gate electrode of the third MOS transistor receives a third control signal. The gate electrode of the fourth MOS transistor receives the first scanning signal. The gate electrode of the fifth MOS transistor receives a first control signal. A first electrode of the fifth MOS transistor receives a reference voltage. The gate electrode of the sixth MOS transistor receives a second scanning signal. The first electrode of the sixth MOS transistor receives the reference voltage.
US09501975B2

A driving method of an organic light emitting display device includes: classifying a plurality of luminance steps into at least a low luminance section and a high luminance section; and setting a reference luminance at a predefined level during the low luminance section and adjusting an off duty according to predetermined criteria for each step in the low luminance section.
US09501973B2

A pixel driving circuit, array substrate and display apparatus, comprise: data line for providing data voltage; gate line for providing scanning voltage; first power supply line for providing first power supply voltage; second power supply line for providing second power supply voltage; light emitting device connected to second power supply line; driving transistor connected to first power supply line; storage capacitor having first terminal connected to gate of driving transistor and configured to transfer information to gate of driving transistor; resetting unit configured to reset voltage across storage capacitor as predetermined signal voltage; data writing unit configured to write information into second terminal of storage capacitor; compensating unit configured to write information into first terminal of storage capacitor; and light emitting control unit configured to write first power supply voltage into second terminal of storage capacitor and control driving transistor to drive light emitting device to emit light.
US09501966B2

According to an exemplary embodiment, a driver circuit for generating a reset pulse of an output waveform includes a plurality of ramp paths, each ramp path being configured to control the slope of the reset pulse. The driver circuit also includes a falling switch configured to selectively hold the output waveform low. The driver circuit further includes a switch controller for selectively enabling the plurality of ramp paths and the falling switch to generate the reset pulse. The switch controller can selectively enable the plurality of ramp paths responsive to a reference setting signal to select the slope of the reset pulse. The driver circuit can also generate a sustain pulse. The driver circuit is can generate the reset pulse and the sustain pulse by driving a transistor.
US09501964B2

The present invention is to provide a semiconductor device that can correctly switch endians on the outside even if the endian of a parallel interface is not recognized on the outside. The semiconductor device includes a switching circuit and a first register. The switching circuit switches between whether a parallel interface with the outside is to be used as a big endian or a little endian. A first register holds control data of the switching circuit. The switching circuit regards the parallel interface as the little endian when first predetermined control information, that is unchanged in the values of specific bit positions even if its high-order and low-order bit positions are transposed, is supplied to the first register, and regards the parallel interface as the big endian when second predetermined control information, that is unchanged in the values of specific bit positions even if its high-order and low-order bit positions are transposed, is supplied to the first register. Whatever the endian setting status, the control information can be correctly inputted without being influenced by the endian setting status.
US09501956B2

The present invention relates to a combination greeting card and gift card presenter. In one aspect, the presenter comprises a cover panel and a gift card panel, the gift card panel including a magnetic strip for storing machine readable information, the cover panel and the gift card panel coupled together along a fold line. In another aspect, multiple intermediary panels are coupled between the cover panel and the gift card panel to allow for one sided custom printing. The cover panel may also be coupled to a gift card holder that comprises a first fold panel and a second fold panel folded together to form a pocket for receiving at least a portion of a gift card. The cover panel and the first or second fold panel may be coupled along an edge, and the fold panels may include tabs for securing the first and second fold panels together.
US09501954B2

The purpose of the present invention is to provide a dental model capable of strongly fixing model teeth to a model main body and capable of configuring model teeth with a desired length. This dental model is provided with a model main body, model teeth which have a dental crown and a dental root and which are attached to the model main body, and screws which have a shaft and a head and which detachably connect the model teeth to the model main body. The model main body is provided with a base, dental root arrangement units which are provided on one surface of the base and in which the dental roots are arranged, holes which are formed in the dental root arrangement units and through which the shafts are inserted, and support pieces which protrude from the one surface of the base and which support the lateral surface of the dental roots arranged in the dental root arrangement units. The model teeth are provided with screw holes into which the shafts are screwed, and with supported parts which are supported by the support pieces.
US09501943B2

A system, method and computer program product for providing a learning aid using pictorial mnemonics. The method can include receiving a first input including a selection of a content topic. The method further includes displaying a first pictorial mnemonic associated with the selected topic, wherein the first pictorial mnemonic comprises one or more sub-images, and a list of one or more attributes, wherein each attribute is associated with a corresponding sub-image.
US09501940B2

An apparatus for financial education, entrepreneurship education and life management. The apparatus can include a housing, at least one storage compartment received within the housing and including an interior cavity, a coin acceptor assembly adapted to receive a coin, determine the denomination of the coin, and deposit the coin into the storage compartment, electronic circuitry communicatively coupled to the coin acceptor assembly, a display device communicatively coupled to the electronic circuitry, at least one input device communicatively coupled to the electronic circuitry, wherein the electronic circuitry includes at least one non-transitory computer-readable medium storing executable instructions and a processor adapted to execute the instructions, wherein the instructions are adapted to display a graphic interface on the display device, and to receive input from a user via the at least one input device, so as to allow the user to manage a user account, the user account including a monetary balance.
US09501934B2

A notification system includes: a first extraction unit configured to extract caution-required locations present within a predetermined distance range centered on a current position of a vehicle from a plurality of caution-required locations of which the positional information is previously acquired; a second extraction unit configured to extract caution-required locations present within a predetermined angle centered on a current traveling direction of the vehicle from the plurality of caution-required locations; a third extraction unit configured to extract, as a notification target point, a caution-required location where the current position of the vehicle is present within a predetermined angle range centered on the orientation of a link through which the vehicle is determined to pass by referring to map data holding information of a plurality of links in which positions and orientations are matched with each other, from caution-required locations extracted in common by both the first extraction unit and the second extraction unit; and an execution unit configured to execute a caution-required location traveling notification in accordance with the approach of the vehicle to the notification target point extracted by the third extraction unit.
US09501928B1

Using social media feeds to determine infrastructure and personal resolutions to high traffic events.
US09501927B2

There is a system for queue-based processing of RFID locating and sequencing at a site comprising one or more queues that are maintained and updated as locating and sequencing occurs, to ensure that out of sequence, or other complex processing, does not render inaccurate the locating and sequencing.
US09501924B2

A home security system may infer a mode of operation based on indications it receives regarding a user's behavior. The disclosed implementations provide for a vacation mode of operation that defines a response for a security event that differs from the response that would be provided by the home security system for the same security event if it operated in another mode such as an away mode.
US09501916B2

A wireless sensor node, WSN, tag and method for filtering sensor data obtained by the WSN. At least one event filter is applied to sensor data. The sensor data is based at least in part on motion of the WSN tag. The at least one event filter includes at least one filter parameter, and the at least one filter parameter includes a minimum amount of movement of the WSN tag within a predetermined time threshold.
US09501911B2

A user interface (UI) device for a premises management system may include at least one proximity sensor, a first interface component configured to illuminate in a first illumination style based on a first rule set when an individual is detected within a first range by the at least one proximity sensor, and a second interface component to receive input from the individual and configured to illuminate in a second illumination style based on a second rule set different from the first rule set when the individual is detected within a second range closer to the UI device than the first range.
US09501909B2

Embodiments of the invention are directed to systems, methods, and computer program products for processing and tracking merchant deposits. An exemplary apparatus is configured to receive a deposit package that contains one or more deposit items which have been placed in the deposit package by a merchant. The deposit package may also contain and/or be coupled with visual indicia that has been created by the merchant. The visual indicia may specify information about the one or more deposit items placed in the deposit package. The apparatus may be further configured to read the visual indicia upon receiving the deposit package and track the deposit package based at least partially on the visual indicia.
US09501907B2

Embodiments of the present invention are directed to a method and apparatus for operating a gaming device having at least one winning event and at least one related award that is generated according to a set of rules associated with the game. The game is driven to present a predefined winning outcome and an award is generated as if the winning event and award were generated according to the rules. Also provided are rules and/or conditions for determining when to generate the predefined wining event, including rules that take into account player value to the casino and game volatility preference.
US09501900B2

A linked gaming system and method combines electronic gaming machines (“EGMs”) of different types, each of which is eligible to win a linked jackpot award. One or more first groupings of EGMs each utilize a random number generator to determine game outcome, while one or more second groupings of hybrid EGMs draw outcomes from a finite pool of outcomes determined by a central finite pool system and utilize a jackpot selector to determine jackpot awards. The EGMs from all groupings are configured to have an equal chance of winning the linked jackpot award on the linked gaming system and method.
US09501896B2

A method, system and program product for controlling the operation and configuration of an electronic game terminal for the play of licensed electronic games. A passcode is generated for activating plays on the electronic game terminal. An operator is enabled to enter the passcode into a control component for the electronic game terminal. A maximum number of electronic games that can be played before the electronic game terminal is deactivated is set when the passcode is entered. The number of games remaining following each play of the electronic game is determined dynamically. A request is received from the operator to refill the game plays on the electronic game terminal. A new passcode is then generated wherein the new passcode can enable or disable at least one feature of the electronic game. The new passcode is provided to the operator to enter in order to enable additional plays on the electronic game terminal.
US09501894B2

A gaming system and method for enabling a player to select a plurality of games to simultaneously, concurrently or overlappingly play, wherein regardless or independent of which primary games the player selected to play, the secondary games available to be triggered remain the same.
US09501893B2

A game assembly for a game associated with instructions and rules for use in playing the game includes a housing having a spinning wheel with slots and numbers used for making wagers, and a wager calculations device. The housing further has a miniature basketball net through which a player participant throws a miniature basketball onto said spinning wheel, and a plurality of miniature basketballs having varying point denominations thereon for wagering. A hand-held remote controller controlling time limits per unit of said game; and the hand-held remote controller controls audio visual displays displayed on the housing, which are related to the game. The wager calculations device maybe the hand held remote controller, or a separate a flat wager board having respective slots and numbers corresponding to those displayed on the spinning wheel.
US09501890B2

A manually operable dispenser for dispensing disposable earplugs. The dispenser includes a housing, an index body, and a plate. The housing forms an opening for receiving earplugs from a container. The index body includes a handle and a hub. The hub forms an upper major face, a lower major face, and a plurality of circumferentially arranged bores. Each of the bores is open to the major faces and is defined by a wall surface extending through a thickness of the hub. At least a portion of the wall surface of each of the bores has an anti-bonding construction. The hub is rotatably mounted within the housing. The plate is connected to the housing, and forms a dispensing aperture. A manually-applied rotational force at the handle selectively aligns respective ones of the bores with the dispensing aperture. The anti-bonding construction promotes sliding, low friction interface with individual earplugs.
US09501884B2

A wireless device access system that employs directional antennas for short-range wireless communication to detect the proximity and orientation of a user device with respect to a structure is disclosed. The access system receives and authenticates an unlock request and confirms the proximity and orientation of the user device prior to transmitting an unlock command to the structure. This authentication may occur through the use of substantially opposing directional antennas separated by a ground plane. Additionally, the wireless device may require the proximity of a user token prior to operation and/or the access system may include an override within the structure blocking any unlock command.
US09501882B2

A system and method of performing identity verification based on the use of mobile phones or mobile computing devices in conjunction with a secure identity authority; said method to be used as an alternative to conventional identity verification using paper-based documents such as driver's licenses and passports. The new method improves speed, accuracy, cost, and reliability of identity verification for entities that need to verify identity, as well as convenience for end-users.
US09501873B2

Embodiments are disclosed that relate to operating a user interface on an augmented reality computing device comprising a see-through display system. For example, one disclosed embodiment includes identifying one or more objects located outside a field of view of a user, and for each object of the one or more objects, providing to the user an indication of positional information associated with the object.
US09501871B2

Concepts and technologies are disclosed herein for explorable augmented reality displays. An augmented reality service can receive a request for augmented reality display data. The request can be associated with a device. The augmented reality service can determine a location associated with the device and identify augmented reality data associated with the location. The augmented reality service can provide augmented reality display data to the device.
US09501870B2

There is provided a mixed reality image processing apparatus capable of forming mixed reality image data that matches an illumination environment of an external world. The mixed reality image processing apparatus includes a standard illumination environment processing unit configured to extract illumination environment information, which indicates the illumination information of the external world, from image data imaged by an imaging unit, and a local illumination environment processing unit configured to convert mixed reality image data, which is formed by combining virtual image data to the image data, into image data corresponding to the illumination environment of the external world based on the illumination environment information.
US09501866B2

A method and a computer system for modeling, in a virtual environment of a computer simulation, virtual contaminants in a scene to be rendered. A processing module, using a graphical user interface on a display device, is used for define, in a model, a first additive zone of the scene over which a virtual contaminant is to be added, defining, in the model, a second subtractive zone of the scene over which the virtual contaminant is to be at least partially removed, the second subtractive zone being at least partially enclosed within the first additive zone and a memory module is used for storing the model, the model being made available through a storage module for rendering the virtual contaminants on the scene in the computer simulation. A preview mode may be used for launching the computer simulation at a rate lower than the expected rate of the computer simulation.
US09501863B1

A method of automatically tracking the portions of a 3D medical imaging volume, such as the voxels, that have already been displayed according to use-defined display parameters, notating those portions, and providing the user with information indicating what portions of the imaging volume have been displayed at full resolution.
US09501862B2

The disclosure provides an approach for determining, in 3D rendering, the integrals of visibility-masked spherical functions using visibility silhouettes. For a given shade point, the visibility silhouette for that shade point includes a set of edges from the scene geometry which form the boundaries between visible and invisible regions of a hemisphere having the shade point as its center. For each shade point, a rendering application determines a set of contour edges of scene geometry, the contour edges being a superset of the set of visibility silhouette edges, by querying a 4D dual mesh. The rendering application then evaluates the integral of the visibility-masked spherical function for a given shade point by integrating over segments of discrete u-isolines for which an overlap function indicates that a ray from the shade point would not intersect scene geometry.
US09501861B2

This disclosure includes a method for electronically generating a single image for product visualization. The method comprises receiving a selection of a first variation of a first consumer product layer with a first depth attribute from a plurality of variations of the first consumer product layer, each variation comprising at least one surface. The method further includes receiving a selection of a second variation of a second consumer product layer with a second depth attribute from a plurality of variations of the second consumer product layer, each variation comprising at least one surface. The method also includes layering the first variation of the first consumer product layer in the single image based at least on the first depth attribute; and layering the second variation of the second consumer product layer in the single image based at least on the second depth attribute. Related systems and apparatuses are also disclosed.
US09501838B1

A boundary determination system for determining boundaries of features in a digital image is provided. The boundary determination system includes a processor coupled to a memory. The processor is configured to analyze a spectral content and a spatial structure of a feature in a digital image, characterize the feature in the digital image, and distinguish the feature from immediate surroundings of the feature in the digital image.
US09501836B2

In embodiments of the present invention improved capabilities are described for producing background separated product images for print and on-line display. An image formation system provides lighting of a product to facilitate acquiring images that can be automatically processed to generate high resolution item-only images free of quality defects and imaging artifacts. Image processing programs accurately detect an outline of an item in a set of digital images taken using the image formation system and automatically store processed images in an image library. The images in the library may be repurposed for print, sales display, transmission to a user, on-line customer support, and the like. A user display configured with an adaptable user interface facilitates user interaction with images in the library.
US09501833B2

A system, apparatus and method of performing 3-D object profile inter-planar estimation and/or range inter-planar estimation of objects within a scene, including: providing a predefined finite set of distinct types of features, resulting in feature types, each feature type being distinguishable according to a unique bi-dimensional formation; providing a coded light pattern having multiple appearances of the feature types; projecting the coded light pattern, having axially varying intensity, on objects within a scene, the scene having at least two planes, resulting in a first plane and a second plane; capturing a 2-D image of the objects having the projected coded light pattern projected thereupon, resulting in a captured 2-D image, the captured 2-D image including reflected feature types; determining intensity values of the 2-D captured image; and performing 3-D object profile inter-planar estimation and/or range inter-planar estimation of objects within the scene based on determined intensity values.
US09501831B2

In one aspect, a hand-held device is provided with a display, camera, motion detector and processor. The processor receives a sequence of images from the camera, the relative distance to the object based on the parallax associated with two or more images of the sequence and the motion of the camera is determined, and the image is augmented and displayed based on the relative distances.
US09501830B2

Techniques related to blob detection in noisy images are discussed. Such techniques may include traversing a contour associated with a candidate blob contour pixel to an inline pixel along a predetermined orientation, detecting a direction of the inline pixel with respect to the candidate blob contour pixel, and continuing to traverse the contour as a contour of the blob or detecting a second candidate blob contour pixel based on the detected direction.
US09501828B2

An image capturing device includes: a plurality of image capturing units that capture images from different viewpoints; an image analyzing unit that detects characteristic points by image analysis of the images captured by the plurality of image capturing units; a control unit that calculates image conversion parameters for correction of inputting characteristic point information generated by the image analyzing unit to correct deviation in the up and down direction of the plurality of images captured by the plurality of image capturing units; and an image conversion unit that performs a conversion process of the captured images of the plurality of image capturing units by applying the image conversion parameters calculated by the control unit.
US09501824B2

A microprocessor is operably coupled to a camera from which patient vital signs of reduced images of skin are determined. A temporal variation of reduced images of skin from the camera is generated from multiple filters and then amplified from which the patient vital sign, such as heart rate or respiratory rate, can be determined and then displayed or stored.
US09501820B2

A system and method to inspect flaws associated with a part. The system includes a first image capturing device configured to capture a first set of images of the part and a computer operably associated with first image capturing device and configured to receive and analyze the first set of images. The method includes treating the part with a nital etchant solution, capturing a first set of images of an outer surface of the part with the first image capturing device, and identifying a part defect with an algorithm associated with the computer.
US09501818B2

In a method to generate a tone-mapped image from a high-dynamic range image (HDR), an input HDR image is converted into a logarithmic domain and a global tone-mapping operator generates a high-resolution gray scale ratio image from the input HDR image. Based at least in part on the high-resolution gray scale ratio image, at least two different gray scale ratio images are generated and are merged together to generate a local multiscale gray scale ratio image that represents a weighted combination of the at least two different gray scale ratio images, each being of a different spatial resolution level. An output tone-mapped image is generated based on the high-resolution gray scale image and the local multiscale gray scale ratio image.
US09501816B2

This disclosure concerns the determination of low dynamic range image data from high dynamic range image data. A processor determines the low dynamic range image data by optimizing a degree to which the low dynamic range image data satisfies a local contrast constraint and a global consistency constraint. The local contrast constraint is based on a local contrast in a perception space while the global consistency constraint is based on a relationship between points in the high dynamic range image data. The determined low dynamic range image data preserves the local contrast from the high dynamic range image data while also preserving the relationship between points in the high dynamic range image data to a high degree. As a result, the method prevents contrast distortion, halos and artifacts and ordering of level lines (isocontours) is preserved.
US09501815B2

Various implementations relate to processing pictures. In one particular implementation, a cropped picture is accessed. The cropped picture has been cropped, using a virtual camera window, from a picture in a sequence of pictures. Motion blur is generated for a feature in the cropped picture based on a motion of the virtual camera window and a motion of the feature. The generated motion blur is added to the feature in the cropped picture. In another particular implementation, a signal or signal structure includes a picture section for a cropped picture that has been cropped, using a virtual camera window, from a picture in a sequence of pictures. The signal or signal structure also includes a motion section for an indication of a motion of the virtual camera window.
US09501814B2

There is provided a method and apparatus for image color enhancement, wherein the method comprises the following steps: S1, collecting color components of an image, converting the color components from a RGB space into a HSV space, and obtaining parameters in the HSV space as hue, saturation, and value respectively; S2, performing gain operations selectively on the saturation and the value by judging the saturation in the HSV space; S3, converting the obtained parameters in the HSV space back into the RGB space. In the above method for image color enhancement, after the color components are converted into the HSV space, firstly, the saturation value is judged, and the gain operations are performed selectively by utilizing the gain function according to the judgment result.
US09501804B2

A system may include a multi-core processor that may include a first core configured to determine structured energy data associated with one or more assets in an automation system, wherein the structured energy data comprises a logical grouping of assets in the automation system, a second core configured to control the one or more assets based on the structured energy data, a third core configured to manage security operations in the automation system, and a fourth core configured to manage safety operations in the automation system.
US09501785B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for ranking applications. In one aspect, a method includes receiving, from a computing device, a feedback report related to an application configured to run on the computing device, the feedback report including information indicative of an error with the application, and a geographic location of the computing device at a time when the application encountered the error; generating, based on the feedback report, one or more metrics indicative of a performance of the application in the geographic location; retrieving information indicative of other applications associated with metrics indicative of a performance of the other applications in the geographic location; and ranking the applications in accordance with the metrics indicative of the performance of the applications in the geographic location.
US09501778B2

Provided are techniques for providing personalized recommendations. One or more transactions are received from one or more customer interaction channels. The received one or more transactions are stored in an incremental data store. One or more predictive rules are generated based on the received one or more transactions and based on one or more transactions previously stored in the incremental data store. In real-time, one or more personalized recommendations specific to a user and to the received one or more transactions are generated using the one or more generated predictive rules.
US09501767B2

An improved method, apparatus, and computer implemented instructions for processing a check in an automatic teller machine in a data processing system. A check is received from a user at the automatic teller machine. The check is scanned to generate an image. A transaction is performed involving the check. The image is transmitted to a mobile device associated with the user, wherein the image is in a format for use with a financial program.
US09501765B2

Embodiments of the invention are directed to systems, methods and computer program products for transaction queuing. In some embodiments, a system is configured to: receive information associated with an intended transaction, wherein a user will execute the intended transaction at a facility at a user-defined time; determine preliminary work associated with the intended transaction that can be performed prior to the user-defined time; and perform the preliminary work associated with the intended transaction. The preliminary work is placed on a transaction queue until the user arrives at the facility.
US09501760B2

A methods and apparatus for echoing media via a mobile device are disclosed herein. According to an embodiment, the method can include displaying automatically to a user, on the mobile device, a list of one or more respective identifiers of one or more other users experiencing respective media within a selectable geographic area. The user is then allowed to select whether to play one or more of the respective media on the mobile device, and can connect with the one or more other users via a social networking site. As a result, the user can network with previously unknown people, based on a common taste in music or other media, for example, as well as a geographic location.
US09501759B2

The subject disclosure is directed towards developing a translation model for mapping search query terms to document-related data. By processing user logs comprising search histories into word-aligned query-document pairs, the translation model may be trained using data, such as probabilities, corresponding to the word-aligned query-document pairs. After incorporating the translation model into model data for a search engine, the translation model is used may used as features for producing relevance scores for current search queries and ranking documents/advertisements according to relevance.
US09501753B2

A user may be allowed to specify a change in one or more parameter data associated with the project, the one or more parameter data used previously to compute a probability distribution of completion time of the project. The probability distribution of completion time of the project may be recomputed based on the change. The recomputed probability distribution of the completion time of the project may be presented. An option to save the recomputed probability distribution may be provided. An option may be provided to specify another change in one or more parameter data associated with the project and repeat the recomputing and the presenting procedures based on another change in one or more parameter data associated with the project.
US09501752B2

A VoIP relay integration management system including a service management application and a VoIP phone server that monitor and gather client interaction data between a client and a field agent. The system accepts a selection of service phone method, from a plurality of selection methods, for the field agent to use to call the client, and enables or disables the selection per the field agent. The system accepts, stores and schedules a task to be dispatched to the field agent, and calculates and displays a response time that includes a time from when the task is dispatched to the field agent to when the field agent generates a call. The system calculates and displays an average response time of all calls generated by the field agent, based on one or more of the field agent, an area of the task, a date of the task and a type of task.
US09501746B2

Systems and methods for analyzing electronic messages are disclosed. In some embodiments, the method comprises receiving a new received message from an indicated sender, the new received message having a first message characteristic of the indicated sender and a second message characteristic, identifying an actual sender message characteristic pattern of an actual sender using the first message characteristic, probabilistically comparing the second message characteristic to the actual sender message characteristic pattern, determining a degree of similarity of the second message characteristic to the actual sender message characteristic pattern, and influencing a probability that the indicated sender is the actual sender based upon the degree of similarity. There may be multiple message characteristics and patterns. In some embodiments, the methods may utilize pattern matching techniques, recipient background information, quality measures, threat intelligence data or URL information to help determine whether the new received message is from the actual sender.
US09501737B1

A system for prediction of statistical time series includes Kanban cells (KC), Kanban cell neurons (KCN), and Kanban neuron models (KNM). The KNM as applied may be used for predicting time series of financial marketplaces and of natural phenomena.
US09501733B2

The method of manufacturing a functional inlay comprises the steps of: —) providing a support layer with at least a first and a second side —) embedding a wire antenna in said support layer —) processing said support layer with said embedded wire antenna to a connection station in which —) said support layer is approached on said first side by a holding device holding a chip with a surface comprising connection pads; —) said support layer is approached on said second side by a connection device; and —) said antenna wire is connected to said connection pads by means of a reciprocal pressure exerted between said holding device and said connection device.
US09501727B2

A color look-up-table (LUT) is created for use by an imaging system which uses a resource to display an image and/or provides an attribute of the image. A method of creating the LUT, comprises selecting (S1) a threshold value of resource usage and/or metric of the attribute. A predetermined color look-up-table representing a mapping from color values of a first color gamut to color values displayable by the imaging system is accessed. The predetermined color look-up-table has nodes defining colors to be displayed for the said color values. Resource usage and/or attribute values associated with the said nodes are compared with the threshold value thereby determining the set of nodes of the predetermined gamut having a resource usage and/or attribute values less than the threshold value (S2a, S2b, S3, S4). A new look-up-table is created (S5) which maps the said predetermined color gamut look-up-table to the said set of nodes.
US09501725B2

Systems, methods, and devices are described for capturing compact representations of three-dimensional objects suitable for offline object detection, and storing the compact representations as object representation in a database. One embodiment may include capturing frames of a scene, identifying points of interest from different key frames of the scene, using the points of interest to create associated three-dimensional key points, and storing key points associated with the object as an object representation in an object detection database.
US09501723B2

A method for classifying objects in a scene captured by a camera determines a likelihood of first set of states for the objects. Each first set is a classification of one of the objects, and partitions a solution space based on the determined likelihood of the first set of states, each partition representing combinations of the classifications of the objects. The partitioning is applied to a solution space of a second set of states, each partition representing combinations of the classifications of a subset of the objects. The method determines a likelihood of the second set of states for the subset of the objects, each state of the second set of states being a classification of one of the subset of objects, and classifies a subset of objects according to the determined likelihood of the second set of states and the partitioning of the second set of states.
US09501720B2

An object detection apparatus for detecting a target object in an input image. The apparatus includes a storage storing, for each of a plurality of part areas forming an area subject to image recognition processing, image recognition dictionaries used to recognize a target object and typed according to variations in appearance of a part of the target object to be detected in the part area. A part score calculator calculates, for each of the part areas, a part score indicative of a degree of similarity between the part area and each of at least some of the image recognition dictionaries. An integrated score calculator calculates an integrated score that is a weighted sum of the part scores for the respective part areas. A determiner determines, on the basis of the integrated score, whether or not the target object is present in the subject area.
US09501709B2

A medical image processing apparatus comprises a structure identifying part, an image generator, and a display controller. The structure identifying part identifies a tubular structure inside a subject and a core line in the axial direction of the tubular structure based on medical image data. The image generator generates medical images when viewing a predetermined observation object from a desired view point position inside the tubular structure. The display controller causes the display to display medical images. Furthermore, at each timing, the image generator identifies view point position at which the relative distance between the position of the observation object and the view point position becomes even among each of the timings, and generates a medical image from the view point position for each timing. Moreover, the display controller causes the display to display a plurality of the medical images generated for each of the timings in chronological order.
US09501705B2

Apparatuses and methods are provided for reducing power consumption in a pattern-recognition processor. A power control circuit may be coupled to a block of programmed state machines to enable selective activation and deactivation of the block during a pattern search. The block may be deactivated if the pattern search is no longer active in that block and activated when needed by the pattern search. Additionally, the block may be deactivated based on an identifier of the data stream being searched. Excess blocks not used for any programmed state machines may be disabled such that they are not refreshed during a memory cycle.
US09501698B2

When correction values are respectively determined for noise components of “OFFSET COMPONENT OF CCD ELEMENT”, “GRADATION COMPONENT OF BACKGROUND LIGHT” and “OFFSET COMPONENT OF OPTICAL SYSTEM”, the pixel values including as less of these noise components as possible are evaluated. The evaluated pixel values include a noise component of “THERMAL NOISE PLUS READOUT NOISE COMPONENT” which is superposed onto the pixel values. With this taken into consideration, a moving object detection method of an embodiment photographs multiple images of a moving object being an observation object with a photographic area fixed, selects the smallest pixel value in each group of corresponding pixels across the images from image signals representing the images, evaluates image signals including as less of the four noise components as possible by using the smallest pixel value as the correction value for the four noise components.
US09501690B2

A system for passive driver identification comprises an input interface and a processor. The input interface is configured to receive a collection of face data from a vehicle event recorder. The processor is configured to 1) determine a set of face data of the collection of face data that is associated with a trip; 2) determine a first album associated with the trip, wherein the set of face data associated with the trip is similar to face data of other trips in the first album, and wherein the set of face data associated with the trip is dissimilar to face data of a set of trips in a second album; and 3) assign an identifier that associates the trip to the first album.
US09501689B2

An image processing apparatus includes an image obtaining unit that obtains an image of a face, an edge enhancer that performs edge enhancement on the image and forms an edge-enhanced image, a binarizer that performs binarization on the edge-enhanced image and forms a binary image, and an area identifying unit that identifies an eyelash area in the image on the basis of the binary image.
US09501684B1

Implementations generally relate to image editing. In some implementations, a method includes receiving an edited image, where the edited image includes an edit list and an image signature. The method further includes retrieving an original image based on the image signature. The method further includes applying the edit list to the original image to obtain a modified original image. The method further includes providing the modified original image to a user if the comparing of the edited image to the modified original image meets a similarity threshold.
US09501682B1

An imaging reader is operatively connected to a host system and captures light returning from a two-dimensional symbol having encoded characters, and processes the captured light into binary data. A controller in the reader or the host system determines from the binary data if the encoded characters are encoded in accordance with a local character set that is indicative of a local language, and translates the local character set to a global character set that is indicative of multiple global languages after determining that the encoded characters are encoded in accordance with the local character set. The encoded characters are processed by the host system controller in accordance with the global character set.
US09501681B1

Various algorithms are presented that enable an image of a data matrix to be analyzed and decoded for use in obtaining information about an object or item associated with the data matrix. The algorithms can account for variations in position and/or alignment of the data matrix. In one approach, the image is analyzed to determine a connected region of pixels. The connected region of pixels can be analyzed to determine a pair of pixels, included in the connected region of pixels, that is separated a greatest distance wherein a first pixel and second pixel of the pair of pixels is associated with image coordinates. Using the image coordinates of the pair of pixels, a potential area of the image that includes the visual code can be determined and the potential area can be analyzed to verify the presence of a potential data matrix.
US09501679B2

A binary bit-string is encoded in a circular image. The circular image encodes substrings of the bit-string in sectors of the circular image and includes redundant bits, error correcting codes, and metadata pertaining to the encoding scheme. To encode the bit-strings, a circular image is generated that includes a center ring and a first ring. Outward from the first ring, additional rings represent bits in the bit-string according to the width of each ring. The exterior of the image includes an outer boundary ring. The width of the boundary rings is used to define the widths representing the value of each ring. To extract a bit-string from an image, the center of the circular image is identified and a direction is selected to evaluate the image outward, determining the boundaries of each ring. The boundaries are analyzed to determine the width of each ring and the encoded bit values.
US09501678B2

Embodiments of the present invention comprise an indicia reading terminal that is operatively configured to decode visible and non-visible decodable indicia. The terminal can comprise an excitation illumination module for illuminating the decodable indicia with light that has a wavelength selected so as to permit the decodable indicia to emit light. The terminal can also comprise a filter module with an optical filter that has filter regions configured to pass certain wavelengths of light. The terminal can also comprise an image sensor module with an image sensor located so as to receive light emitted from the decodable indicia from the filter region.
US09501677B2

An improvement is made to a scanning device to increase item throughput at the point of sale (POS). The scanning device implements a mirror that allows a cashier to see hidden or obscured optical codes or bar codes on items. The mirror can reflect an aiming beam from a camera, which also allows the cashier to correctly scan the optical codes or bar codes. The mirror and camera can incorporate different properties to enable both the cashier and a customer to stand on opposite sides of the scanning device and scan items.
US09501674B2

There is provided a terminal for use in determining which of one or more candidate RFID tags having unique data stored thereon is a target RFID tag within an area of the terminal. The terminal can comprise program instructions to direct an RFID reading device of the terminal to perform a number of reads of the one or more candidate RFID tags in response to determining that an object is present in the area, to calculate an accumulated RSSI of each of the one or more candidate RFID tags, and to determine the target RFID tag from a highest accumulated RSSI. In one embodiment, the unique data can be an EPC. There is also provided a terminal for use in converting an EPC into a decoded bar code. The terminal can comprise program instructions to transmit the decoded bar code to a computer such as an electronic cash register.
US09501673B2

A Radio Frequency Identification (RFID) reader is provided that receives a digital input signal, converts the digital input signal to an analog input signal, and determines whether the digital input signal is an unmodulated signal or is modulated with information. When the digital input signal is modulated with information, the RFID reader filters the analog input signal to produce a filtered analog input signal and transmits the filtered signal. When the digital input signal is an unmodulated signal, the RFID reader bypasses the filtering of the analog input signal to produce an unfiltered analog input signal and transmits the unfiltered analog input signal.
US09501663B1

A system, method, and computer-usable medium are disclosed for masking the identity of a human agent by transforming a live video transmission into a persona video transmission. A request is received from a user for a videoconference with a human agent. A persona is selected and associated with a human agent. The videoconference is then conducted, using data associated with the persona to transform the live video transmission of the human agent into a persona video transmission, which is correlated to the live video transmission.
US09501655B2

A multi-functional device is attached to a secure network and includes a control circuit. The control circuit receives indications as to whether a user is authenticated to use the multi-functional device and in response, generates and sends a control signal to the multi-functional device. As long as the multi-functional device continues to receive the control signal, the multi-functional device remains in an operational mode to allow the authenticated user to access the multi-functional device functions. If the multi-functional device ceases to receive the control signal, the multi-functional device deactivates itself.
US09501652B2

An electronic circuit 120 includes a more-secure processor (600) having hardware based security (138) for storing data. A less-secure processor (200) eventually utilizes the data. By a data transfer request-response arrangement (2010, 2050, 2070, 2090) between the more-secure processor (600) and the less-secure processor (200), the more-secure processor (600) confers greater security of the data on the less-secure processor (200). A manufacturing process makes a handheld device (110) having a storage space (222), a less-secure processor (200) for executing modem software and a more-secure processor (600) having a protected application (2090) and a secure storage (2210). A manufacturing process involves generating a per-device private key and public key pair, storing the private key in a secure storage (2210) where it can be accessed by the protected application (2090), combining the public key with the modem software to produce a combined software, signing the combined software; and storing the signed combined software into the storage space (222). Other processes of manufacture, processes of operation, circuits, devices, wireless and wireline communications products, wireless handsets and systems are disclosed and claimed.
US09501649B2

A computer-implemented method for determining potential impacts of applications on the security of computing systems may include (1) identifying an application subject to a security vulnerability assessment, (2) requesting information that identifies a potential impact of the application on a vulnerability of at least one computing system to at least one exploit associated with the application, (3) receiving the information that identifies the potential impact of the application on the vulnerability of the computing system, wherein the information may be derived at least in part from data from at least one additional computing system on which the application has previously been installed and (4) directing a determination about an installation of the application on the computing system based at least in part on the information that identifies the potential impact of the application on the vulnerability of the computing system. Various other methods, systems, and computer-readable media are also disclosed.
US09501628B2

A data distribution system, method and program for generating a distribution package for distribution data to a client. An environment of a requesting client requesting distribution data is detected. A determination is made of an access control execution program for implementing an access control mechanism and a loading unit on the requesting client. The access control execution program is adapted to the detected environment of the requesting client and control access to a resource from a process in the client. The loading unit loads the distribution data to a protected storage area of the client. A determination is made of a security policy specified for the distribution data. A distribution package is generated including the distribution data, the security policy, the loading unit, and the access control execution program adapted to the environment of the requesting client; and transmitting the generated distribution package to the requesting client.
US09501627B2

A system and method of providing dynamic and customizable medical forms is disclosed. In certain specific embodiments, these dynamic and customizable medical forms may be automatically presented to users based on a predefined series of rules which allow multiple users having different roles in the clinical process to collaborate and contribute to a medical examination report, while at the same time maintaining an independent record of what was contributed and by whom it was contributed.
US09501625B2

An assistance system for taking medicine includes at least a pill container, a processing module and an image capturing module. The pill container is for containing a first medicine and has a first barcode corresponding to the first medicine. The image capturing module is coupled to the processing module and for capturing an image having the first barcode. The processing module assists a person (patient) to take medicine according to information of the first barcode.
US09501620B2

Systems and methods are disclosed for quantifying absolute blood volume flow rates by fitting a kinetic model incorporating blood volume, bolus dispersion and signal attenuation to dynamic angiographic data. A self-calibration method is described for both 2D and 3D data sets to convert the relative blood volume parameter into absolute units. The parameter values are then used to simulate the signal arising from a very short bolus, in the absence of signal attenuation, which can be readily encompassed within a vessel mask of interest. The volume flow rate can then be determined by calculating the blood volume within the vessel mask and dividing by the simulated bolus duration. This method is exemplified using non-contrast magnetic resonance imaging data from a flow phantom and the cerebral arteries of healthy volunteers and a patient with Moya-Moya disease acquired using a 2D vessel-encoded pseudo-continuous arterial spin labeling pulse sequence. This allows flow quantification in downstream vessels from each brain-feeding artery separately. The systems and methods can be of use in patients with a variety of cerebrovascular diseases, such as the assessment of collateral flow in patients with steno-occlusive disease or the evaluation of arteriovenous malformations.
US09501601B2

A method for feature pattern modification includes extracting both a main pattern and a cut pattern from a design pattern, the main pattern being laid out under a set of process guidelines that improve the process window during formation of the main pattern, and modifying at least one of: the main pattern and the cut pattern if either feature pattern is in violation of a layout rule.
US09501600B2

An integrated circuit is manufactured by a predetermined manufacturing process having a nominal minimum pitch of metal lines. The integrated circuit includes a plurality of metal lines extending along a first direction and a plurality of standard cells under the plurality of metal lines. The plurality of metal lines is separated, in a second direction perpendicular to the first direction, by integral multiples of the nominal minimum pitch. The plurality of standard cells includes a first standard cell configured to perform a predetermined function and having a first layout and a second standard cell configured to perform the predetermined function and having a second layout different than the first layout. The first and second standard cells have a cell height (H) along the second direction, and the cell height being a non-integral multiple of the nominal minimum pitch.
US09501599B2

A system includes a user input engine to receive input via a graphical user interface (GUI) through a first window, the input including a distance value and an input resolution value. The system also includes a sensor circuit solution generation engine to generate a plurality of sensor circuit solutions based on the received input and to cause the plurality of sensor circuit solutions to be displayed. Each sensor circuit solution specifies information about a conductive coil.
US09501594B2

A graphical tool creates design-verification environments. The tool includes a graphical environment builder that allows for the drag and drop addition of verification IP (“VIP”) modules to a graphical verification environment. The tool assigns connector signals associated with source code that simulates a connection between a VIP module and the device under test (“DUT”). The tool learns which connection signals are suitable to connect a VIP to the DUT and facilitates selecting of the suitable signals in the environment development process. The tool converts the graphical environment to source code that can be executed to simulate testing on the DUT. The tool also allows a user to navigate between view modes that display the verification environment graphically, and that display the source code associated with components of the verification environment.