A cooling apparatus and method are provided for cooling an electronics rack. The cooling apparatus includes an air-cooled cooling station, which has a liquid-to-air heat exchanger and ducting for directing a cooling airflow across the heat exchanger. A cooling subsystem is associated with the electronics rack, and includes a liquid-cooled condenser facilitating immersion-cooling of electronic components of the electronics rack, a liquid-cooled structure providing conductive cooling to electronic components of the electronics rack, or an air-to-liquid heat exchanger associated with the rack and cooling airflow passing through the electronics rack. A coolant loop couples the cooling subsystem to the liquid-to-air heat exchanger. In operation, heat is transferred via circulating coolant from the electronics rack, and rejected in the liquid-to-air heat exchanger of the cooling station to the cooling airflow passing across the liquid-to-air heat exchanger. In one embodiment, the cooling airflow is outdoor air.
A flexible display device includes a display panel and a plurality of curving-restricting structures. The display panel has a display surface and a bottom surface opposite thereto. The display surface has a visible region and an outer region surrounding the visible region. The curving-restricting structures is disposed on at least one of the outer region of the display surface and the bottom surface of the display panel. Each curving-restricting structure has a top surface and at least a slanted side wall. The top surfaces of adjacent curving-restricting structures are spaced with each other, and the slanted side walls of adjacent curving-restricting structures face each other. When the flexible display device are curved to a predetermined extent, adjacent curving-restricting structures may resist against with each other to prevent the display panel from being unduly curved to be damaged, and thus a use reliability of the flexible display device is improved.
A magnetic element (100) includes a board unit (2) including a paddle board (21) having a row of first conductive vias (251) and a row of second conductive vias (252) for insertion of terminals (3), a number of embedded magnetic components (22), and a number of SMDs (surface mount devices) (23) mounted on the paddle board by SMT (surface mount technology). Each embedded magnetic component includes a magnetic core (221) embedded in the paddle board, and a number of PCB (printed circuit board) layout traces (222) disposed in the paddle board. Each PCB layout trace includes a first PCB layout trace (222a) encircling around the magnetic core and connecting with the first conductive via, and a second PCB layout trace (222b) encircling around the magnetic core and connecting with the SMD.
In a Cu wiring forming method for forming a Cu wiring by filling Cu in a recess which is formed in a substrate in a predetermined pattern, a barrier film formed of a TaAlN film is formed at least on the surface of the recess by thermal ALD or thermal CVD. Then a Cu film is formed to fill the recess with the Cu film. Further, the Cu wiring is formed in the recess by polishing the entire surface of the substrate by CMP.
Provided are a conductive film and a method of manufacturing the same. The conductive film includes a substrate, a first conductive layer formed on the substrate, and a patterned second conductive layer formed on the first conductive layer. Here, oxide layers are formed on top and side surfaces of the second conductive layer. The conductive film may prevent defects of the conductive layer caused by rapid oxidation or damage to the substrate, and increase emission uniformity.
A surface wave plasma source (SWPS) is disclosed, having an electromagnetic (EM) wave launcher including a slot antenna configured to couple EM energy in a desired EM wave mode to a plasma by generating a surface wave on a plasma surface of the SWPS adjacent the plasma. The SWPS also includes a dielectric window positioned below the slot antenna, having a lower surface and the plasma surface. The SWPS further includes an attenuation assembly disposed between the slot antenna and the plasma surface. The attenuation assembly includes a first fluid channel substantially aligned with a first arrangement of slots in the slot antenna, and is configured to receive a first flow of a first fluid at a first fluid temperature. The SWPS finally includes a power coupling system coupled to the EM wave launcher and configured to provide EM energy to the EM wave launcher for forming the plasma.
Short protection control circuits and related control methods are disclosed. A disclosed short protection control circuit is adapted for controlling a short protection mechanism providing short protection to several LED chains. The disclosed short protection control circuit has a detection circuit, a first logic circuit and a timer. Coupled to the LED chains, the detection circuit asserts an indication signal when one of the node voltages of the LED chains is lower than an under-current reference. When the indication signal is enabled, the first logic circuit starts blocking the short protection mechanism. The timer times to provide a result when the short protection mechanism is blocked. When the result indicates that the short protection mechanism has been blocked for at least a predetermined time period, the first logic circuit resumes the short protection mechanism.
A light-emitting element driving circuit controls the luminance of light-emitting elements by using a PWM signal. A display device includes the driving circuit and multiple light-emitting elements. The driving circuit includes a control circuit that generates a control signal by using a divided signal based on an input PWM signal, and a light-emitting element driving unit that drive the light-emitting elements by using the control signal. The control signal includes a larger number of frequency components in comparison with frequency components of the input PWM signal.
A lighting apparatus includes a plurality of light emitting diode (LED) sets coupled in series. The apparatus further includes a bypass circuit coupled in parallel with one of the LED sets and configured to sense and control a bypass current when the one of the LED sets is in a first bias state and to attenuate the bypass current responsive to a transition of the one of the LED sets to a second bias state. The first bias state may be substantially non-conducting and the second bias state may be conducting. The apparatus may include a plurality of such bypass circuits, respective ones of which are coupled in parallel with respective ones of the LED sets such that the bypass circuits are coupled in series.
An LED driver having one end coupled with an LED module and another end coupled to a ground, being capable of generating a duty current and a duty in response to a dropout voltage across the LED driver in a way that, the duty current will increase and the duty will decrease when the dropout voltage exceeds a first threshold, and the duty current will decrease and the duty will increase when the dropout voltage falls below a second threshold.
A system configured to provide current to power a solid-state light emitting diode in accordance with a dimming level, wherein the dimming level corresponds to an amount of light provided from the solid-state light emitting diode. The system includes a transformer and a switch. The transformer includes a coil. The transformer is configured to receive a first current. The coil is configured to, based on the first current, output a second current to power the solid-state light emitting diode. The switch is configured to, based on a dimming level that corresponds to the amount of light provided from the solid-state light emitting diode of the system, bleed a portion of the second current out of the coil to a ground reference in order to divert the portion of the second current from being supplied to the solid-state light emitting diode.
A lighting module includes a power line for receiving a power supply current and a ground line, a segmentation point for cutting the lighting module into two parts, a first set of light sources upstream of the segmentation point, a second set of light sources downstream of the segmentation point, wherein the first and second sets of light sources are connected in series, and a resistive element connected to the intermediate point between the first and the second set of light sources, and the ground line, which is configured in such a way that: when the lighting module has not been cut, the resistive element has a resistance which is greater than the resistance of the portion of the lighting module downstream of the segmentation point, and when the lighting module has been cut, the resistive element has a resistance which is less than the resistance thereof.
Disclosed is a light emitting diode (LED) illuminating apparatus having enhanced stability of the quantity of light. The LED illuminating apparatus includes an LED lighting block connected to a rectified voltage and including at least one LED module, an alternative reference voltage generating block configured to detect the rectified voltage and generate an alternative reference voltage, and a switching block connected to the tap and configured to form a closed circuit including the at least one LED module. The at least one LED module includes a cathode terminal having a tap. The alternative reference voltage has a voltage level according to a root mean square (RMS) value of the rectified voltage. The amount of currents flowing through the closed circuit is controlled by the alternative reference voltage to have a negative relationship with the RMS value of the rectified voltage. In an LED illuminating apparatus according to the present invention, degradation in uniformity of light due to instability of an input power is reduced.
A lighting system has a solar power generation section, a control section which generates a control signal based on the output of the solar power generation section, a power conversion section which converts a direct-current electric power input thereto to output a direct-current electric power, and a lighting section which is driven by the direct-current electric power output from the power conversion section.
A light emitter driving device has a decoder portion which monitors a rectified voltage and generates a dimming signal, and a drive current control portion which controls a drive current to a light emitter according to the dimming signal. The decoder portion has a comparator which compares the rectified voltage with a predetermined threshold voltage to generate a comparison signal, a sampling counter which measures high-level and low-level periods of the comparison signal, a duty calculation portion which calculates the duty of the rectified voltage based on the output of the sampling counter, a filter calculation portion which excludes sporadic variation in duty by applying digital filtering to the output of the duty calculation portion, and a dimming signal generation portion which generates the dimming signal based on the output of the filter calculation portion.
A package of an environmental sensitive element including a flexible substrate, an environmental sensitive element, a flexible sacrificial layer and a packaging structure is provided. The environmental sensitive element is disposed on the flexible substrate. The flexible sacrificial layer is disposed on the environmental sensitive element, wherein the environmental sensitive element includes a plurality of first thin films and the flexible sacrificial layer includes a plurality of second thin films. The bonding strength between two adjacent second thin films is substantially equal to or lower than the bonding strength between two adjacent first thin films. Further, the packaging structure covers the environmental sensitive element and the flexible sacrificial layer.
A method for operating a wireless terminal as an access point—access point terminal (2)—that connects a set of one or more client terminals (4) to an external network, wherein a schedule of absence periods is established during which the connected client terminals (4) are not allowed to transmit data to the access point terminal (2), wherein the absence periods together with corresponding presence periods are scheduled at regular intervals and have certain durations, is characterized in that an adaptation of the absence/presence periods' duration and/or interval parameters is executed on the basis of the bandwidth available in the external network and the amount of traffic transmitted between the access point terminal (2) and the connected client terminals (4). Furthermore, a corresponding wireless terminal is disclosed.
There is provided an apparatus caused to at least cause a reception of information from a second device, wherein the information indicates a need to utilize the network capacity of the apparatus by the second device; detect an identifier of the second device in order to enable identification of the second device; determine whether or not to allow the second device to utilize the network capacity on the basis of the identification; upon deciding to allow the second device to utilize the network capacity of the apparatus, apply an optimal SIM among a plurality of SIMs in accessing a network to be shared, wherein the apparatus comprises the plurality of SIMs and the optimal SIM is selected among the plurality of SIMs on the basis of predetermined criteria; and cause transfer of data between the second device and the accessed network.
A method for a node to transmit data in a telecommunications network is disclosed. In one method aspect, it comprises, selecting a time slot j in a window having a plurality of time slots and preceding a transmission period, listening to time slots preceding the time slot j, wherein the transmission period presents a plurality of transmission channels. Furthermore, the method comprises counting a number of time-slot transmissions during the time slots preceding the time slot j wherein when the number of time-slot transmissions is greater than a threshold, the data transmission is postponed or cancelled. Furthermore, when the number of time-slot transmissions is less than or equal to the threshold, a transmission is made during the time slot j, and one of the transmission channels is determined as a function of the number of time-slot transmissions.
Systems and methods are disclosed for a first WiFi Direct device to receive a machine-readable label from a second WiFi Direct device to provide information on the P2P WiFi capability of the second WiFi Direct device to aid the two devices in establishing a WiFi Direct connection. The machine-readable label may include the display of a QR code by the second WiFi Direct device to the first WiFi Direct device. The information on the WiFi capability of the second WiFi Direct device may include the identity of the listen channel, the operating channel, whether the device is a P2P group owner or not (e.g., a P2P client device), and other service and/or configuration information. Because the first WiFi Direct device knows whether the second WiFi Direct device is a group owner or not, the first WiFi Direct device may take the appropriate connection to establish the WiFi Direct connection.
A method is provided in one example embodiment and includes receiving a dynamic host configuration protocol (DHCP) discovery signal at a wireless network element from a customer premise equipment; requesting that a data session be established at a gateway; receiving an Internet protocol (IP) address; and communicating the IP address to the customer premise equipment.
Provided is a wireless communication system transmitting information to a communication terminal moving through a spot wireless area. In an integrated base station, an external information communication section controls communication with a server. A contents memory section stores contents received from the server. A wireless LAN communication section communicates with the communication terminal. A control section establishes connection with the communication terminal using a first connection not requiring an authentication procedure for connection with the communication terminal, or using a second connection requiring the authentication procedure for connection with the communication terminal. An access control (restriction) section permits access from the communication terminal to the contents memory section and prohibits access to the server when a type of connection with the communication terminal is the first connection, and permits access from the communication terminal to the contents memory section and to the server in the case of the second connection.
A system and method for detecting mutually supported capabilities between two or more mobile devices is described. In some cases, the system transmits a message to a called device requesting information about the device. In some cases, the transmitted message is answered by a user of the device. In some cases, the transmitted message is automatically received and answered by the called device. In some cases, the system presents information about a service supported by a called party during a call placed to the party.
A wireless communications power saving method and apparatus is provided. The method includes, when no reverse link traffic exists and no forward link traffic has been received for a predetermined amount of time, establishing, at a terminal, a reverse link transmission pilot signal duty cycle, and boosting overhead channel signal transmission power during ON slots and gating overhead channel and pilot signal transmission power during OFF slots. The design further includes estimating, at the terminal, an available data transmission rate, determining an actual data transmission rate, setting a terminal transmission duty cycle for a next period based on the estimated available data transmission rate, the actual data transmission rate, and a margin of error, and transmitting data from the terminal according to the terminal transmission duty cycle.
An apparatus and method for a base station to control a state of a mobile station based on a traffic condition of the mobile station are provided. The terminal operation control method includes controlling a terminal having ongoing traffic while the terminal is in an awake state, determining whether a pseudo awake timer of the terminal expires, wherein the pseudo awake timer counts a time for which the terminal in the awake state has no traffic, withdrawing, when the pseudo awake timer expires, a resource allocated to the terminal, and transitioning the state of the terminal to a pseudo awake state.
Embodiments of systems and techniques are described for determining inter-radio access technology (inter-RAT) coverage for energy saving management (ESM). In some embodiments, a network management (NM) apparatus may determine that a source cell of a network of a first RAT is triggered to activate an energy saving state and that the source cell is partially overlapped by each of a plurality of cells of one or more networks of one or more RATs different from the first RAT. The NM apparatus may instruct the source cell to activate the energy saving state when a combination of the plurality of cells provides coverage of the source cell. Other embodiments may be described and claimed.
Methods and apparatus are provided for HFN synchronization in a wireless communication system. If re-establishment of an RLC entity occurs during a pending RLC reset procedure, the pending RLC reset procedure is aborted and the re-establishment of the RLC entity is performed. A first RC variable included in a RESET PDU is incremented. The pending RLC reset procedure is restarted. The RESET PDU including the incremented first RC variable is transmitted. A RESET ACKnowledgement (ACK) PDU for the RESET PDU including a second RC variable is received. The second RC variable included in the received RESET ACK PDU is checked and the received RESET ACK PDU is accepted based on the checking result.
An initial access procedure in a wireless communication of a hierarchical cell structure includes operations of a mobile station (MS). The operations of the MS include transmitting an initial access message; obtaining information of a small cell Base Station (BS) which receives the initial access message, from a response message received from a macro BS; attempting to decode a reference channel transmitted by the small cell BS; and when successfully decoding the reference channel, setting a downlink channel with the small cell BS.
A base station is provided. The base station includes a transmit path circuitry that generates a masking sequence to mask a cyclic redundancy check of a control channel information element. The masking sequence includes a 4-bit prefix. The three least significant bits of the 4-bit prefix indicate a message type of the control channel information element. A subscriber station is also provided. The subscriber station includes a receive path circuitry that determines a message type of a control channel information element using a three least significant bits of a 4-bit prefix of a masking sequence used to mask a cyclic redundancy check of the control channel information element.
A method and system for optimizing and keeping operational a wireless link layered network in which a system control and modifying message (SCMM) is elicited from nodes receiving information packets and based upon whether the node originating the SCMM is from a link layer level which is equal to or less than the link layer level eliciting the SCMM, rerouting or adjusting future transmissions can be effected or items like a less current time at a receiving node and a most recent utilization rate of a receiving node can be adjusted, recorded or set.
A method for cell selection in a radio access network covering a geographical area divided into a plurality of cells, the method comprising: searching for a cell on a frequency; checking to see if the cell is a barred cell; and conditional on identifying the cell as a barred cell performing a search for a cell on another frequency.
A method for determining a time of a beginning of a measurement time interval for carrying out a radio measurement, the method including receiving a message via a radio communication channel and determining the time of the beginning of the measurement time interval based on a time of the transmission of the message.
A wireless messaging method includes the steps of: when a mobile station is transmitting a message to a network and a first handover occurs, evaluating network conditions to generate an indication signal; and re-transmitting the message according to the indication signal.
This disclosure provides methods and systems for translating quality of service (QoS) parameters of a first radio access technology (RAT), e.g., Worldwide Interoperability for Microwave Access (WiMAX), to QoS parameters of a second RAT, e.g., code division multiple access (CDMA) high rate packet data (HRPD). The methods and systems facilitate a handover by a multi-mode mobile station or other wireless device from the first RAT to the second RAT and vice versa.
A radio terminal according to one embodiment comprises a radio communication unit 110 capable of performing radio communication with E-UTRAN, a measurement unit 120 that measures RSRP from the E-UTRAN, and a control unit 150 that performs a control so that measurement data including information related to RSRP measured by the measurement unit 120 and location information at the time of measurement is reported to the E-UTRAN, wherein when a rapid change of RSRP measured by the measurement unit 120 is detected, the control unit 150 performs control so that measurement data corresponding to RSRP indicating the rapid change is excluded from a target to be reported to the E-UTRAN.
A recovery scheme where a base station monitors state of interoperation with a primary exchange. When the primary exchange becomes unavailable, active services may be lost, but the base station sends an activation request message to a secondary exchange that has access to base station configuration information of the base station. The secondary exchange uses the base station configuration information to activate the base station, and user terminals in the base station cell may begin to registrate to the system. Recovery capability of communications can be achieved with optimized use of network resources.
Various topologies of a quality of service application controller and related techniques to optimize the communications performance an application executing on a device participating in a communications environment are disclosed. The communications environment may include a cellular network, an unlicensed spectrum network, or a combination of the two. The quality of service application controller observes one or more key performance indicators of the communications network, and retrieves a policy from a policy store specific to the application. The quality of service application controller then modifies the execution of the application and/or the configurable aspects of the communications environment to optimize the communications performance of the application. For example, the application's data throughput may be increased, the power draw of the application may be minimized, data requested by the application may be minimized, or the apparent response time of the application's response to a web service may be minimized.
An embodiment method for network detection and selection includes receiving, by a user equipment (UE), a network detection and selection policy including a load threshold element, the UE further receiving load information element from an access network (AN), and applying the network detection and selection policy to the AN.
A system that incorporates teachings of the subject disclosure may include, for example, a process for measuring by a system having a processor, within a wide frequency band, signal power levels received in the specified narrow frequency bands, determining an average composite wideband power level that excludes a portion of the signal power levels, determining an adaptive threshold from the average composite wideband power level, detecting interference according to the adaptive threshold, and configuring an adjustable bandwidth of a filter to suppress at least a portion of the interference. Other embodiments are disclosed.
Disclosed is method and apparatus for operation of a base station in wireless communications, including self-configuration of the base station for secure and authenticated communications with other base stations.
In order to make it possible to confirm an electronic device installation place where communication trouble occurrence is reduced, settings for communication via a second interface are made via a first interface when the electronic device is connected to a host device to install a device driver. After that, a message is displayed to a user to the effect that the electronic device should be placed at a location where it is actually used to cause user to place the electronic device at the location where it is actually used. After the installation of the electronic device, the communication state via the second interface is measured to determine whether the electronic device installation place is suitable or not.
Beamforming for adapting wireless signaling beams in an adaptive and agile manner is contemplated. The beamforming may be characterized by adaptively constructing beam form parameters to provide wireless signaling in a manner that maximizes efficiency and bandwidth according to device positioning relative to a responding base station.
A rail system is disclosed. The rail system may have a track including a wireless communication zone and a wired communication zone. The rail system may also have an electrical contact that extends along the wired communication zone. The electrical contact may be configured to transmit electrical energy and a data communication. The rail system may further have a power source electrically connected to the electrical contact. The rail system may additionally have a controller selectively electrically connectable to the electrical contact and a wireless network. The power source may be configured to transmit electrical energy through the electrical contact. The controller may be configured to switch between data communication transmission via the wireless network and via the electrical contact, based at least in part on a location of a rail vehicle within the rail system.
There is provided a solution for reusing radio resources opportunistically by private base stations to increase the overall capacity of the network. The solution is based on applying an uplink broadcast in a mobile communication, in which information representing a radio resource allocated by a base station to a user terminal is broadcasted.
An apparatus and method to control an application in a portable terminal are provided. A method to manage an application includes confirming control information that at least one application installed in the portable terminal requires, selecting the at least one application requiring control information whose use is restricted among a plurality of applications installed in the portable terminal, and restricting a running of the selected at least one application.
According to one aspect, the invention provides a system for authenticating identities of a plurality of users. In one embodiment, the system includes a first handheld device including a wireless transceiver which is configured to transmit authentication information, a second device including a wireless receiver, where the second device is configured to receive the authentication information.
Apparatus and methods for changing one or more functional or operational aspects of a wireless device, such as upon the occurrence of a certain event. In one embodiment, the event comprises detecting that the wireless device is within range of one or more other devices. In another variant, the event comprises the wireless device associating with a certain access point. In this manner, various aspects of device functionality may be enabled or restricted (device “policies”). This policy enforcement capability is useful for a variety of reasons, including for example to disable noise and/or light emanating from wireless devices (such as at a movie theater), for preventing wireless devices from communicating with other wireless devices (such as in academic settings), and for forcing certain electronic devices to enter “sleep mode” when entering a sensitive area.
A cell phone with software to provide options to auto-respond to incoming text message or phone calls with a pre-stored text message or audio message. In some embodiments, the auto-response text message can be one selected by the user from among a plurality of pre-stored text messages. In other embodiments, the user can also choose an auto-response audio message to play to callers. In some embodiments, the cell system makes a determination of the speed at which cell phones in the system are moving for at least phones to which incoming text messages or phone calls are directed, and automatically determines whether or not to send an automated response message. In some embodiments, the cell phone makes a determination of its speed and asks the user if he or she wants to auto-respond to incoming texts or calls or both if moving at driving speed.
Systems and methods for broadcasting messages carried on one or more beacon signals are disclosed. A message sharing device may identify a message to be broadcast and may transmit the message to a base station to generate a beacon signal or generate the beacon signal itself based at least in part on the message. The beacon signal may include an indication that the beacon signal carries a message. The beacon signal may be broadcast and may be received by one or more message receiving devices. In some cases, the message may include a link to content accessible via one or more networks, such as the Internet.
A packet is transferred between first and second wireless access stations via a memory of at least one mobile terminal. The first wireless access station is provided with source information to be provided for one or more users, and the second wireless access station acquire the source information from the first wireless access station by performing a predetermined procedure of packet transfer between the first and second wireless access stations via the memory of the at least one mobile terminal when the at least one mobile terminal moves between coverage areas of the first and second wireless access stations. The second wireless access station performs a predetermined data processing on the acquired source information, and provides the one or more users with the source information on which the predetermined data processing has been performed.
Methods, systems, and computer readable media for seamless roaming between networks are disclosed. According to one aspect, the subject matter described herein includes a method for seamless roaming between networks. The method occurs at a home subscriber server (HSS). The method includes maintaining registration status information for a subscriber. The method also includes communicating with a first network via a first network interface and with a second network via a second network interface using the registration status information to facilitate roaming between the first network and the second network. The first network interface is configured to receive and send Diameter signaling messages for managing mobility of the subscriber and the second network interface is configured to receive and send non-Diameter signaling messages for managing mobility of the subscriber.
Provided is a distributed system and method for enabling new and useful location dependent features and functionality to mobile data processing systems. Mobile data processing systems (MSs) interact with each other as peers in communications and interoperability. Data is shared between mobile data processing systems to carry out novel Location Based eXchanges (LBX) of data for new mobile applications. Information which is transmitted inbound to, transmitted outbound from, or is in process at, a mobile data processing system, is used to trigger processing of actions in accordance with user configured permissions, charters, and other configurations. In a preferred embodiment, a user configurable platform is provided for quickly building well behaving LBX applications at MSs and across a plurality of interoperating MSs.
A vehicle comprises: a valet mode program to provide valet mode functionality for the vehicle, a processor operable to execute the valet mode program, a predetermined distance limit, and a predetermined speed limit. The vehicle responds to externally generated commands from a predetermined source to activate or deactivate the valet mode. The processor is operable to determine if the predetermined distance limit is exceeded from the location of the vehicle when the valet mode is activated; and the processor is operable to determine if the vehicle exceeds the predetermined speed limit while the valet mode is activated.
A method and system for location-based communication. A selection of a source transceiver from a plurality of available transceivers associated with a source may be received. A telephony session may be initiated with the selected source transceiver. A mobile target transceiver may be geographically located. A result of the geographic location regarding the located mobile target transceiver may be provided. The located mobile target transceiver may be connected to the telephony session.
A location and state information providing/inquiring system using WLAN/WPAN communication, log information providing/inquiring system, service server, customer terminal, location and state information providing/inquiring method, and log information providing/inquiring method are disclosed. System for providing/inquiring location and state information by using WLAN/WPAN communication includes: mobile terminal including WLAN/WPAN communication module for acquiring and transmitting identification information of one or more WLAN/WPAN communication modules of one or more adjacent other terminals; service server for storing identification information of subscriber terminals, receiving identification information of WLAN/WPAN communication modules from mobile terminal, and transmitting list of service subscribers; and positioning server for positioning subscriber terminals of service subscribers, and if one or more service subscribers are selected by mobile terminal based on list received from service server, transmitting location and state information of terminals corresponding to service subscribers selected to mobile terminal.
Provided are a method and an apparatus for transmitting a message through a terminal in a wireless communication system. The terminal receives positioning reference signals (PRS) from a reference cell and at least one of the neighbor cells, receives an auxiliary data provision message including a reference cell PRS muting sequence for indicating a muting pattern of the PRS transmitted through the reference cell and a neighbor cell PRS muting sequence for indicating the muting pattern of the PRS transmitted through at least one of the neighbor cells from an enhanced serving mobile location center (E-SMLC), and transmits a reference signal time difference (RSTD) measured on the basis of the PRS received from the reference cell and the at least one of the neighbor cells to the E-SMLC.
Systems and methods for managing positioning assistance data for large regions are described herein. An example of a method for retrieving positioning assistance data at a mobile device as described herein includes identifying a master region in which the mobile device is located and sub-region definitions associated with the master region, where the sub-region definitions are indicative of area occupied by the sub-regions within the master region; obtaining a first estimated position of the mobile device within the master region; defining a projected area centered at the first estimated position; and obtaining first assistance data corresponding to at least one sub-region that overlaps the projected area.
A method for blackout, retune and roaming enforcement in a cellular network multimedia distribution system. The method includes the steps of receiving a plurality of service regions in the cellular network multimedia distribution system; determining an affiliation of the client with one of the service regions in the plurality of service regions; and, processing a service region specific message based on the affiliation. An apparatus, as well as a computer readable medium having instructions stored thereon, the stored instructions, when executed by a processor, cause the processor to perform the method are also disclosed.
A multichannel compensating audio system includes first and second compensation channels to psychoacoustically minimize deviations in a target response, to psychoacoustically move the physical position of a speaker and/or to psychoacoustically provide a substantially equal magnitude of sound from a plurality of speakers in a plurality of different listening positions. The first compensation channel may include a series connected delay circuit, a level adjuster circuit and a frequency equalizer circuit that generates a first compensated audio signal from a first audio signal. The second compensation channel may include a series connected delay circuit, a level adjuster circuit and a frequency equalizer circuit that generates a second compensated audio signal from a second audio signal. A first summing circuit is configured to receive at least the first audio signal and the second compensated audio signal and generate a first output signal for provision to a first speaker. A second summing circuit is configured to receive the second audio signal and the first compensated audio signal and generate a second output signal for provision to a second speaker. The first and second output signals may be output by the first and second speakers into a listening space and are acoustically perceived by a listener.
A method for determining the level of stimulation signals generated by an auditory prosthesis as a result of processing an electrical audio signal representative of sound is disclosed, the method comprising: converting the audio signal into a plurality of frequency-based signal components; analyzing one or more of the signal components to determine a quantity associated with the presence of a target signal in the analyzed signal component; and calculating the signal level based on the determined quantity when the determined quantity indicates a target signal is sufficiently present in the audio signal.
An earphone assembly for an in-ear listening device and method for filtering a portion of an audible sound output are disclosed. An earphone comprises a housing configured to receive a nozzle, a plurality of drivers each having an acoustical output disposed within the housing, and an elongated passageway disposed within the housing configured to filter at least an audible portion of a sound wave output from at least one of the plurality of drivers. The method comprises providing an elongated passageway to provide an increased path length and connecting an output of the at least one driver to the elongated passageway to configure the sound output to be received within the elongated passageway to acoustically filter a portion of the sound output from the at least one driver.
An audio system includes a diagnostic capability to check for faults to a power source and faults to ground for output audio channels configured to drive loudspeakers. The fault to ground analysis involves analysis of a number of digital samples to determine if a predetermined threshold is exceeded during a predetermined period of time. The analysis may involve both a digital signal processor and a microprocessor performing a zero crossing analysis using the predetermined threshold and the predetermined window of time.
This invention concerns a loudspeaker driver includes at least one actuator connected to a vibrating support to impart excitation to the latter when caused to move, wherein the loudspeaker driver further includes a plurality of sensing members arranged to move with the at least one actuator, each sensing member providing output sensing data dependent on the velocity of said at least one actuator, and means for determining the position of the at least one actuator based on at least one ratio (X/Y) of output sensing data or of linear combinations of output sensing data provided from the plurality of sensing members, said at least one ratio being independent of the velocity of the at least one actuator.
An improved electrically conductive membrane pump/transducer. The electrically conductive pump/transducer includes an array of electrically conductive membrane pumps that combine to generate a desired sound by moving a membrane (such as a membrane of PDMS), a piston, and/or by the use of pressurized airflow in the absence of such a membrane or piston. The electrically conductive membranes in the array can be, for example, graphene-polymer membranes. The electrically conductive pump can include mid-range, tweeter, and sub-woofer speakers.
An acoustic transducer includes a sound-producing member at least partially disposed within the first magnetic flux gap region between the magnetic poles. The sound-producing assemblage is magnetically excited through a magnetic circuit that passes from a location outside the magnetic flux gap region to inside the magnetic flux region through an air gap. The moving member is controllably movable under the influence of at least one varying magnetic field, and its movement is constrained by a unique combination of mechanical restraints and magnetic restraints imposed upon the moving member by the interaction of a plurality of magnetic fields.
A method of operating an audio system that provides audio radiation to a plurality of listening positions includes providing at least one source of audio signals. At each listening position, at least one array of speaker elements is provided. A filter is provided between the at least one source and at least one of the speaker elements at a first listening position. The filter is optimized so that the filter reduces acoustic energy radiated from the first array to at least one other listening position of the plurality of listening positions, compared to acoustic energy radiated from the first array to the first listening position.
A loudspeaker system includes a speaker enclosure having an opening in a front wall, and a speaker manifold mounted within the speaker enclosure and communicating with the opening. The speaker manifold includes a pair of substantially parallel side walls, a back wall, and top and bottom walls, defining a manifold chamber. The wall opposite the back wall is substantially open to define a manifold opening and to permit the communicating. The manifold opening is substantially in alignment with the front wall opening. A woofer is mounted on a first wall of the speaker manifold. An acoustic vent is mounted on a second wall of the manifold, such that the woofer and the acoustic vent face each other at one of about a 180 degree angle or about a 90 degree angle.
Techniques are provided for vector noise cancellation. Different value combinations for a plurality of weighting factors may be established for a plurality of selection regions. Each value combination for the plurality of weighting factors may correspond to a different combination of a set of input signals. One or more characteristics of input signals may be used to select a particular selection region. A particular value combination of the set of weighting factors may be chosen to attenuate or amplify the input signals to generate one or more output signals.
A method is specified for the handling of a telecommunications connection between at least two subscribers, wherein the telecommunications connection has a signalling Channel for transmission of a signalling stream and a payload Channel for the transmission of a payload stream, wherein frequency-coded Signals are transmitted in the payload stream, wherein at least one subscriber among the at least two subscribers is assigned to a network which has a switching device and a signal processing device provided separately from the switching device, and wherein the frequency-coded Signals are recognized in the signal processing device and are transmitted independently of the payload stream to the switching device. The invention also relates to a telecommunications arrangement, a switching device and a network coupling device.
A method and apparatus are provided for displaying a summary video. According to the method, various effects may be automatically determined according to an attribute of a file, and a video may be automatically summarized to have various effects and be displayed.
A method and system that implement a process for managing video information on a video recording device. The management process involves receiving a video input signal including a video stream, obtaining content information corresponding to the video stream, associating the content information with the video stream, and storing the video stream and associated content information in a database as a searchable index for the video stream. The searchable index includes location of the stored video stream and identifies the associated content information. Then, content information from an input signal corresponding to a video stream is captured for analysis and searching the index to identify stored video streams related to the video program for suggestion to the user.
Methods and apparatus to measure logo exposure in vehicle races are disclosed. An example apparatus includes a vehicle database containing first time-location data identifying a first set of physical locations of a first vehicle at corresponding points in time, the first vehicle to display a first logo; a camera database containing time-camera view data identifying a set of views of a camera at corresponding points in time; and credit logic to determine whether to credit the first logo with an exposure to the camera based on the first time-location data and the time-camera view data.
A television receiving device includes a memory configured to store an electronic program guide. The electronic program guide is divided into channel listings including program information corresponding to television programs being broadcast currently and to television programs scheduled for future broadcast. The device further includes a user interface configured to receive a user input and a processor in communication with the memory and the user interface. The processor is configured to output the electronic program guide to be displayed with, alternatively: 1) at least one channel listing including an expansion icon, where upon the user input indicating a selection of the expansion icon, a single channel listing expands into a plurality of channel listings, or 2) at least one channel including a collapsing icon, where upon the user input indicating a selection of the collapsing icon, a plurality of channel listings collapse into a single channel listing.
A set top box includes an interface to a video on demand system, the interface adapted to receive communications from one or more modulators of a modulator group of the video on demand system. The set top further includes a decoder configured to extract a modulator group identifier periodically inserted into communications directed the set top box from the one or more modulators, the modulator group identifier unique to a physical transmission path from a headend of the video on demand system to the one or more modulators. The set top includes a video-on-demand request interface to the video on demand system, the video on demand request interface configured to output a request for video on demand data including the modulator group identifier.
Disclosed herein are methods, systems, and computer readable storage media for rendering web pages with partial transparency. In response to a user request for a web page, the user-desired web page is retrieved. One or more content elements of the retrieved web page are analyzed to identify background elements and foreground elements. The web page is analyzed to determine whether transparency is appropriate for background elements. If transparency is appropriate, the background elements are rendered as at least partially transparent, such that a wallpaper is at least partially visible to a user through the background elements, and the foreground elements are rendered as opaque. If transparency is not appropriate, the foreground and background elements of the web page are rendered as opaque.
A system and method for downloading a code image at a set-top gateway host that includes an embedded set-top box and an embedded cable modem. The embedded set-top box and the embedded cable modem interact so that each leverages the resources of the other, thereby minimizing the functionality that must be built into each.
Data between a client and a server is pinned through a receiving interworking unit and a transmitting interworking unit connected via a non-IP based communications path. The receiving interworking unit and transmitting interworking unit convert received data between IP and a non-IP based communications protocols. The transmitting interworking unit receives IP data for the client from the server. The data is converted and transmitted via the non-IP based communications link to the receiving interworking unit, which converts the data back into an IP format and forwards the converted data on to the client. One segment of the path between server and client transports the data in a non-IP format. Neither IP client nor the server are aware of the non IP segment and no change in their IP network mode of operation is required.
Systems and methods for synchronizing the playback of streamed content on multiple playback devices is disclosed. The systems and methods include receiving time information based on a network time source in the playback devices connected to a defined network. The playback clock in each playback device is set based upon the time information. A first playback device then generates presentation time information including a start time for playback and broadcast the presentation time information to the other playback device over the defined network. The playback devices use the presentation time information to adjust the presentation time stamps of the frames of the media content in the stream.
Visual data is presented on a display surface that is visible to users. Visual content presented by a user with a handheld data projector on an image input surface. The detected image is stored and then presented to the user on the display surface. Corresponding apparatus, method and computer programs are disclosed.
A method for generating a transport stream of a server is provided. The method for generating a transport stream of a server which sends broadcasting content to a client device comprises: scrambling broadcasting content by using a specific key; adding at least one content-encryption message which includes the specific key and a device key for obtaining the specific key from the at least one content-encryption message to the broadcasting content so as to generate a transport stream; and sending the generated transport stream to the client device.
Audiovisual reproduction system comprising a central unit managing a sound control circuit, and a telecommunications modem connected to a distribution network controlled by a host server, through a multitask operating system created around a tools and services library, characterized in that the operating system comprises a function that adjusts the sound control circuit to couple volumes in the various areas in which the loudspeakers in the audiovisual reproduction system are used, this function being accessible through a management mode of the multitask operating system, the coupling maintaining the ratios between the various volumes in each area when the volume in one area is modified.
A data transmitting device is for transmitting data including video image information that is inter-frame encoded. The data transmitting device includes an identification information inserting unit configured to insert, in the data to be transmitted by the data transmitting device, video image identification information for identifying the video image information included in the data; and a video image information inserting unit configured to insert the video image information in the data to be transmitted by the data transmitting device. The video image information inserting unit inserts in the data the video image information that has been inter-frame encoded, behind the video image identification information that has been inserted in the data by the identification information inserting unit.
A system and method for analyzing, summarizing, and transmitting life experiences captured using a life recorder is described. A life recorder is a recording device that continuously captures life experiences, including unanticipated life experiences, in video and/or audio recordings. In some embodiments, the video and/or audio recordings generated by a life recorder are automatically summarized, indexed, and stored for future use. By indexing and storing life recordings, a life recorder may search for and acquire life recordings generated by itself or another life recorder, thereby allowing life experiences to be shared minutes or even years later. In some embodiments, recordings generated by a life recorder may be analyzed in real-time and automatically pushed to one or more target devices. The ability to automatically and instantaneously push life recordings as live feeds to one or more target devices allows friends and family to experience one's life experience in real-time.
Methods and systems for cross-protocol time synchronization may comprise, for example, in a premises-based network, receiving, by a root node network controller in the premises, signals that conform to one or more first communications protocols. The received signals may be bridged to conform to a second communications protocol different from the first communications protocol, and the bridged signals may be communicated to networked devices within the network, where only signals conforming to the second communications protocol may be concurrently communicated over the network in a frequency range of the first communications protocol and in a frequency range of the second communications protocol, the frequency range used by the first communications protocol being different from and not overlapping with the frequency range used by the second communications protocol. The first communications protocol signals may comprise data over cable service interface specification (DOCSIS) signals, cable, and/or or satellite television signals.
A hospitality media system includes a plurality of set-top boxes (STBs) coupled to a radio frequency (RF) coax network. Each STB has an identifier for identifying the STB. A content source broadcasts media content to the STBs utilizing the RF coax network and an update server distributes software data to the STBs. The software data causes a particular STB to perform a media function customized for the particular STB according to the identifier of the particular STB.
Provided is a method and apparatus for encoding a video by using dynamic range transformation based on content and a method and apparatus for decoding a video by using dynamic range transformation based on content. The encoding method includes: performing inter prediction, through motion estimation, and intra prediction for a current region using image data in which a dynamic range of the current region is transformed based on content of an image of input video; performing transformation on residual data generated by the intra prediction and the inter prediction and performing quantization on a transformation coefficient generated by the transformation; and performing entropy encoding on the quantized transformation coefficient.
The present disclosure relates to an apparatus and method for encoding/decoding videos using prediction direction change and selective encoding. The present disclosure provides a video encoding apparatus that encodes the current block of a video, comprising a rectangle encoder for dividing and then successively encoding the current block at input into rectangular block units to output a rectangularly encoded bitstream; a square encoder for encoding the current block at input in square block units to output a squarely encoded bitstream; and an encoding selector for calculating the encoding costs of the rectangularly encoded bitstream and the squarely encoded bitstream so as to output the bitstream with a minimum encoding cost. According to the present disclosure, the prediction accuracy may be increased when encoding or decoding videos so that video encoding efficiency can be improved.
A signal identification process as contemplated to facilitate output of signaling based at least in part on metadata transmitted with the signaling. The contemplated processing may include facilitating output of the content according to one of a plurality of output modes depending on the metadata specifying values for a dynamic floating window (DFW) field and a 2K format conversion preference field.
Systems and methods for detecting defective camera arrays, optic arrays and/or sensors are described. One embodiment includes capturing image data using a camera array; dividing the captured images into a plurality of corresponding image regions; identifying the presence of localized defects in any of the cameras by evaluating the image regions in the captured images; and detecting a defective camera array using the image processing system when the number of localized defects in a specific set of image regions exceeds a predetermined threshold, where the specific set of image regions is formed by: a common corresponding image region from at least a subset of the captured images; and any additional image region in a given image that contains at least one pixel located within a predetermined maximum parallax shift distance along an epipolar line from a pixel within said common corresponding image region within the given image.
A method performed by one or more computing devices. The method includes identifying first and second portions of a digital video signal. First and second values of a plurality of quality metrics are determined for the first and second portions, respectively. The first and second values of the metrics are used to determine first and second values, respectively, of a plurality of picture quality parameters such that a signal transmitted using either the first or second values of the parameters would require at most a maximum output bitrate. The first values of the parameters may differ from the second values of the parameters. The first and second portions are adjusted using the first and second values, respectively, of the parameters. The first and second adjusted portions are transmitted in a continuous signal. Optionally, the first and second adjusted portions are compressed before they are transmitted.
The present technique has a face detection unit configured to detect a face region which is determined as a face in an image, a position specifying unit configured to specify a particular position in the image, a range specifying unit configured to determine a first range as a range for calculating an evaluation value of a hue and to set a hue at a position specified by the position specifying unit in a case where the position is not contained in the face region, and to determine a second range as a range for calculating an evaluation value of a hue and to set a hue at a position specified by the position specifying unit in a case where the position contains the face region, and image processing unit for performing image conversion processing based on color information contained in the hue range.
A video processing apparatus and a control method thereof are provided. The video processing apparatus includes: a signal receiving unit which receives a signal from an external video processing apparatus; a video processing unit which processes the signal received by the signal receiving unit; and a controller which supplies or cuts off electric power to the video processing unit according to whether the signal is received by the signal receiving unit.
An electronic device with one or more processors, memory and a display receives a first request to display a first video stream and in response, displays the first video stream. The device allocates, in accordance with a bandwidth allocation, available bandwidth for receiving data at the device between receiving the first video stream and preloading one or more other, non-displayed, video streams. While displaying the first video stream on the display, the device preloads at least a portion of one or more non-displayed video streams based on the bandwidth allocation. After the preloading, the device receives a second request to display a second video stream. In response to receiving the second request, the device displays at least a portion of the second video stream on the display using a preloaded portion of the second video stream that was preloaded in accordance with the bandwidth allocation.
An imaging apparatus according to the present disclosure includes a plurality of comparing units that compare analog signals supplied from pixels including photoelectric conversion elements through a vertical signal line with reference signals of ramp waves having different inclinations and output comparison results, a plurality of counters that execute counts until the comparison results are inverted for the different comparing units and output count values as digital data, and a sample-and-hold unit that electrically disconnects the vertical signal line and the comparing units and supplies the held analog signals to the comparing units while the comparing units execute the comparisons. The present disclosure can be applied to an imaging element, a control method, and an imaging apparatus.
An electric camera includes an image sensing device with a light receiving surface having N vertically arranged pixels and an arbitrary number of pixels arranged horizontally, N being equal to or more than three times the number of effective scanning lines M of a display screen of a television system, a driver to drive the image sensing device to vertically mix or cull signal charges accumulated in individual pixels of K pixels to produce, during a vertical effective scanning period of the television system, a number of lines of output signals which corresponds to 1/K the number of vertically arranged pixels N of the image sensing device, K being an integer equal to or less than an integral part of a quotient of N divided by M, and a signal processing unit having a function of generating image signals by using the output signals of the image sensing device.
Provided are an image pickup device and a camera system that are capable of performing high-precision image pickup with less noise both at low illuminance and high illuminance without increasing the speed of a sense circuit and power consumption. The image pickup device includes a pixel array section including a plurality of pixels arranged in an array, each of the pixels including a photoelectric conversion device, a storage section, and an amplifier device configured to output an accumulated charge as an electrical signal, each of the pixels configured to output an electrical signal to an output signal line in response to photon incidence; and a sense circuit section including a sense circuit, the sense circuit configured to perform decision as to whether or not a photon is incident on the pixel in a predetermined period, in which the sense circuit includes an AD conversion device connected to the output signal line, the AD conversion device is allowed to operate by at least two modes, i.e., a one-bit output mode by binary decision and a gray-scale output mode by multi-bit resolution, and at least when the one-bit output mode is selected, the AD conversion device integrates output results from each of the pixels by a plurality of exposures to determine intensity of light incident on each of the pixels by calculation.
An imaging apparatus includes: an imaging unit for capturing an image of a fluorescent sample; a pixel shift unit for changing the relative position of the imaging unit for the image; an image correction unit for correcting the gray-scale levels of plural pieces of image data using the histograms of the image data acquired by the imaging unit at different relative positions; and an image combination unit for combining the plural pieces of image data corrected by the image correction unit.
A multi-spectrum photosensitive device and method for sampling the same, the method includes a first combining process for combining-and-sampling two adjacent pixels in same row different column, or in different row same column, or in different row different column in the pixel array to obtain a sampling data of a first combined pixel; a second combining process for combining-and-sampling the sampling data of the first combined pixel obtained from the first combining unit to obtain a sampling data of a second combined pixel; and a third combining process, a sampling data of a third combined pixel is obtained by a method for color conversion and image scaling in a digital space. The application is applied for a multi-pixel sharing reading and amplifying circuit of a single-layer color photosensitive chip, a single-sided multi-layer photosensitive chip, and a double-sided double-layer photosensitive chip. In the basis of the spirit of the existing pixel reading circuit, the application has orders of magnitude breakthrough in principle, basic circuit and performance, and implements a YUV format output of a sub-sampling image in a photosensitive device at the same time of implementing sub-sampling with high performance.
According to an embodiment, an image processing apparatus has a monitoring unit, and an arbitration unit. The monitoring unit monitors a data amount in a first transfer buffer of a first image processing unit, and a data amount in a second transfer buffer of a second image processing unit. The arbitration unit arbitrates, so that when the data amount in the first transfer buffer becomes not less than a predetermined first threshold value, the number of times of data transfer from the first transfer buffer to a main memory is increased. Furthermore the arbitration unit arbitrates, so that when the data amount in the second transfer buffer becomes not more than a predetermined second threshold value, the number of times of data transfer from the main memory to the second transfer buffer is increased.
A relay apparatus includes a reception section, a facsimile communication section, and a generation section. From terminal apparatuses having no facsimile transmission functions, the reception section receives facsimile transmission instructions along with pieces of identification information of the terminal apparatuses via a private network. The facsimile communication section performs facsimile transmission via a public network to the outside on the basis of the facsimile transmission instructions received by the reception section. The generation section generates pieces of communication result information about facsimile transmission for the respective pieces of identification information corresponding to the terminal apparatuses when the facsimile communication section performs the facsimile transmission to the outside.
The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. In one embodiment, the present invention provides a 3D display system. There are other embodiments as well.
A real-time image processing method and system has an output image framing technique which displays a live view image in an effective image area. The effective image area is a predefined portion of an overall composite image that forms the output image which can include at least one other image area, such as a logo, banner or other overlay image, and the effective image area is the maximum size automatically cropped from a source image of a digital camera based on an aspect ratio and orientation of the effective image in the predefined portion of the output image. The system displays the effective image on a view screen in real-time during a photo shoot in the same aspect ratio and orientation as the effective image area that is the predefined portion of the composite image without requiring any post-processing cropping or rotation of the image or camera rotation.
A digital camera system (1) is disclosed, comprising at least one pixel (3); a shutter means (4) for the pixel (3), whereby the shutter means (4) is adapted to generate at least one shutter pulse Stmax, Stmin during a frame period t for the pixel (3), whereby the pixel (3) is switched from a non-sensitive state to a sensitive state during the at least one shutter pulse t; and a memory means (5) for storing light information collected by the pixel (3) in the sensitive state during the frame period t; whereby the shutter means (4) is adapted to generate at least two shutter pulses for the pixel (3) during the frame period t.
There is provided an image processing apparatus comprising: an acquisition unit configured to acquire an image signal; a setting unit configured to set, in an image expressed by the image signal, a plurality of evaluation areas to be targets of evaluation value calculation; a dividing unit configured to divide the image expressed by the image signal into a plurality of divided image areas; and a plurality of calculation units configured to acquire, from the dividing unit, divided image signals respectively corresponding to the plurality of divided image areas, and calculate evaluation values for the plurality of evaluation areas based on evaluation area image signals respectively corresponding to the plurality of evaluation areas included in the divided image areas. Among the plurality of evaluation areas, the plurality of calculation units do not calculate an evaluation value for each evaluation area that spans two or more of the divided image areas.
An image pickup apparatus includes an image pickup element configured to provide a photoelectric conversion to an optical image formed by an image pickup optical system, a correlation image acquirer configured to obtain a product between a pixel value of an image output from the image pickup element and a representative value of a reference signal that fluctuates during an exposure time period for each of a plurality of divided time periods made by dividing the exposure time period by a predetermined division number, and a correlation image calculator configured to obtain an output from the image pickup element and to calculate a sum of the product for the exposure time period as a correlation image.
An image processing apparatus that blurs a picked-up image based on distance information on a subject, comprises a restoration kernel acquisition section that acquires a restoration kernel as a kernel for eliminating degradation of an image; a blur kernel acquisition section that acquires a blur kernel as a kernel for blurring the image; a compound kernel acquisition section that acquires a compound kernel obtained by merging the restoration kernel with the blur kernel; and an image processing section that eliminates the degradation of the picked-up image and blurs the picked-up image by using the compound kernel.
Embodiments of methods, systems, and storage medium associated with establishing a persistent connection between local and remote interaction devices are disclosed herein. In one instance, the method may include operating the local interaction device in a first power state when a motion of a local user within an area proximate to the local device is not detected, and operating the local interaction device in a second power state when a motion of the local user within the area is detected. The method may further include providing a selected view of a plurality of views of the local area responsive to a gaze direction of the remote user, and providing audio communication from the local interaction device to the remote interaction device with a spatial characteristic that approximates co-location of the local and remote users. Other embodiments may be described and/or claimed.
Methods for providing feedback information regarding a person's focus of attention during a live video communication are described. The live video communication may comprise a live video conference. The feedback information may correspond with non-verbal cues such as who a speaking person is looking at when they are speaking and whether a listener is paying attention to the speaking person. In some embodiments, a dominant speaker in a live video conference may be determined and a live video stream that is being viewed by the dominant speaker may be identified. An identification of the live video stream may be transmitted to computing devices associated with other participants in the live video conference. Images associated with the live video stream being displayed to the other participants may be highlighted, enlarged, or moved to a different location on displays used by the other participants.
A communication apparatus, which has a normal power consumption mode and a power saving mode lower in power consumption than in the normal power consumption mode and which is connected to a network via a network interface device, communicates with a device on the network via the network interface device. The communication apparatus acquires capability information indicating a communication capability of the device, and based on acquired capability information, determines a communication mode to be used when the network interface device communicates with the device under a condition that the communication apparatus has shifted to the power saving mode, and when the communication apparatus shifts from the normal power consumption mode to the power saving mode, sets the determined communication mode as a communication mode to be used when the network interface device communicates with the external device.
An information storage apparatus includes a storage unit configured to store an encrypted content and an encryption key to be applied to decryption of the encrypted content, the storage unit including a protected area in which a converted encryption key is stored and to which access restrictions are set, the converted encryption key being a data item acquired through conversion of the encryption key, and a general purpose area storing the encrypted content and an encrypted content signature file set correspondingly to the encrypted content, the encrypted content signature file containing, as a recorded data item, a block identifier indicating in which of areas in the protected area storage of the converted encryption key is permitted, to permit a reproducing apparatus to execute content reproduction possibility judgment applying the block identifier, the reproducing apparatus being configured to read the encrypted content from the storage unit and execute a reproducing process.
An apparatus includes a display unit configured to display preview images of a plurality of image data, a determining unit configured to determine whether each of the plurality of image data is a blank page, a display control unit configured to display a preview image of image data determined not to be a blank page on the display unit in a first display mode and to display a preview image of image data determined to be a blank page on the display unit in a second display mode, and a change unit configured to change the determination result and the display mode at the display unit of image data corresponding to the preview image when receiving an instruction to change the selected display mode of a preview image from the first display mode to the second display mode, or from the second display mode to the first display mode.
A portable imaging device that has a CMOS image sensor, a color display for displaying an image sensed by the CMOS image sensor and a central processor. The central processor has an image sensor interface for receiving data from the CMOS image sensor, multiple processing units for parallel operation to simultaneously process the data, and an image display interface for sending processed data to the color display. The central processor is integrated onto a single chip.
A process to generate a request for a copy process occurs at the side of a Web server before the copying is actually started since a user has selected the copy function of an MFP. If the user instructs logout from the MFP during the process, it is determined that the user has no right because the authentication context of the user is deleted from the MFP. Accordingly, it is not possible for the user to perform the copying.Upon logout of the user from an image processing apparatus, if a processing request that is received is generated by an external apparatus on the basis of operation information transmitted in accordance with an operation by the login user, the image processing is permitted to be performed in response to the processing request.
A reading apparatus includes a first generation unit, a determination unit, a second generation unit, and an association unit. The first generation unit generates data of a first target object obtained by using an image capture unit attached above a reading platen to read the first target object placed in a reading area of the reading platen. The determination unit determines, in a state where the first target object is placed in the reading area, whether a second target object has been placed in the reading area. The second generation unit generates data of a second target object obtained by using the image capture unit to read the second target object. The association unit associates, in response to determining that the second target object has been placed in the reading area, the data of the first target object with the data of the second target object.
A network interface to a data network has a modulator-demodulator. The modulator-demodulator receives a modulated carrier signal from an input connection. A power circuit connected to the input connection receives electrical power from a loop plant and provides the electrical power to the modulator-demodulator.
A method includes determining, through a processor of a data processing device in conjunction with one or more sensor(s) associated therewith, an intent of a user of the data processing device to respond to an alert of an incoming communication thereto expressed through a sound volume level and/or a vibrational level of the alert. The method also includes automatically reducing, through the processor, the sound volume level and/or the vibrational level of the alert following the determination of the intent of the user to respond to the alert.
A telecommunication system including a class 4 long distance softswitch network with one or more a core routing engines and one or more class 5 application servers. The class 4 long distance softswitch network further includes at least one edge device, which may be in the form of a session border controller or media gateway, with at least one connection, including PRI, SS7 and TDM connections, to at least one customer premise equipment of at least one retail customer, which may be an enterprise customer. The class 5 application server is configured to provide the customer with class 5 services within the class 4 network.
Increasing the security of online payment requests by introducing a dual-layer authentication system for accessing the funds and/or credit through payment cards is described. An additional check regarding the identity of a card user to be included within a traditional security protocols for these cards, wherein the additional check is based on an authentication channel which is external to the user's card. A device owned by the legitimate card owner certifies that the user of the card at any given instant is the legitimate owner of the card and not someone else. To process this additional information, a connection by means of a proximity based device is established.
In an embodiments a method of providing a local access number to a subscriber may include receiving subscriber locale information indicating a location of a subscriber, mapping the subscriber locale information to one or more local access numbers, identifying, from the one or more local access numbers, a local access number corresponding to the subscriber locale information and transmitting the identified local access number to the subscriber's mobile device.
A communication apparatus has an off-hook detection function, and has a first electric power supply for supplying electric power to a telephone control unit for controlling a telephone apparatus, and a second electric power supply for supplying electric power to an off-hook detection unit for detecting an off-hook of the telephone apparatus. The apparatus causes the off-hook detection unit to detect an off-hook of the telephone apparatus when, from a first power mode, a second power mode, in which electric power consumption is less than in the first power mode, is transitioned into.
A method for displaying transmission status of a multimedia messaging service (MMS) message and a telecommunication terminal using the method, including displaying the currently transmitting content and transmission progress of the MMS message while the telecommunication terminal transmits the MMS message. A user can check the content of the MMS message being currently transmitted together with the transmission progress of the MMS message. The user also can cancel the transmission of the erroneous MMS message before completing the transmission of the MMS message.
A multifunction cover with touch screen display, icons, and a keyboard is described. A multifunction touch screen enabled mobile device may be configured to be connected to the separate cover, which may be attached to the device and detached from the device. The mobile device may be enabled with a cellular voice and data communication, WiFi connectivity, Bluetooth connectivity, and Internet Protocol connectivity. The mobile device may be enabled to play videos, capture photos, and stream multimedia content.
An aspect of the present invention facilitates formation of groups using missed calls. In an embodiment, upon receipt of a first missed call to a pre-specified number from a first user, a missed call server allocates a first phone number to a new group. Upon receiving missed calls to such allocated number, the corresponding callers (i.e., the phone numbers of the callers) are added to the group. According to another aspect of the present invention, different phone numbers are allocated for different groups, and the members are added in each group, in response to missed calls to the corresponding numbers. Additional management tasks such as provide group owner the ability to approve/reject the addition/removal requests, formation of sub-groups, etc., are also facilitated based on missed calls.
A contact is received in a contact center. For example, an incoming voice call or email is received by the contact center. A complexity of the contact is determined. The complexity of the contact is how difficult the contact will be to process by an agent. For instance, the agent may have to do additional work outside the call based on the type of contact. In response to determining the complexity of the contact, the contact is routed to an agent of the contact center and a compensation of the agent is adjusted for servicing the contact.The systems and methods can also work for multiple contacts that are processed by multiple agents. In addition, the systems and methods will work with outbound contacts.
An Adaptive Stochastic Queueing device comprises a process that maintains a plurality of queues defined around the known and changing resource usage history of an ensemble of customers, customers seeking access to a resource. Applying a stochastic approach that reflects the history of each customer in reference to the ensemble history, the queues intercept and sort customers. A stochastic sequencer sequences customers from the queues to the resource in a manner that selectively promotes customers in a manner attuned to the application using the device.
A call is placed to a communications device. A response to the call is received from a call recipient associated with the communications device. The received response is processed based on a set of parameters. Based on processing the received response, a determination is made whether the call recipient is a human or an answering machine. If the call recipient is determined to be a human, the call is handled in a first manner. If the call recipient is determined to be an answering machine, the call is handled in a second manner that is different from the first manner.
A portable terminal includes an input device and processing hardware which operates a predetermined method. The input device includes a keypad unit consisting of a plurality of key buttons, a board consisting of a plurality of pressure sensors and dome switches for generating signals when pressed, and an actuator for simultaneously pressing the corresponding dome switch and the corresponding pressure sensor when a key button is pressed, with the processing hardware for performing and finishing a first operation based on the signal generated by the corresponding dome switch if generation of the signal generated by the dome switch stops before a valid time has expired, and for performing a second operation based on a pressure change sensed by the corresponding pressure sensor simultaneously pressed until the generation of the signal generated by the corresponding dome switch remains after the valid time has expired.
Apparatuses and methods control communication of content streams through a content distribution network. A data repository is accessed to retrieve information which identifies a group of user equipment nodes that are registered with one of a plurality of subscriber accounts and which further identifies weight values that are associated with the group of the user equipment nodes. Communication bit rates that are provided by a weighted fair queuing scheduler node to individual ones of a group of the content streams within bandwidth allocated to a virtual pipe for carrying the group of the content streams through the content distribution network to the group of the user equipment nodes, are regulated responsive to the weight values associated with the group of the user equipment nodes. Weighted fair queuing scheduling can thereby be provided at a virtual pipe level and, furthermore, at a user equipment node level.
In an embodiment, objects are downloaded to an access terminal (AT) based on which window(s) are prominently displayed on the AT. In another embodiment, objects are downloaded to the AT based on a set of user-specified object download priorities. In another embodiment, a portion of a streaming data session to the AT is de-prioritized in response to a transition of a display of the AT from a first set of windows associated with the streaming data session to a second set of windows associated with a different session. For example, the de-prioritization can result in the portion (e.g., a video-portion of a audio and video conference) being omitted or reduced. In another embodiment, in response to the AT entering a limited environment, objects being downloaded to the AT can be dynamically altered to conform with the AT's limited environment.
A method and apparatus for providing protection against spam calls are disclosed. For example, the method receives a signaling message for setting up a call to a customer, and determines whether the call is from a caller that has been identified as being a spammer. The method processes the call using one or more filter rules for the customer, if the caller has been identified as being a spammer.
Techniques are described for providing location-based information and functionality to people and computing devices in various ways. In at least some situations, the techniques include enabling multiple people in a common geographic area to interact in various ways, such as via devices capable of communications (e.g., cellular telephones, computing devices with wired and/or wireless communications capabilities, etc.), while in other situations at least some users who are remote from a particular geographic area may be allowed to inter-communicate with one or more other users or other entities in or related to that geographic area. In addition, the techniques include enabling the creation and maintenance of location-based virtual groups of users (also referred to as “clouds”), such as for users of mobile and/or fixed-location devices. Such clouds may enable various types of interactions between group members, and may be temporary and/or mobile.
To reduce traffic between multiple servers in a presence system and improve the performance of the presence system, a method and device is provided for user-management in a presence system, and a presence system. The presence system comprises multiple presence servers communicating through a network, and said device for user-management comprises a combining means for combining multiple user sets among which there are the greatest correlations into a user set to be allocated; and an allocating means for allocating said user set to be allocated to one presence server which can contain said user set to be allocated. Through allocating multiple user sets among which there are the greatest correlations to a same presence server, communications among users in the user set are performed within a same presence server, reducing occupations for network resources and improving performance of the presence system.
The present invention allows an on-line user to specify the name by which that user is known when communicating with other target users, regardless of the name under which the sending user is currently logged-in. The invention also provides a mechanism to block messages from sending parties that are not willing to divulge their real identity.
A method, performed by a computer device, may include receiving an indication of a distributed denial of service event at a front end system associated with a customer; generating one or more virtual front end systems for the customer, in response to receiving the indication of the distributed denial of service event; and redirecting traffic intended for the customer's front end system to the generated one or more virtual front end systems. The method may further include determining whether resource capacity of the generated one or more virtual front end systems has been reached; and generating an additional one or more virtual front end systems for the customer, in response to determining that the resource capacity of the generated one or more virtual front end systems has been reached.
In a system for remotely managing an electric vehicle, a meter related to charge of the electric vehicle, installed in each parking lot, and a meter installed in each home communicate information related to the electric vehicle using a communication network constructed for the purpose of energy management. The meter in each home is linked with an in-home display (IHD) device installed in the home, and a user identifies and manages, in the home, information of the user's own electric vehicle through the IHD device. The user remotely controls the electric vehicle in the parking lot through the IHD device. Accordingly, it is possible to considerably improve convenience in the use of the electric vehicle, in relation to information management or control of the electric vehicle.
An apparatus and method for detecting potentially-improper call behavior (e.g., SPIT, etc.) are disclosed. The illustrative embodiment of the present invention is based on finite-state machines (FSMs) that represent the legal states and state transitions of communications protocols at nodes during Voice over Internet Protocol (VoIP) calls. In accordance with the illustrative embodiment, a library of FSM execution profiles associated with improper call behavior and a set of rules (or rule base) associated with improper FSM behavior over one or more calls are maintained. When the behavior of one or more finite-state machines during one or more calls matches either an execution profile in the library or a rule in the rule base, an alert is generated.
A system that incorporates teachings of the present disclosure may include, for example, receiving a session initiation protocol (SIP) subscribe message over a primary call leg requesting outdial event notification on a secondary call leg. Receiving of the call is responsive to a unified messaging system placing a call outside of its local access and transport area. A call is placed on the secondary call leg responsive to receiving outdial information on the primary call leg. Alternative outdial information directed to the calling party is received responsive to the call on the secondary leg being unanswered. Another call is placed on the secondary leg responsive to receiving the alternative outdial information without requiring receipt of another SIP subscribe message over the primary call leg. A calling card server performs SIP messaging associated with one of the SIP notify message or the SIP subscribe message. Other embodiments are disclosed.
Embodiments of the present invention provide a method and an apparatus for transmitting media resources. The method includes: obtaining related information of media resources on a media server (101); sending an instruction message including the related information of the media resources to a telephony server, wherein the instruction message instructs the telephony server to perform session negotiation with a communication peer according to the related information of the media resources to establish a first multimedia session (102); obtaining information of a communication interface used by the telephony server to receive the media resources (103); sending an instruction message according to the information of the communication interface, wherein the instruction message instructs the media server to send the media resources to the telephony server, so that the telephony server transmits the media resources to the communication peer through the first multimedia session (104). The present invention is applicable to media resource transmission in a multimedia session.
A technique is described allowing an IMS enabled network to terminate a communication request directed towards a user device in a well-defined way, even for cases in which multiple registrations for IMS are present that are related to the same physical user device. A method embodiment of this technique comprises registering multiple user agents for one and the same user device, wherein from each user agent contact information including a device ID identifying the user device is provided; and processing a communication request directed towards the user device, the processing comprising identifying multiple identical device IDs of registered contacts, and treating the communication request according to a predetermined handling scheme related to the detection of identical device IDs.
A system and method of external link processing is disclosed. The system includes an interface configured to receive a user request to access an encoded external link in networked content. The encoded external link comprises a domain name of an external link server and an encoded portion which is an encoded result of an original external link encoded with an encoding function, wherein the original external link is an address to an external destination. One or more processors determine a safety level of the encoded external link using a criterion. In the event that the determined safety level of the encoded external link is determined unsafe, a warning message is generated indicating that the original external link is unsafe and the user is prevented from directly navigating to the original external link.
In particular embodiments, a method includes accessing a graph structure comprising a plurality of nodes and edges where each node represents a user, receiving a request to transmit content related to a first user to a second user, and prohibiting transmission of the content to the second user if the first user and the second user are connected in the graph structure through a series of edges and nodes that comprises an unauthorized node.
A building automation and control network (BACnet) master-slave/token-passing (MS/TP) automatic media access control (MAC) addressing system having a BACnet MS/TP network, a MAC assigner on the network, and one or more MAC assignees on the network. Each assignee may have a global unique identity (GUID) and the assigner may have a pre-defined address. The assigner may gather virtually all GUIDs of the MAC assignees on the network and gather virtually all unused MAC addresses on the network. The assigner may map GUIDs to the unused MAC addresses and send a resulting map to the MAC assignees for assignment of a MAC address to each assignee. Each assignee may be assigned a MAC address according to its GUID, and the assignment of a MAC address to each assignee may occur automatically without manual intervention. In other words, the system may provide auto MAC addressing.
In a portal authentication method, a DHCP request message sent by a terminal is received by an AC. In response to finding that a user of the terminal is an unauthenticated user, a private network IP address is assigned to the terminal. After portal authentication of the terminal is finished, a wireless connection of the terminal is terminated by the AC. When a DHCP request message sent by the terminal again is received, a determination that the user of the terminal passes the authentication is made by the AC, a public network IP address is assigned to the terminal, and an accounting request message is sent to a RADIUS server. After finding that the terminal is offline, an accounting stop message is sent by the AC to the RADIUS server, the wireless connection of the terminal is disconnected, and the public network IP address is released.
A method and system for authenticating a computing device for data usage accounting are described herein. As an example, the method can be practiced on a computing device that includes secure applications and unsecure applications. A data session request for a secure application can be received, and in response to the data session request, a data session connection can be initiated. As part of initiating the data session connection, an authentication package uniquely associated with the computing device can be sent to the authentication server. If the computing device is authenticated, the data session connection can be established to enable data exchange and data accounting in which the authenticating may be performed exclusively for the secure applications.
A server receives from a mobile communication device application data identifying an application accessible by the mobile communication device. The server uses at least some of the application data to assess the application. The application data can include, for example, behavioral data, metadata, parts of the application, information indicating the application is installed on the mobile communication device, or combinations of these.
Methods and apparatuses are presented for obtaining authorized access from a terminal to a discovered location server. The methods may include switching from a first network that does not support authenticated access from the terminal to a home location server to a second network that does support authenticated access from the terminal to the home location server. Authenticated access to the home location server may be obtained using the second network. Authorization for the discovered location server may then be obtained from the home location server. The terminal may then switch from the second network back to the first network. The terminal may then access the discovered location server using the first network based on the obtained authorization from the home location server.
A plug-in privilege control includes authorizing a plug-in, including assigning a plug-in identification number (PIN) to the plug-in wherein the PIN is used to identify an identification (ID) of the corresponding plug-in; notifying the plug-in about the PIN; storing information about the plug-in and a plug-in accessible service to a mapping of services; receiving a request for a service from the plug-in, wherein the request includes the PIN; retrieving the ID of the plug-in according to the PIN; and determining whether to allow the plug-in to access the service that it requested.
A method for computing includes running a desktop sharing program on a local computer so as to permit a remote user to view, on a remote computer, which is connected to communicate with the local computer via a network, an image of an entire area of a display screen of the local computer and to operate the local computer by remote input via the remote computer. A local window is defined within the display screen of the local computer for running an application under control of a local user. Local inputs made via a local input device of the local computer by the local user are intercepted so that the local inputs do not interfere with operation of the local computer by the remote user. The intercepted inputs are directed to the local window so as to permit the local user to interact with the application independently of the operation of the local computer by the remote user.
A client (such as a PC, portable telephone, PDA, electrical appliances), to which a device such as a IC card is connected, starts a handshake protocol to request a server to start communication. When communication is established via the handshake protocol, the initiative of communication is transferred to the server, and the state changes into a neutral state. In this neutral state, a control packet including a particular number of messages and a finished message is transmitted from the server to the client. If the client receives the control packet, the client performs a process according to the messages included in the control packet. This makes it possible to remotely control a device via a network in a highly reliable and efficient manner.
A computer network and corresponding method for providing, as part of a web portal session, access for a user to a web application running on a server. The network includes first and second traffic managers connected via an intermediate web server. The first traffic manager includes an interface for receiving from the user, as part of the portal session, a request for access to the web application and for passing the request to the intermediate web server; and for forwarding to the second traffic manager. The second traffic manager includes an interface for receiving the request from the first traffic manager via the intermediate web server and for passing the received request to the web application.
An architecture for collecting and managing contextual awareness data is contemplated. The architecture may be used to implement various policies as a function of the contextual awareness data, such as but not limited to implementing dwelling specific policies depending on the contextual awareness data indicating whether one or more users are presence within a dwelling.
A system comprises a resource, such as an interconnection, for example, of the Network-on-Chip (NoC) type, having an overall bandwidth available for allocation to a set of initiators that compete for allocation of the overall bandwidth. The system includes a communication arbiter for allocating the overall bandwidth to the initiators according to respective values of bandwidth requested (RBW) by the initiators. A control device (50) is configured to detect the deviation between the value of bandwidth allocated to the initiators and the respective value of requested bandwidth and allocate the overall bandwidth to the initiators in a dynamic way minimizing the mean value of the deviation.
Methods and apparatus for managing sideband routers in an On-Die System Fabric (OSF) are described. In one embodiment, a sideband OSF router is configurable during runtime based, at least in part, on information stored in a table accessible by an agent coupled to the sideband OSF router. Other embodiments are also disclosed.
Techniques are provided for automating a common framework for network devices. In one example, a network device (e.g., switch, router, etc.) is configured to resolve the handling unknown packets automatically. The network device can detect whether or not a protocol is unknown to the network device, perform a lookup, determine if a matching protocol is available for the network device, and dynamically load an appropriate protocol handler into a memory of the network device. Advantageously, the present technology provides a mechanism for flexible on-demand push of protocol information. If a new protocol is noted on the network, the network device can look up the type of packet and can use a single platform kit to dynamically load drivers and control logic for that protocol onto the network device. Likewise, other network devices in the packet's path or in the network generally can load the drivers and control logic, as needed.
A storage node uses storage descriptors for provisioning, monitoring and reporting. The storage descriptors indicate available storage resource capabilities and storage resource requirements for particular applications or types of applications using a common set of metrics. The storage node scales requirements to approximate a particular deployment scenario and then compares available capabilities and requirements as indicated by the storage descriptors.
A system and machine-implemented method for enabling cookies for a website. One or more domains are identified, each of which serve at least one cookie in association with user access to a website. For each of the one or more domains, a determination is made whether the domain serves the at least one cookie within a first-party context in which the domain hosts the website, or within a third-party context in which the domain does not host the website. A graphical representation of the one or more domains is provided based on the determination for each of the one or more domains. The graphical representation differentiates between the first-party context or the third-party context. An interface set for enabling or disabling the serving of the at least one cookie for each of the one or more domains is provided, in association with the graphical representation.
Examples are disclosed for forwarding cells of partitioned data through a three-stage memory-memory-memory (MMM) input-queued Clos-network (IQC) packet switch. In some examples, each module of the three-stage MMM IQC packet switch includes a virtual queue and a manager that are configured in cooperation with one another to forward a cell from among cells of partitioned data through at least a portion of the switch. The cells of partitioned data may have been partitioned and stored at an input port for the switch and have a destination of an output port for the switch.
According to one general aspect, a method may include establishing at least a first and a second network tap point near, in a network topology sense, an intranet/internet access point device and a server computing device, respectively. The method may include monitoring, via the first and second network tap points, at least partially encrypted network communication between a client computing device and the server computing device. A second network tap point analyzer device may decrypt at least a portion of the encrypted network communication that is viewed by the second tap point analyzer device. The method may include analyzing the monitored encrypted network communication to generate a set of metrics regarding the performance of the network communication between the client computing device and server computing device. In some embodiments a plurality of tap points and tap point analyzer devices corresponding to a multitude of network segments may be employed.
A self-surveying range includes a base station and a plurality of nodes. Each node has a transmitter, a receiver and a processor and is capable of transmitting a signal encoded with a node identifier, the transmission time. The node can also receive transmitted signals from other nodes. The base station also has a transmitter, a receiver and a processor. The base station is capable of determining its location, transmitting an encoded signal with the transmission time and receiving transmitted signals from said plurality of nodes at a definite time. The base station processor can determine the location of each node from the base station location, the node transmission time and the definite reception time. There is further provided a method for establishing a self-surveying range.
The present principles are directed to identifying and classifying web traffic inside encrypted network tunnels. A method includes analyzing network traffic of unencrypted data packets to detect packet traffic, timing, and size patterns. The detected packet, timing, and size traffic patterns are correlated to at least a packet destination and a packet source of the unencrypted data packets to create at least one of a training corpus and a model built from the training corpus. The at least one of the corpus and model is stored in a memory device. Packet traffic, timing, and size patterns of encrypted data packets are observed. The observed packet traffic, timing, and size patterns of the encrypted data packets are compared to at least one of the training corpus and the model to classify the encrypted data packets with respect to at least one of a predicted network host and predicted path information.
In one embodiment, a centralized network management server (NMS) determines a network state of a low power and lossy network (LLN) based on resource utilization due to traffic in the LLN. The NMS also determines an admission state based on the network state, and admission control (network-wide and/or localized control) based on the admission state. As such, the centralized NMS can then administer the admission control for all nodes in the LLN, where network-wide control comprises a single control command to all nodes in the LLN, and the nodes direct admission based on the control command, and where localized control comprises a request-response exchange between the nodes and the centralized NMS, and the NMS directs admission on a per-request basis.
A system comprises a communications network configured to support transmission of a plurality of communications streams and a resource manager communicatively coupled to the communications network and configured to provision resources of the communications network to the plurality of communications streams. The system may further comprise a performance test manager communicatively coupled to said communications network and configured to identify a communication stream from said plurality of communications streams, identify a test network path for said identified communication stream that is substantially free of other network traffic, and perform a performance test over said test network path.
The embodiments of the present disclosure provide a method, a device and a network system for allocating an IP address. The allocating method comprises: allocating a first IP address to a first server; allocating a second IP address to a client connected to the first server; monitoring the client allocated with the second IP address; allocating a third IP address to the first server when a monitoring result indicates that an IP address conflict exists between the first IP address and a current IP address of a second server; wherein the second server is connected to the client allocated with the second IP address. The method may reallocate the IP address automatically when a subnet conflict occurs.
In one embodiment, a method determines a first set of virtual machines and a second set of virtual machines. The first set of virtual machines is associated with a first priority level and the second set of virtual machines is associated with a second priority level. A first set of computing resources and a second set of computing resources are associated with hosts. Upon determining a failure of a host, the method performs: generating a power off request for one or more of the second set of virtual machines powered on the second set of computing resources and generating a power on request for one or more virtual machines from the first set of virtual machines that were powered on the failed host, the power on request powering on the one or more virtual machines from the first set of virtual machines on the second set of computing resources.
A method and structure for conforming to cable leakage compliance level requirements includes calculating, using a processor on a computer, a priority of repairs for cable leakage over a cable operator service area. A result of the priority calculation is provided, thereby permitting higher priority leaks to be identified and repaired. The calculating of priority includes storing geographical locations of cell towers affecting a service area being evaluated, receiving data related to cable leakage sources, receiving data related to wireless service quality, if available, and exercising, using the processor on the computer, a prioritizing algorithm that calculates a relative severity of each cable leakage source.
Embodiments of the present invention disclose a method, an apparatus, and a system for forwarding data in a communications system. The implementation of the method includes: A data forwarding device forwards a data packet from a source end to a destination end by using a low-speed channel; during a procedure for forwarding the data packet from the source end to the destination end by using the low-speed channel, the data forwarding device receives a control command sent by a service processing node, where the control command is used to indicate that the data packet of the source end does not need to be forwarded to the service processing node; and the data forwarding device forwards the data packet from the source end to the destination end according to the indication of the control command by using a high-speed channel.
A distribution device receives a registration request of setting information relating to distribution of an event occurring in a print device from a client, registers the setting information, acquires print device information including event information relating to an event occurred in the print device from the print device, determines event information which is a distribution target based on the event information included in the acquired print device information and the registered setting information, distributes the determined event information to the client, and confirms the reception of the event information by the client device to which the event information is to be distributed.
A device stores forwarding information associated with fragments of a first data unit, stores information common to the fragments of the first data unit, receives fragments of a second data unit, and forwards the fragments of the second data unit based on the forwarding information of the first data unit and the information common to the first data unit.
A device manages a management database in the form of objects to be managed that are referenced according to a reference specification. Equipment exchanges management data in the form of data structures indicated by patterns each corresponding to a respective referenced object and being assigned a respective identifier. In order to manage a given object, the device and the equipment store synchronization information associating the reference of the given object and the corresponding pattern identifier. In order to manage a given object, the equipment sends the corresponding pattern assigned the respective identifier and a data ticket which has a structure indicated by said pattern and is assigned said identifier. The device translates the pattern into the respective referenced object as a function of the identifier of said pattern and the synchronization information, and then stores the data from the received ticket in the management database.
The SoftRouter architecture separates the implementation of control plane functions from packet forwarding functions. In this architecture, all control plane functions are implemented on general purpose servers called the control elements (CEs) that may be multiple hops away from the forwarding elements (FEs). A network element (NE) or a router is formed using dynamic binding between the CEs and the FEs. There is a protocol failover mechanism for handling failovers initiated by FEs to transfer control from one CE to another CE.
A method and apparatus for a radio base station (200) generates a multicarrier communication signal having a reduced crest factor by processing a block of samples (231) with a peak search window (271) to identify and suppress signal peaks exceeding a power threshold value.
A data processing apparatus is arranged to map input data symbols to be communicated onto a predetermined number of sub-carrier signals of Orthogonal Frequency Division Multiplexed OFDM symbols. The predetermined number of sub-carrier signals is determined in accordance with one of a plurality of operating modes and the input data symbols are divided into first sets of input data symbols and second sets of input data symbols.
A CDMA communication system includes a signal processor which encodes voice and nonvoice signals into data at various rates, e.g. data rates of 8 kbps, 16 kbps, 32 kbps, or 64 kbps as I and Q signals. The signal processor selects a specific data rate depending upon the type of signal, or in response to a set data rate. When the signal is received and demodulated, the baseband signal is at the chip level. Both the I and Q components of the signal are despread using the conjugate of the pn sequence used during spreading, returning the signal to the symbol level. Carrier offset correction is performed at the symbol level. A lower overall processing speed is therefore required.
A method of operating a receiver in a communications system is disclosed. The receiver receives a radio-frequency (RF) data signal and converts the RF data signal to an intermediate frequency. The receiver then determines whether a blocker image interferes with the received data signal, and selectively adjusts the intermediate frequency to which the data signal is converted based on the determination. The receiver may lower the intermediate frequency if the blocker image interferes with the received data signal. The receiver may also deactivate a quadrature chain of the receiver if the blocker image interferes with the received data signal.
A Voice over Internet Protocol (VoIP) device and method of operation of the VoIP device are provided. A local telephone number serving a location of the VoIP device is stored in a database of a VoIP service provider. A fixed address is associated with the local telephone number. The local telephone number is provided to an Automatic Location Information database associated with an emergency response system.
Example secure desktop applications for an open computing platform are disclosed. An example secure desktop method for a computing platform disclosed herein comprises establishing a secure communication connection between a secure desktop provided by the computing platform and a trusted entity, the secure communication connection being accessible to a trusted application authenticated with the secure desktop, the secure communication connection being inaccessible to an untrusted application not authenticated with the secure desktop, and securing data that is stored by the secure desktop in local storage associated with the computing platform, the stored data being accessible to the trusted application and inaccessible to the untrusted application.
An apparatus and a method for mapping virtual antennas and physical antennas in a wireless communication system. The method for mapping the virtual antennas and the physical antennas includes generating at least two virtual antenna signals for at least two virtual antennas. The method also includes generating at least two physical antenna signals by applying a corresponding matrix, which maps the at least two virtual antennas and the at least two physical antennas in many-to-many relation, to the at least two virtual antenna signals. The method further includes transmitting the at least two physical antenna signals over respective physical antennas.
An efficient communications apparatus is described for a vector signaling code to transport data and optionally a clocking signal between integrated circuit devices. Methods of designing such apparatus and their associated codes based on a new metric herein called the “ISI Ratio” are described which permit higher communications speed, lower system power consumption, and reduced implementation complexity.
Methods of efficient calculation of initial equalizer coefficients are described. In a first stage, a channel matched filter is generated based on an estimate of CIR and then used to filter the CIR estimate. In a second stage, initial FFE coefficients are calculated from a portion of the match filtered CIR and then these initial FFE coefficients and the estimate of CIR may be used to generate initial DFE coefficients. In various embodiments, a window is applied to the CIR estimate before the matched filter is generated. In various embodiments, the second stage is iterated to minimize the pre-echoes following the FFE.
A method and system is provided for detecting the presence of a DVB (digital video broadcasting) transmission with frequency offsets. The method includes receiving an RF (radio frequency) signal in a selected channel; creating samples from the received RF signal; estimating a frequency offset of the samples; correcting the samples with the estimated frequency offset; correlating the corrected samples with a reference signal; and comparing a correlation result with a threshold value. The frequency offset estimation includes selecting a set of three or more pilots that are boosted continual pilots transmitted at fixed sub-carrier locations in all symbols; transforming the received samples to the frequency domain; determining locations of maxima in the transformed samples, the maxima corresponding to the pilots in the set; and comparing the determined locations with the expected pilot locations in the set.
Among other disclosed subject matter, a computer-implemented method for performing a content distribution associated with a format includes performing analysis of an information collection reflecting network activities by a user, the network activities occurring in response to earlier content distributions to the user. The method includes selecting a format for a content distribution to be made to the user, the format being selected based on the analysis. The method includes performing the content distribution to the user using the selected format.
To facilitate management and configuration of VLAN memberships associated with applications or network protocols, a network device receives a packet from a wireless station which is a member of a virtual local area network (VLAN). The network device determines whether the packet is associated with a predefined application or network protocol. If so, the network device delivers the received packet to a dedicated VLAN which is accessible only to network devices associated with the predefined application or network protocol, regardless of destination address specified within the packet. If not, the network device delivers the received packet to an address or a group of addresses specified in a header of the received packet. In some embodiments, the VLAN is divided from a VLAN pool, and the dedicated VLAN corresponds to an address space that is outside the address space of the VLAN pool.
In general techniques are described for applying differentiated services with a customer-aware network device. A network device comprising a control unit and an interface may implement the techniques. The interface receives a network packet that is associated with first and second labels. The first label uniquely identifies a Cable Modem Termination System (CMTS) within a plurality of CMTSs. The second label uniquely identifies one of a plurality of CPE devices coupled to the CMTS. The control unit determines at least one subscriber-specific service associated with the one of the plurality of CPE devices based at least in part on the first and second labels associated with the labeled network packet. The at least one subscriber-specific service comprises a service associated with the one of the plurality of CPE devices. The control unit applies the at least one subscriber-specific service to the labeled network packet received from the CMTS.
Machine-implemented methods for validating a web site analytics configuration are provided. In one aspect, a method includes receiving, with a low latency web site traffic analytics and monitoring service, a registration for a web site, and sending an initial transmission to the registered web site, the transmission configured to generate a response transmission of web site traffic data to the analytics service. The method also includes outputting a notification indicating that the web site has been successfully registered with the analytics service when the traffic data is received by the analytics service, and outputting a notification indicating that the web site has not been successfully registered with the analytics service when the traffic data is not received by the analytics service. Systems, graphical user interfaces, and machine-readable media are also provided.
A system to determine a hierarchical model comprising two or more associated nodes, each of the nodes associated with one or more message producers and one or more message consumers, receive a message from one of the one or more message producers; and route the message to one or more of the one or more message consumers based on the hierarchical model. The hierarchical model may include a root node and a plurality of nodes descending from the root node, the plurality of nodes including the two or more associated nodes, wherein each of the plurality of nodes is associated with a topic, a parent node, one or more child nodes, one or more message producers, and one or more message consumers. Routing the message may comprise traversing two or more nodes of the hierarchical model based on first logic.
Techniques are described for supporting PIM (Protocol Independent Multicast) Dense Mode (PIM-DM) and PIM Bootstrap Router (PIM-BSR) between different VPN sites of an IP VPN. A system includes a plurality of customer sites connected to a service provider network by provider edge (PE) routers that provide an IP VPN. A first one of the PE routers receives multicast traffic from a first one of the customer sites, wherein the multicast traffic is PIM (Protocol Independent Multicast) Dense Mode (PIM-DM) traffic for which no PIM join messages have been received by the first PE router from the other PE routers via BGP messages. A tunnel setup module of the first PE router is configured to automatically signal a provider tunnel through the service provider network upon receiving the PIM-DM multicast traffic without maintaining multicast state data for a multicast group associated with the PIM-DM multicast traffic.
A method and a system for initiating a video session between parties while the parties are engaged in a text chat session. The method includes the steps of: reaching consent between the parties to engage in a video session while in a text chat session; identifying user activity associated with the text chat session; and automatically activating a video session with the other party when the user is actively associated with the text chat session.
Apparatus, methods and program products by which the user of a computer system is notified of the desirability or urgency of initiating an interval during which the user leaves the system idle to permit some communication or update from a network with which the system is in communication.
The switch device includes a control switch that turns on/off an electrical connection between an apparatus and the power supply, a condition judging circuit that judges conditions of driving the control switch, an electric wave reception circuit that receives an electric wave, and a power supply circuit that generates power from the electric wave received by the electric wave reception circuit. An electric wave transmission device that transmits an electric wave for making the switch device operate is arranged in a space, whereby the electric wave can be received by the electric wave reception device in the specific space. The switch device controls the control switch to be turned off/on when the electric wave is received. Alternatively, when the electric wave is not received, the switch device turns on/off the control switch.
Disclosed is a method for provisioning an endorsement key (EK) certificate for a firmware trusted platform module (fTPM). In the method, the fTPM receives a derived key (DK) from a hardware trusted platform (HWTP). The fTPM is implemented in the HWTP, the DK is derived from a hardware key (HWK) securely stored in the HWTP, the HWK is unique to the HWTP, and the HWK is not available to the fTPM. The fTPM generates an endorsement primary seed (EPS) based on the DK, and generates a hashed endorsement primary seed (HEPS) based on a hash of the EPS. The fTPM forwards the HEPS to a provisioning station, and receives, from the provisioning station, an EK certificate corresponding to the HEPS.
Systems and methods are provided for securely sharing data. A processor forms two or more shares of a data set encrypted with a symmetric key, the data set associated with a first user device, and causes the encrypted data set shares to be stored separately from each other in at least one remote storage location. The processor generates first and second encrypted keys by encrypting data indicative of the symmetric key with a first asymmetric key of first and second asymmetric key pairs associated with the first user device and a second user device, respectively, and causes the encrypted key to be stored in the at least one storage location. To restore the data set, a predetermined number of the two or more encrypted data set shares and at least one of the second asymmetric keys of the first and second asymmetric key pairs are needed.
A method for processing symbols by a first computerized entity, the method may include receiving, by a first computerized entity and over a communication network, text that comprises multiple random tokens and a plurality of plaintext symbols; wherein the multiple random tokens are generated by a second computerized entity; wherein a value of each random token that represents a plaintext symbol is responsive to values of random tokens that represents plaintext symbols that have a lower lexicographic value than the plaintext symbol; and processing the text by the first computerized entity.
A digital communications test system and method for testing a plurality of devices under test (DUTs) in which multiple sets of a single vector signal analyzer (VSA) and single vector signal generator (VSG) can be used together to perform error vector magnitude (EVM) measurements for one or more DUTs in parallel, including one or more of composite, switched and multiple input multiple output (MIMO) EVM measurements. This allows N pairs of a VSA and VSG to test N DUTs with N×N MIMO in substantially the sane time as a single VSA and VSG pair can test a single DUT, thereby allowing a substantial increase in testing throughput as compared to that possible with only a single VSA and VSG set.
Systems, methods, and devices for acknowledging communications from a plurality of wireless devices in a wireless network are described herein. In some embodiments, an access point for the wireless network transmits a group acknowledgment (ACK) to indicate whether communications (packets) from the plurality of wireless devices have been received or correctly decoded within some time interval. Each wireless device may have a different time interval associated with it. For some embodiments, the time interval for a wireless device is relative to when a previous group ACK was sent. A group ACK may include a bitmap. In some embodiments, the bitmap indicating whether a communication has been received or correctly decoded may be transmitted as part of a beacon.
Disclosed is a security USB storage medium generation and decryption method. The method comprises outputting information for requesting an input of a user password to be set through the output interface, generating a random key and a disk key based on first user password when the first user password is input from the input interface in response to the input requesting of the first user passwords, generating first encryption and decryption keys by hashing the first user password and the random key, when the random key and the disk key are generated, generating a security volume body part by classifying the storage region into a header and a body part using the first encryption and decryption keys, encrypting first data, storing the data in the header, generating a security volume header, encrypting second data using the disk key and then storing the data in the body part.
The direct data recovery (DDR) uses adaptive data decoding (ADD) to combine a conventional reversal of data coding made on a transmit side with a reversal of received signal distortions introduced by a transmission channel; wherein both such reversals are achieved by the same conversion of a sub-range parameter or a referencing subspace (corresponding to said received signal) into data transmitted originally, by applying an ADD step comparing said sub-range parameter or referencing subspace with its reference or reference frame and using a result of such comparison for addressing a Content Addressed Memory (CAM) outputting recovered data.
In Machine Type Communication (MTC) with a 3GPP Long Term Evolution (LTE) Network, there is often a need to transmit and receive small data payloads. New information elements (IEs) have been defined to ease the transmission and receipt of small data payloads. Methods and systems can use the new IEs to more efficiently transmit and receive data. The new IEs include a Small Data ACK IE and a Small Data Container IE. Other new messages include an RAC Release indicator and an RRC Connection Release.
Embodiments of the invention provide methods for optimizing the spectral efficiency of control channel transmissions carrying scheduling assignments from a serving Node B to user equipments. This is accomplished by adjusting the control channel size between successive transmission time intervals according to the number of user equipments having scheduling assignments and possibly according to the modulation and coding scheme used for the transmission of each scheduling assignments.
Disclosed is a broadcast signal transmitting apparatus, a broadcast signal receiving apparatus, and a broadcast signal transceiving method in a broadcast signal transceiving apparatus. The broadcast signal transmitting method comprises the following steps: compressing the headers of data packets of an IP stream identified by IP address information, wherein the compressed data packets include a first packet, the header of which contains static field information, a second packet, the header of which contains dynamic field information, and a third packet, the header of which contains the compressed static field information and/or the compressed dynamic field information; signaling IP-PLP mapping information for mapping the IP stream and a component PLP for transmitting the IP stream, the IP stream compression information, and the header information of the first packet to L2 signaling information; and transmitting the header information of the second and third packets via the component PLP, and transmitting the L2 signaling information via a common PLP.
A resource allocation method of a relay station in a wireless communication system employing the relay station is provided. The method includes: receiving information on a resource allocation pattern for an access link and a backhaul link of a first frequency band; and determining a resource allocation pattern for an access link and a backhaul link of a second frequency band on the basis of the resource allocation pattern of the first frequency band, wherein the first frequency band is any one of an uplink frequency band and a downlink frequency band, and the second frequency band is a remaining one of the uplink frequency band and the downlink frequency band.
Disclosed is a base station which can prevent degradation in the reception characteristics of nearby cells when carrier aggregation and channel selection are applied. In accordance with the resistance to interference of a plurality of uplink component carriers of a femtocell, a response protocol controller (101) in a base station (100) changes combination rules for the uplink component carriers and signal points which a terminal (200) in a microcell covered by the base station (100) uses in the feedback of a response signal. Information in relation to the combination rules is notified to the terminal (200). A controller (217) in the terminal (200) changes the combination rules for the uplink component carriers and the signal points of the microcell covered by the base station (100) in accordance with the information notified from the base station (100), and controls transmission of the response signal in accordance with said rules.
An optical system may include: a demultiplexer to receive an optical signal and to demultiplex the optical signal into a plurality of optical channels; a detector circuit to: receive the plurality of optical channels, and identify a predetermined channel identification trace tone frequency for an optical channel of the plurality of optical channels; and a receiver to: receive the optical channel with the identified predetermined channel identification trace tone frequency from the detector circuit, and process the optical channel.
A system to convert upstream burst mode data into continuous mode data in a passive optical network (PON) is provided herein. The system includes a burst mode Serializer/Deserializer (SerDes) that recovers a clock and burst mode data from an Optical Network Unit (ONU). The burst mode unit recovers the burst mode data based on a start time of burst mode data transmission by the ONU and a round-trip time between the ONU and an Optical Line Terminal (OLT). The system further includes a continuous mode SerDes that is coupled to the burst mode SerDes. The continuous mode SerDes is configured to receive the recovered clock and recovered burst mode data from the burst mode SerDes and convert the burst mode data into continuous mode data by buffering and padding the burst mode data based on the recovered clock. The continuous mode Serdes is configured to transmit the continuous mode data to the OLT.
A method for enabling AC coupling or DC coupling when receiving burst data signals comprises generating a hold-over pattern, wherein the hold-over pattern is a AC balanced pattern when an AC coupling is required and a low-logic value signal when a DC coupling is required; inputting the generated hold-over pattern to an AC coupling circuit, when no burst data signal is received; inputting only a received burst data signal to the AC coupling circuit, during the reception of such signal; and upon receiving of the entire burst data signal, generating a reset signal causing to input the generated holdover pattern to an AC coupling circuit.
Methods, systems, and devices are described for formatting of data streams to be transmitted over fiber optic channels, and for processing received optical signals. A data transmission device may include a digital coding and modulation module that encodes a digital data stream, inserts unique words into the digital data stream, and modulates the encoded data stream and unique words onto optical channels for transmission over an optical fiber. A demodulation and decoding device may include a unique word identification module that identifies the unique words inserted in each optical channel stream, determines one or more characteristics of the plurality of optical channels based on the unique words, and provides the one or more characteristics to one or more other modules in the demodulator and decoding device.
Disclosed is an apparatus and a method for multiport amplification configured to amplify a signal input to a multi-input port and output the amplified signal to a multi-output port in order to normally transmit/receive a signal in a communication system. The apparatus and the method are configured to: amplify an input signal input through a multi-input port, detect a phase error and an amplitude error of the input signal, and then calculate a phase error value and an amplitude error value of the input signal; correct the phase error and the amplitude error of the input signal through the phase error value and the amplitude error value of the input signal; and then amplify the input signal of which the phase error and the amplitude error are corrected, and output the input signal to a multi-output port.
A transmission device includes an optical amplifier to amplify an optical main signal to be transmitted on an optical transmission path; a first controller to stop output of the optical amplifier and output of an optical monitor signal to be transmitted on the optical transmission path when a failure of the optical transmission path is detected; a second controller to be switched from the first controller and to operate and stop the output of the optical amplifier and the output of the optical monitor signal when the failure of the optical transmission path is detected; an optical monitor signal transceiver to transmit and receive the optical monitor signal including control information; and a switch to switch an operation from the first controller to the second controller, based on information of the failure of the optical transmission path based on the states of transmission and reception of the optical monitor signal.
A processor unit used to determine a quality indicator, QI, of a communication channel. The processor unit receives received complex symbols at an input, executes a predetermined sequence of transformations on the received complex symbols and computes the error vector magnitude, EVM. The quality indicator, QI, of the communication channel is determined based on the determined error vector magnitude, EVM. Data representing the quality indicator, QI, is outputted at an output of the processor unit. The predetermined sequence of transformations transfers all the received complex symbols to a single predetermined region containing a single target location. The error vector magnitude, EVM, is then calculated as average distance of all the processed received complex symbols in the predetermined single region to the single target location.
A receiver with a local oscillator, a quadrature modulator, a first mixer and a second mixer, wherein a first input of the quadrature modulator is connected to a second signal input of the receiver circuit and a second input of the quadrature modulator is connected to the local oscillator. Further, a first input of the first mixer is connected to a first signal input of the receiver circuit, a second input of the first mixer is connected to an output of the quadrature modulator, and an output of the first mixer is connected to a first signal output of the receiver circuit. A first input of the second mixer is connected to the second signal input, a second input of the second mixer is connected to the output of the quadrature modulator, and an output of the second mixer is connected to a second signal output of the receiver circuit.
A method for monitoring a high-frequency transmit device of a magnetic resonance tomography system with a transmit antenna system having a plurality of transmit channels is provided. A reference transmit signal is output on different transmit channels of the transmit antenna system, respectively, at different time points, and a reference measurement signal induced by the reference transmit signal is measured on at least one of the other transmit channels using a measuring device assigned to the transmit channel. Based on the reference measurement signal, a phase deviation indicator value is determined. The phase deviation indicator value indicates a relative phase deviation between the measuring devices of the transmit channels in question.
Disclosed is non-linear interference cancellation (NLIC) on a victim receiver in a communication system in which there is self-jamming interference from multiple aggressor transmitters. The victim receiver may implement cascaded NLIC operations using multiple interference signals in succession to remove the multiple interference signals from the Rx signal and to cancel or mitigate the self-jamming interference. The reconstruction and removal of the interference signals may be ordered based on the expected level of interference from the interference signals on the desired Rx signal. The victim receiver may first perform NLIC operation using the Tx signal from the transmitter aggressor estimated to generate the strongest interference signal to remove the strongest interference signal from the Rx signal first. The victim receiver may perform NLIC operation on the TX signal from the next strongest transmitter aggressor, and so on, to remove interference signals of multiple aggressor transmitters from the Rx signal.
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Systems and methods for satellite signal tracking are provided. In one embodiment, a GNSS tracking system comprises: a carrier demodulator that receives a navigation signal including pilot and data signal components; a correlator block that implements early, prompt and late correlators, generates prompt values from the pilot signal, and generates early and late values from the data signal; a carrier tracking loop that generates a reference signal using the prompt values, and outputs the reference signal to the carrier demodulator; a code tracking loop that outputs a pilot signal local replica to the prompt correlator and a data signal local replica to the early and late correlators, wherein a chip rate for the local replicas is adjusted by the code tracking loop as a function of the early and late values; and a symbol demodulator that extracts navigation data from the data signal component using the early and late values.
Various disclosed embodiments include methods and systems for operating a wireless electronic device having one or more antennas. The method comprises monitoring at least one parameter of a signal received from a remote transmitter. The method includes determining that the at least one parameter meets a first threshold and performing, at the wireless electronic device, a probing operation. The probing operation includes performing an antenna switching operation. The probing operation includes generating first signal information of the received signal prior to the antenna switching operation and generating second signal information of the received signal subsequent to the antenna switching operation. The probing operation includes determining whether the antenna switching operation achieves a desired gain based at least in part on the generated first and second signal information. The probing operation includes reversing the antenna switching operation in response to the desired gain not being achieved.
A new frame structure applicable to the IEEE 802.16 OFDMA wireless waveform is described, for the purposes of increasing base station capacity, increasing subscriber link rates and extending base station range. The frame structure provides the necessary constructs so that advance signal processing technologies such as Stacked Carrier Spread Spectrum and adaptive antenna technology may be used in combination with these constructs in order to realize these gains. These concepts are equally applicable in other advanced wireless waveforms based on OFDM or OFDMA such as LTE or UMB.
A first communication device receives a plurality of training signals associated with a transmit beamforming training portion of a current iteration of a beamforming procedure between the first communication device and a second communication device. A receive antenna weight vector (AWV) is applied to an antenna array as each of the plurality of training signals is received. A channel estimate is determined based on reception of the plurality of training signals, and feedback is determined based on the channel estimate. The feedback is transmitted to the second communication device as part of the current iteration of the beamforming procedure.
Methods and systems are provided for timing synchronization for reception of highly-spectrally efficient communications. An example method may include, mapping, in a transmitter, a plurality of transmit bits to a plurality of symbols at a symbol rate that is based on an oscillator signal. The plurality of symbols may be processed via a filter. The processing may result in an inter-symbol correlated (ISC) signal. The oscillator signal may be frequency divided to generate one or more pilot signals having a frequency that is a sub-harmonic of a frequency of the oscillator signal. The pilot signal may be injected into the ISC signal. The injecting may result in an ISC signal with timing carrier. The ISC signal with timing carrier may be transmitted. Gain of the one or more pilot signals may be adjusted based on a spectral mask value associated with the transmitting.
Certain aspects of the present disclosure relate to methods for beamforming that achieve beamforming optimality criterions. Some proposed beamforming techniques are based on antenna directions with multiple resolutions.
Disclosed is a method for enabling a terminal to process a signal in a wireless communication system. Specifically, the method for enabling a terminal to process a signal in the wireless communication system includes the steps of: estimating a recommended transmission beamforming vector and a prior received filtering vector; calculating an effective channel for an adjacent cell by applying the prior received filtering vector to a signal received from the adjacent cell; estimating a constraint beamforming vector for the adjacent cell on the basis of the effective channel; transmitting the information of the transmission beamforming vector and the constraint beamforming vector to the serving cell; receiving adaptive response signals of the transmission beamforming vector and the constraint beamforming vector and the constraint beamforming vector; and receiving the signal to which the transmission beamforming vector is applied, from the serving cell by applying the prior received filtered vector.
Techniques are provided for transmitting and receiving a mother code in an incremental redundancy hybrid automatic repeat-request protocol. A set of information bits corresponding to a message may be encoded and interleaved to produce the mother code. Each bit position of the mother code may be mapped to an output symbol, and each output symbol may be mapped to an antenna for transmission. One or more transmissions of symbols contained in the output symbols may be performed, where each transmission may include puncturing the mother code by selecting one or more symbols from the of output symbols, and transmitting each symbol in the one or more symbols on an antenna corresponding to that symbol. The mother code may be decoded, in part, by determining combinable bits contained within a set of received symbols, and computing one or more log-likelihood ratio values corresponding to each symbol in the set of received symbols.
A method and system are disclosed for mapping multiple applications or services from a single tag. A tag is deployed in a product that stores multiple intent records, the first of which maps to a client multiplexing component. The client multiplexing component, resident on a user device, is automatically initiated upon establishment of a communications link between the user device and the tag. The client multiplexing component then reads each subsequent record on the tag and selectively launches the application or service on the user device. Any data to be written back to the tag is communicated from the corresponding application or service through the client multiplexing component.
A digital step attenuator with thermometer encoded attenuator stages is disclosed. In one embodiment, Embodiments disclosed in the detailed description may include a digital step attenuator, programmable thermometer encoded attenuator stages, the digital step attenuator may include a cascade of programmable thermometer encoded attenuator stages. Each stage may be provided by a programmable impedance array including a plurality of impedances arranged in parallel. The impedance of each of the plurality of each stage may change monotonically by switchably inserting or removing one of the plurality of impedances in the arrays. The control circuit may govern the attenuation level of each of the thermometer encoded accumulator stages as a function of a thermometric codeword, which controls the switches in the arrays.
A method of decoding data includes: receiving an encoded data stream transmitted as a plurality of variable length symbols; dividing the data stream into a sequence of blocks, each block having a sequence of adjacent bit positions starting a first bit position and ending with a last bit position; pre-processing each block prior to fully decoding each block, wherein pre-processing includes, for each block, selecting a bit position in a current block and determining a starting position of a first symbol in an adjacent block based on the selected bit position, wherein determining is initially performed for the last bit position in the current block, and is repeated sequentially for each preceding bit position through and including the first bit position; and fully decoding each block by decoding a first block starting at the first bit position and decoding each adjacent block starting at the starting position.
An system, method, and method of encoding/decoding a multi-channel audio signal, including a decoding level generation unit producing decoding-level information that helps a bitstream including a number of audio channel signals and space information to be decoded into a number of audio channel signals, wherein the space information includes information about magnitude differences and/or similarities between channels, and an audio decoder decoding the bitstream according to the decoding-level information. Accordingly, even a single input bitstream can be decoded into a suitable number of channels depending on the type of a speaker configuration used. Scalable channel decoding can be achieved by partially decoding an input bitstream. In the scalable channel decoding, a decoder may set decoding levels and outputs audio channel signals according to the decoding levels, thereby reducing decoding complexity.
A method for evaluating an analog signal of an inductive sensor that carries data on a rotational motion includes directly connecting the inductive sensor to an A-D converter via resistors, and reading in the analog signal by the A-D converter to emit digital data. The digital data is evaluated to determine zero crossings of the analog signal.
A crystal oscillator includes: an oscillation circuit; first and second oscillation circuits connected to first and second temperature detection crystal units, respectively; a heating portion configured to constantly maintain an ambient temperature; a frequency difference detection portion that obtains, as a temperature detection value, “{(f2−f1)/f1}−{(f2r−f1r)/f1r}”, where “f1” and “f2” denote oscillation frequencies of the first and second oscillation circuits, respectively, and “f1r” and “f2r” denote oscillation frequencies of the first and second oscillation circuits, respectively, at a reference temperature; an accumulator that accumulates the temperature detection value; a rounding processing portion that performs rounding for the temperature detection value accumulated in the accumulator depending on a rounding factor designated independently from the accumulation number; and a heating control portion that controls power supplied to the heating portion based on the temperature detection value subjected to the rounding in the rounding processing portion.
Systems and methods for adjusting threshold voltage. A threshold voltage of a transistor of an integrated circuit is measured. A bias voltage, which when applied to a body well of the transistor corrects a difference between the threshold voltage and a desired threshold voltage for the transistor, is determined. The bias voltage is encoded into non-volatile storage on the integrated circuit. The non-volatile storage can be digital and/or analog.
This disclosure relates to leakage current reduction in integrated circuits (ICs). In one aspect, an IC can include a digital logic circuit and a polarization circuit. The digital logic circuit can have a plurality of inputs and can include a plurality of logic gates. The polarization circuit can receive a standby signal and a digital input signal comprising a plurality of bits. When the standby signal is deactivated, the polarization circuit can control the plurality of inputs of the digital logic circuit based on the digital input signal. However, when the standby signal is activated the polarization circuit can control the plurality of inputs of the digital logic circuit to a low power state associated with a smaller leakage current of the plurality of logic gates relative to at least one other state of the digital logic circuit.
The semiconductor device includes an internal clock generator, a shift signal generator and a first control signal generator. The internal clock generator generates a first internal clock signal and a second internal clock signal in response to an external clock signal. The shift signal generator shifts a clock enable signal in response to the first internal clock signal to generate first and second shift signals, and the shift signal generator shifts the clock enable signal in response to the second internal clock signal to generate third and fourth shift signals. The first control signal generator generates a first control signal in response to the first and third shift signals.
A high-speed bus interface with an adaptive swing driver. A high speed interface includes a transmitter and a receiver coupled via a bus. The transmitter has an adaptive swing driver and a voltage-regulating-module (VRM). The adaptive swing driver includes a post-driver and a pre-driver. The post-driver provides an adaptive swing output with a dedicated adaptive voltage power supply (VDDQ) and transition emphasis driving capacity with an internal logic voltage supply (VDD). The pre-driver provides the transition emphasis driving capacity with a pull-up and a pull-down signal path to the post-driver. The voltage-regulating-module is configured to supply signal to the adaptive swing driver. The receiver includes a comparator and a bit-error-rate detector. The comparator amplifies the adaptive swing output received from the transmitter via a bus, while the bit-error-rate detector diagnoses the amplified adaptive swing output received from the comparator.
An apparatus and method linearize a power amplifier in a transmitter by using a dual time alignment scheme. A first adjustable time delay unit delays a modulator signal input of a power amplifier. A first time delay estimator estimates a time delay between the delayed feedback signal and the reference signal, and adjusts the first adjustable time delay unit based on the estimated time delay between the delayed feedback signal and the reference signal. A second adjustable time delay unit delays the feedback signal. And a second time delay estimator estimates the time delay between the delayed feedback signal and the reference signal, and adjusts the second adjustable time delay unit based on the estimated time delay between the delayed feedback signal and the reference signal.
A driver circuit may include a first node (VA), and a first circuit to generate on the first node (VA) an inverted replica of an input signal (VIN) during driver switching between a first supply voltage (Vdd1) and ground, the inverted replica having a threshold voltage value based upon a reference voltage (Vref) greater than the first supply voltage (Vdd1). The driver circuit may include a cascode stage (M3) to be controlled by the reference voltage (Vref) and to be coupled between a second supply voltage (Vdd2) and the first node, a delay circuit (D) to generate a delayed replica of the input signal (VIN), an amplifier, and a switching network (M5, M6) to couple a control terminal of an active load transistor (M9) either to one of the reference voltage (Vref) or to ground, based upon the input signal (VIN).
An amplifier device includes a plurality of input terminals for receiving input signals (e.g. audio signals), a main switch, which switches over the input terminals so as to select one input terminal, an analyzer, which analyzes the input signals at respective timings so as to determine whether or not each of the input signals corresponds to a playback signal, a storage for storing a plurality of determination results in connection with the input terminals, a controller for controlling the main switch to select the input terminal whose input signal is newly determined as the playback signal, and an amplifier for amplifying the input signal of the selected input terminal. The analyzer performs frequency analysis on the input signals so as to determine the input signal including a specific frequency component having a high intensity as noise not forming the playback signal.
In accordance with an embodiment, a voltage controlled oscillator (VCO) includes a VCO core having a plurality of transistors, a bias resistor coupled between collector terminals of the VCO core and a first supply node, and a varactor circuit coupled to emitter terminals of the VCO core. The bias resistor is configured to limit a self-bias condition of the VCO core.
A method is described for controlling an electric machine during a motor startup operation with the aid of a power electronics device, in particular for use in a motor vehicle. The power electronics device includes a plurality of controllable power switches which are connected for the purpose of supplying an electrical current to the electric machine in polyphase form. The power electronics device is controlled in such a way that the electric machine outputs a startup torque, and the control of the power electronics device for outputting the startup torque takes place in such a way that the switching position of at least two of the power switches is changed, with the result that the power switches are subjected to a more uniform load.
Disclosed is an apparatus and method for controlling switching devices for a DC motor, which controls the dead-time in an on-chip manner, even when a microcontroller is not mounted in a vehicle controller, by providing a semiconductor chip for controlling switching devices for a DC motor. More specifically, switching devices are mounted in a semiconductor chip to configure an internal circuit of the chip with a half-bridge and a dead-time controller is provided on the semiconductor chip and is configured to transmit gating signals by controlling dead-time periods during operation of the switching devices and drive the switching devices directly connected to a motor.
There are provided a back electromotive force detection circuit and a motor driving control apparatus using the same. The back electromotive force detection circuit includes a duty determining unit and a delay compensation unit. The duty determining unit outputs a differential level according to a duty of a driving control signal of a motor. The delay compensation unit performs delay compensation differently on each differential level to compensate for a delay in back electromotive force of the motor regardless of a variation in a duty of the driving control signal.
An electrical machine has been developed that opportunistically regulates the voltage supplied to the coil of the electrical machine. The electrical machine includes a stator winding, a rotatable electromagnet, and a voltage regulator. The voltage regulator is configured to control an output voltage of the electrical machine. The regulator is configured to vary the magnitude of the output voltage based at least in part on acceleration of the vehicle.
A device for recovering electric energy in a DC motor-driven electric vehicle. The device includes a battery; a first inverter; an inductor; a first rectifier bridge or a second inverter; a DC motor; a second rectifier bridge or a third inverter; and a charger. The anode and the cathode of the battery are connected to input ends of the first inverter, respectively. One output end of the first inverter is connected to one end of a primary coil of the inductor. Another output end of the first inverter is connected to one input end of the first rectifier bridge or the second inverter. Another end of the primary coil of the inductor is connected to another input end of the first rectifier bridge. The charger is connected to the anode and the cathode of the battery for supplying power from an external power supply.
A power converter includes a group of serial three-level inverters including 2n (n=2) three-level inverters connected in series, two switch circuits for selecting an output from either one of two of the three-level inverters in the group of serial three-level inverters, and a switch circuit for selecting an output from either one of the switch circuits. Each three-level inverter includes two switch elements connected in series, two capacitors connected in series, and a switch element for connecting the first node to the second node, the switch elements being connected in parallel to the capacitors.
A voltage source inverter comprises a rectifier having an input for receiving single-phase AC power from an AC source and converting the AC power to DC power on a DC bus. The DC bus has first and second rails to provide a relatively fixed DC voltage. A DC bus capacitor is across the first and second rails to smooth voltage ripple. An inverter receives DC power from the DC bus and converts the DC power to AC power. An active front end circuit comprises a pair of filter capacitors in series across the first and second rails to create a midpoint. A bidirectional switch is connected between the rectifier input and the midpoint. The bidirectional switch is controlled to inject current into the midpoint of the DC bus.
A voltage source inverter comprises a rectifier converting AC power to DC power at an output. An inverter receives DC power and converts the DC power to AC power. A link circuit is connected between the rectifier circuit and the inverter circuit and comprises a DC bus. A DC bus capacitor across the DC bus smoothes voltage ripple. An active filter circuit comprises a pair of filter capacitors in series across the first and second rails to create a midpoint. Bidirectional switches are connected between the rectifier input and the midpoint. A current sensor is connected between the bidirectional switches and the midpoint. An active switch controller controls a conduction angle of the bidirectional switches to maintain DC bus voltage at a desired reference level under a wide load range.
An adaptive current limiter including a conversion network and an amplifier network developing an adaptive current limit signal for use by a switching regulator to limit peak current through an inductor of the switching regulator. The switching regulator develops a pulse control signal for controlling switching of current through the inductor to convert an input voltage to an output voltage. The conversion network provides a limit value by applying a duty cycle of the pulse control signal to a reference value. The amplifier network is configured to develop the adaptive current limit signal based on the limit value. The conversion network may multiply the reference value by the duty cycle to develop the limit value. The amplifier network may include a current source providing a fixed reference current to an amplifier to establish a minimum level of the adaptive current limit signal.
A converter, for feeding a load via an inductor, includes a switch to permit or prevent the feeding of current towards inductor, and a current sensor with a resistor coupled to the converter output, adapted to sense the current through said inductor when switch is off. A further switch is provided which is conductive when said switch is turned off; moreover, a drive circuitry is provided which is coupled to current sensor to turn said switch on as a function of the detected current. Drive circuitry is fed by a bootstrap circuit which includes: a bootstrap capacitor to accumulate a feeding charge for drive circuitry and coupled to the converter output and to a bootstrap diode, a coupling capacitor interposed between said further switch and bootstrap diode, as well as a bootstrap resistor interposed between a power supply source and bootstrap diode to charge coupling capacitor therefrom.
An enclosure for a power supply is disclosed. The enclosure may include a control compartment configured to receive one or more control components, a transformer compartment positioned adjacent to the control compartment and configured to receive a transformer, and a power cell compartment positioned adjacent to the control compartment and the transformer compartment. The power cell compartment may be configured to receive a plurality of power cells arranged into a plurality of pods. The power cells may be received in the power cell compartment such that each power cell in a first pod is adjacent to at least two other power cells in the first pod. A voltage difference between adjacent power cells in a pod may be less than an acceptable voltage tolerance.
A motor is configured to operate in one of at least two modes in response to determining that a power provided by a power supply for the motor crosses certain thresholds. For example, first and second windings apply a rotating force to a rotating armature of a single motor. The first and second windings are electrically coupled to first and second commutators, respectively, which transmit power to the first and second windings from a first and second power source, respectively. In other aspects, different power sources power the motor, and the motor operates at different speeds depending on the power source applied. For example, the change in power sources is effected in response to detecting a change in applied power past a threshold, thus effecting the motor's operation in a second, different speed. So configured, a single motor can reduce deployment of bulky and expensive add-on equipment.
A brush direct current motor has a stator with a plurality of coils that correspond to a number of stator windings, a rotor with a number of poles, and a commutator. The commutator is connected to a first terminal of a direct current power source to convert the power into N phase alternating current. One end of each stator winding is connected to a respective phase of the alternating current via a brush and the other ends of the stator windings are connected to the second terminal of the direct current power source.
A motor stator automatically assembling system includes a feeding unit, a wire-winding unit, a first conveyer unit, a second conveyer unit, a first assembly unit and a second assembly unit. A motor stator automatically assembling method includes: the feeding unit is operated to feed a plurality of insulation members; the insulation members are arranged on the first conveyer unit to convey to the wire-winding unit; the wire-winding unit is operated to wind wires on the insulation members to form a plurality of wire-wound insulation members; the wire-wound insulation members are arranged on the second conveyer unit to convey to the first assembly unit; the first assembly unit is operated to insert pole teeth into the wire-wound insulation members to form a plurality of compact pole tooth sets; the second assembly unit is operated to combine the compact pole tooth sets with a stator ring frame to form an assembled motor stator.
This disclosure provides an aircraft vehicle, which comprises a circuit board, and at least one power component mounted on said circuit board. The at least one power component comprises a rotor, a drive unit and a fixing sleeve. Said drive unit is electrically connected to said circuit board and drives the rotor to rotate. Said fixing sleeve comprises a receiving space with an opening at a top. Said fixing sleeve comprises at least one first stopping piece and at least one second stopping piece projected on an outer surface of the fixing sleeve. Said drive unit is accommodated in the receiving space and is secured in the fixing sleeve. Said circuit board comprises at least one positioning hole corresponding to the power component. The fixing sleeve is configured to pass through the positioning hole so that the circuit board is retained between the first stopping piece and the second stopping piece. This disclosure also provides a fixing sleeve. Thus, when the aircraft vehicle falls or collides with another object, the fixing sleeve ensures that the drive unit does not separate from the circuit board, therefore enhancing the performance of the aircraft vehicle.
A control device is made more compact and an electric power steering apparatus achieving excellent ease of assembly and ease of mounting is provided by disposing the control device between a shaft of an electric motor and a gear shaft of a speed reduction structure. A control device (90) is disposed coaxially with an output shaft (11) of an electric motor (10) between the electric motor and a speed reducer, and has a heat sink (30), a power circuit board (40), a control circuit board (50), and a housing (70) in which to house the power circuit board and the control circuit board. An electronic relay circuit board (60) that passes and interrupts a motor current is housed in the housing between the power circuit board and the electric motor, so that heat generated in the electronic relay circuit board is released to the housing.
A method and apparatus for producing useful work by a traffic-way or roadway having a moveable portion that can be readily displaced by the weight passing thereover, and translating the displacement of the moveable portion into a storing energy system; e.g., a torsion spring being compressed having a energy release mechanism that connects to an rotor or a drive shaft.
A system for the wireless transfer of power includes a first device connected to a power supply source and provided with a first resonant circuit at a first frequency, a second device comprising at least one battery, provided with a second resonant circuit at said first frequency, arranged at a distance smaller than the wavelength associated with said first frequency and not provided with wires for the electrical connection with said first device. The first device is adapted to transfer a first signal representing the power to be sent to the second device for charging said at least one battery and comprises means adapted to modulate the frequency of said first signal for transferring data from the first device to the second device simultaneously with the power transfer. The second device comprises means adapted to demodulate the received signal, corresponding to the first signal sent from the first device, to obtain the transmitted data.
An over-current and over-voltage protection circuit for an electronic cigarette, comprising a battery and an interface, a control unit and a charging detection switch unit; the control unit is configured for calculating an actual charging current according to the first working voltage and determining whether the actual charging current exceeds a preset charging current threshold value, and sending a first charging controlling signal to the charging detection switch unit; the control unit is further configured for real-timely detecting an input voltage of the interface, determining whether the input voltage of the interface is in over-voltage status, and controlling a turned-on or turned-off operation of the charging detection switch unit. The over-current over-voltage protection circuit and method eliminate the security risk of the battery pole not having a charging management circuit in the non-normal charging status.
A surgical generator and related method for mitigating overcurrent conditions are provided. The surgical generator includes a power supply, a radio frequency output stage, an overcurrent detection circuit in operative communication with an interrupt circuit, and a processor. The power supply generates a power signal and supplies the power signal to the radio frequency output stage. The radio frequency output stage generates a radio frequency signal from the power signal. The overcurrent detection circuit detects an overcurrent of the power signal and/or an overcurrent of the radio frequency signal. The interrupt circuit provides an interrupt signal in response to a detected overcurrent. The processor receives the interrupt signal and supplies a pulse-width modulation signal to the power supply and incrementally decreases the duty cycle of the pulse-width modulation signal in response to the interrupt signal. The radio frequency output stage may be disabled in response to the detected overcurrent.
Provided is an electro-static discharge protection circuit, an array substrate and a display apparatus, being capable of reducing power consumption while improving reliability of the display apparatus. The electro-static discharging protection circuit comprises: a first thin film transistor (T1), having a drain connected to a high level output terminal (VGH); a second thin film transistor (T2), having a source connected to a source of the first thin film transistor (T1) as a discharging terminal (O), a drain connected to the high level output terminal (VGH) and a gate connected to a low level output terminal (VGL); a third thin film transistor (T3), having a source and a gate connected to the low level output terminal (VGL) and a drain connected to the gate of the first thin film transistor (T1); and a voltage difference maintaining unit connected between the gate of the first thin film transistor (T1) and the discharging terminal (O), wherein the voltage difference maintaining unit is used to make the voltage difference between the gate of the first thin film transistor (T1) and the discharging terminal (O) maintain unchanged, the discharging terminal (O) being used for connecting gate lines or data lines.
A device for attaching a junction box to a photovoltaic. The photovoltaic panel has a photovoltaic side and a non-photovoltaic side. The device includes a bracket with a first side attachable to the junction box and a second side attachable to the non-photovoltaic surface of the photovoltaic panel. A central fastener is attachable at one end to the bracket and a plate is adapted for connecting to the other end of the central fastener and for mounting on the photovoltaic side of the photovoltaic panel. One or more rotatable spacers, connectible to the central fastener, may be located on the non-photovoltaic side of the photovoltaic panel. One or more fixed spacers may be located on the non-photovoltaic side connectible to the bracket.
A meter socket for a meter box includes a set of meter jaws to receive a watt-hour meter, a bypass conductor member to selectively connect the meter jaws and provide a bypass for the watt-hour meter, and an activator for the bypass conductor member. The activator is configured to be activated by a user through a closed meter box to move the bypass conductor member from a metered position to a bypass position.
An active zone for a light emission system including a series of layers at least a portion of which consists of antimony semiconductors III-V. The layers are arranged to form at least one quantum well surrounded by barriers for generating a light emission. The active zone also includes at least one layer forming an intermediate barrier arranged relative to the quantum well to form at least two quantum sub-wells coupled with each other. A heterostructure including at least one optical confinement layer surrounding at least one active zone; a laser emission system including one heterostructure deposited onto a substrate; and the use of an active zone for emitting a light beam having a wavelength of 1.55 μm are disclosed.
Systems and methods for producing high-energy, pico-second laser pulses are disclosed. Systems and methods include using a modelocked laser source to drive an OPO (optical parametric oscillator) and an OPA (optical parametric amplifier) such that the OPA and OPO self-synchronize without the use of separate synchronization components and produce high-energy output without requiring pulse stretchers or pulse compressors, making the laser system viable for portability and vehicle mounting from both cost and durability standpoints.
A termination tool includes a frame having a ram cavity and a connector cavity configured to receive an electrical connector therein. A driving handle is coupled to the frame and is movable between an open position and a closed position. A primary ram assembly is received in the ram cavity and is coupled to the driving handle. The primary ram assembly is configured to engage the electrical connector. A secondary ram assembly is received in the ram cavity and coupled to the driving handle. The secondary ram assembly is configured to engage the electrical connector. The primary and secondary ram assemblies are actuated by the driving handle along different primary and secondary strokes as the driving handle is moved from the open position to the closed position.
A connector to be mounted on a board and connect a connection object to the board includes a housing into which the connection object is inserted through an insertion slot and multiple contacts each of which comes into contact with the connection object and the board. Each of the contacts includes a movable contact that comes into contact with a first surface of the connection object, a fixed contact that comes into contact with the board and includes fixing portions for fixing the fixed contact to the housing, and a connecting part that connects the movable contact and the fixed contact. Each of the fixing portions branches and projects from a signal transmission line provided between the connection object and the board. The movable contact is rotatable relative to the fixed contact.
An electronics module that includes a printed circuit board (PCB), a connector, a housing with a shroud, and an interposer. The PCB defines a plane of the PCB. The connector is coupled to the PCB to form a circuit board assembly (CBA). The connector includes a plurality of header pins oriented perpendicular to the plane. The housing is configured to receive the CBA. The housing is configured to define an opening in a wall of the housing proximate to the connector when the CBA is installed. The wall is characterized as perpendicular to the plane. The interposer is configured to couple to the housing. The interposer includes a plurality of mating pins oriented parallel to the plane. Each of the mating pins defines a forked end configured to make electrical contact with each of the header pins when the interposer is inserted into the opening.
An electrical connector for electrically connecting a CPU with a PCB includes a frame, a plurality of base units assembled onto the frame and a plurality of contacts retained in the base units. The base units extend in a longitudinal direction and are assembled side by side in a transverse direction substantially perpendicular to the longitudinal direction. Each of the base units includes an insulating housing and a shielding member embedded within the insulating housing. The shielding member includes a first portion extending in the longitudinal direction and multiple second portions extending in a direction intersecting with the longitudinal direction, the second portions together with the first portion define multiple chambers. The contacts are located in the chambers defined by the shielding member.
A terminal/fuse assembly is fitted in a cylindrical, metallic inner case. The terminal/fuse assembly disposes a terminal penetrating through a bottom wall, a fuse and a contact point disc that overlap inside a housing composed of a plastic cover plate and a fuse box. The fuse is provided with a fuse body at a tongue piece extending inward from a ring portion in a peripheral edge of an elastic conductive plate. A part of the ring portion is supported in the upward position from the terminal. The contact point disc in contact with the elastic conductive plate at the support portion presses the fuse body downward, and thereby the tongue piece makes contact with the terminal to be conductive from the contact point disc to the terminal.
A shielded electrical header assembly is provided. The header is configured to be coupled to a first connector connected to a shielded electrical cable and second connector. The header is also configured to be attached to an electrically conductive panel, such as an aluminum battery pack in a hybrid or electric vehicle. The header includes a conductive shield contact that connects the outer conductor of the shielded cable to the panel and a conductive outer connector body that is also connected to the panel and surrounds the terminals and the shield contact of the header, thus providing electromagnetic shielding to the terminals of the header and the connectors. The shield contact is formed of a sheet metal to provide a lower resistance connection between the outer conductor and the panel. A method of manufacturing such a header is also provided.
A half fitting prevention connector includes a cylindrical case, a connector body, a lever, and a release lever. The release lever has a lock hole. An electromagnetic coil has a plunger. The plunger is arranged so as to face a microswitch. The electromagnetic coil is excited by connection between the signal terminal of the connector body and a signal terminal of a mating connector, and thereby moving the plunger toward the microswitch. The release lever is rotatable so that the plunger can enter the lock hole to press the microswitch in a state that the connector body is completely fitted with the mating connector and the plunger cannot enter the lock hole in a state that the connector body is half fitted with the mating connector.
A releasable locking connector assembly includes a coupling nut rotatably coupled to a connector body; splines on the connector body or the coupling nut; and a lock ring having mating splines that is translatable with respect to the connector body and the coupling nut between engaged and disengaged positions. The mating splines engage the splines when the lock ring is in the engaged position to prevent rotation of the coupling nut, and the mating splines are spaced from the splines when the lock ring is in the disengaged position to permit rotation of the coupling nut. A moveable index ring is movable between a locked position, in which the lock ring is in the engaged position, and an unlocked position, in which the lock ring is in the disengaged position. A push ring sequentially moves the moveable index ring between the locked and unlocked positions.
A receptacle contact includes a resilient contact arm having at least one contact area for contacting a mating contact. A support arm is stamped and formed from an area of a wall of the receptacle contact. The support arm cooperates with the resilient contact arm to support the resilient contact arm. An overstress member is provided on the wall of the receptacle contact. The overstress member is formed to extend into the area of the wall from which the support arm was formed. The overstress member cooperates with the support arm to prevent the support arm from being moved beyond the overstress member and beyond the area of the wall from which the support arm was formed, thereby ensuring that the resilient contact arm and the support arm will provide sufficient normal force to maintain a mechanical and electrical engagement with a mating contact.
A microwave antenna comprises an antenna array comprising a plurality of antenna elements. An antenna element comprises a cover, a hollow waveguide formed within the cover for guiding microwave radiation at an operating frequency between a first open end portion and a second end portion arranged opposite the first end portion, a septum arranged centrally and along the longitudinal direction within the waveguide and separating said waveguide into two waveguide portions, a substrate arrangement arranged at the second end portion within the cover, said substrate arrangement comprising a ground plane and line structures arranged on both sides of and at a distance from said ground plane and a substrate integrated waveguide, a waveguide transition arranged between said hollow waveguide and said substrate integrated waveguide, an integrated circuit arranged within said cover and electrically contacted to said ground plane and said line structures, and terminals electrically contacted to said integrated circuit.
A lightweight multiband, high angle sandwich radome structure for millimeter wave frequencies includes a central core layer, a reinforced laminate skin adjacent each side of the central core, and outer matching layers on each of the reinforced laminates.
A radiating cell having two phase states suitable for a transmitter array able to transmit microwave frequency signals, the cell comprising a first antenna and a second antenna arranged on either side of an assembly comprising two substrate layers separated by a ground plane, the second antenna comprising a conducting element able to radiate, the cell comprising comprises at least two switching means, said means each comprising an on state and an off state between two ports, one of said ports being connected to the second radiating element, said switching means being controlled in opposition. The radiating cell applies notably to the implementation of transmitter arrays employing several configurable cells to control the radiation pattern.
An electronic circuit according to an embodiment includes a power supply line having a first EBG pattern, the first EBG pattern including a plurality of first linear parts and a first slit, each of the first linear parts extending along a direction in which the power supply line extends and surrounded by the first slit except one end of the first linear part.
Disclosed is a battery pack assembly including an apparatus for detecting water accumulation inside an installation region in which a battery pack is installed. The battery pack assembly includes a watertight case installed on a bottom surface of the water accumulation detecting apparatus and assembled with the battery pack therein. The water accumulation detecting apparatus includes a body including a water inlet opening through which water accumulated in the installation region flows in. A floating member floated by buoyancy of the water flowing in the body. A switch unit is configured to generate a current when the floating member increases up to or beyond a predetermined height. An elastic member is configured to connect the floating member and the bottom surface of the body so that the floating member is positioned at a predetermined position when buoyancy of the water does not affect to the floating member.
A lithium-air cell is provided which incorporates a cathode comprised of a lithium aluminum germanium phosphate (LAGP) glass-ceramic material for facilitating an oxygen reduction reaction. The lithium-air cell further includes a lithium anode and a solid electrolyte which may be in the form of a membrane comprising LAGP glass-ceramic and/or polymer ceramic materials.
Provided is a battery which has less tendency to experience delamination or loss of short circuit prevention layer and/or active material layer during manufacture and use.A battery comprising a laminated electrode assembly in which a positive electrode, a negative electrode, and a separator are laminated together; wherein an alumina-containing layer containing γ-alumina particles is formed on at least one species selected from among the group consisting of the positive electrode, the negative electrode, and the separator. The fact that alumina-containing layer(s) is or are made to contain γ-alumina particles makes it possible to obtain high bond strength between alumina-containing layer(s) and electrode(s) comprising metal(s), current collector(s) and/or active material(s) making up electrode(s), and/or separator(s).
A metal-air battery includes a canister and a spiral wound electrode assembly disposed within the canister. The electrode assembly includes an ion permeable and substantially gas impermeable anode, a catalytic cathode, and a dielectric separator disposed between the anode and cathode.
A composition, compound, device, and uses thereof according to AxMn(y-k)Mjk[Mnm(CN)(6-p)(NC)p]z.(Vac)(1-z).nH2O (wherein Vac is a Mn(CN)(6-p)(NC)p vacancy); wherein: A=Na, K, Li; and M=Mg, Al, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Pd, Ag, Cd, In, Sn, Pb; and wherein 0
In one aspect, a lithium secondary battery that includes a positive electrode including a high-voltage positive active material; and a separator is provided. The high voltage positive active material can have a discharge plateau voltage of greater than or equal to about 4.6V with respect to a Li counter electrode, and the separator can include a porous substrate having a porosity of about 40% to about 60%.
A secondary battery including an electrode assembly including a first electrode plate, a second electrode plate, and a separator disposed between the first electrode plate and the second electrode plate; a case accommodating the electrode assembly; a cap plate sealing the case; a first electrode terminal electrically connected to the first electrode plate and penetrating through the cap plate; and a safety valve coupled to the first electrode terminal, the safety valve including a bimetal element.
A battery assembly for a medical device includes an elongate cathode, an elongate anode, an electrolyte, and an elongate housing assembly encapsulating the cathode, the anode, and the electrolyte. The battery assembly also includes a first electrode exposed from and electrically insulated from the housing assembly. One of the anode and the cathode is electrically coupled to the first electrode, and the other of the anode and the cathode is electrically coupled to the housing assembly. Respective axes of the cathode and the anode are substantially parallel to an axis of the housing assembly, and the cathode and anode each include a flat portion that face each other.
Disclosed is a battery container, which may stably support a plurality of battery modules received in the battery container and facilitate the stacking and separation of the battery modules, a sub-battery container used therein, and a battery pack using the same. The sub-battery container, includes two side plates standing to face each other at both side walls of the sub-battery container; and horizontal support bars disposed in parallel and so that both longitudinal ends of the horizontal support bars are coupled to the opposing corners of the two side plates, wherein the horizontal support bars include an upper horizontal support bar and a lower horizontal support bar, and the lower horizontal support bar and the upper horizontal support bar have uneven portions capable of coupling to each other at the bottom of the lower horizontal support bar and at the top of the upper horizontal support bar.
A fuel cell system includes: a fuel cell; a secondary cell that receives and stores surplus power by which output of the fuel cell is greater than power demanded of the system if the output is so, and that compensates for shortfall by which the output of the fuel cell is less than the power demanded of the system if the output is so; a voltage measurement portion that measures voltage of the fuel cell; a current measurement portion that measures current of the fuel cell; and a control portion that performs a control such that the voltage of the fuel cell does not exceed or equal a pre-set high-potential avoidance voltage. If a current-voltage characteristic of the fuel cell declines by at least a pre-determined amount from an early-period level, the control portion re-sets the high-potential avoidance voltage to a value that is smaller than an early-period set value.
A fuel cell battery comprises stacked cells, comprising a superposition of plates, called bipolar plates, between which assemblies comprising both an electrolytic membrane and an electrode on each side of the membrane are placed. The plates are provided, on their periphery, with apertures serving to deliver reactive gases, and with apertures serving to evacuate reaction products, the apertures of adjacent plates being aligned in order to form supply or evacuation manifolds that pass right through the stack of cells. The apertures of the manifolds are encircled by individual ring joints that are separated from one another and separate from the bipolar plates, certain joints forming sealing joints between the aperture and a cell, and other joints forming injectors for a fluid to be delivered to a cell or to be evacuated from a cell.
In a fuel cell having a separator in which main cooling water channels are formed, a separator for another unit cell stacked on the cooling water channel formation surface side of the separator, and a second sealing member interposed between the separators and to seal a cooling medium flowing in the main cooling water channels, an outer peripheral rib for regulating the flow of cooling water to the second sealing member side is provided inside relative to the second sealing member in the separator surface direction in order to improve the efficiency of cooling with the cooling medium.
Embodiments of the present invention include an organic light emitting display device and a method for fabricating the same. The organic light emitting display device may include a thin film transistor on a base substrate and including a semiconductor layer, a gate electrode, a source electrode, and a drain electrode; and an organic light emitting diode, which includes a first electrode connected to the drain electrode, an organic layer on the first electrode, and a second electrode on the organic layer. The drain electrode may have a larger area than the first electrode.
An organic electroluminescence display has a bottom emission structure in which a white organic electroluminescence element adapted to emit white light is formed, pixel by pixel, on a substrate, and in which light emitted by the white organic electroluminescence element is extracted from a rear side of the substrate. The organic electroluminescence display includes: a color filter used in combination with the white organic electroluminescence element to extract light of different colors; and metal interconnects formed, pixel by pixel, in such a manner as to surround a light-emitting section of the white organic electroluminescence element and the color filter.
An organic electroluminescence device includes: a first substrate, first electrode, organic compound layer and second electrode in this sequence. A first insulative portion and a second auxiliary electrode are formed between the first electrode and the second electrode in this sequence from the first electrode. The second electrode is in electric continuity with the second auxiliary electrode. The first electrode and the organic compound layer are insulated from the second auxiliary electrode by the first insulative portion.
An organic electroluminescence device includes: a cathode; an anode; and an organic thin-film layer disposed between the cathode and the anode, the organic thin-film layer having one or more layers including an emitting layer, in which the emitting layer includes a first material represented by the following formula (1) and a second material in a form of a fluorescent dopant material.
A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.
A donor substrate includes a base layer, a light-to-heat conversion layer disposed on the base layer, a buffer layer disposed on the light-to-heat conversion layer and a transfer layer disposed on the buffer layer. The buffer layer includes a cross-linked polymer, a spacer polymer bonded to the cross-linked polymer, and a perfluoroalkyl alcohol group bonded to the spacer polymer.
Provided are an apparatus for manufacturing an OLED display and a method of manufacturing OLED display. According to another aspect of the present invention, there is provided the method of manufacturing an OLED display which includes placing a substrate having rows and columns of pixels through on a stage, ejecting organic light-emitting ink to the pixels through on the substrate by using a print head placed above the stage, and sequentially covering pixels through coated with the organic light-emitting ink with a cover plate placed above the stage.
A manufacturing method includes forming a laminated body on a substrate. A mask layer is formed on the laminated body, and then a portion of the mask layer is removed to form an opening. Then, using the mask layer as a template, a first portion of the laminated body is removed to expose a portion of the substrate beneath the laminated body. The substrate is processed to alter the ratio between the size of mask opening and the removed first portion. A variable resistance layer is then deposited on exposed portions of the mask layer, the laminated body, and the substrate. Then the variable resistance layer is processed to remove at least a portion covering the substrate to permit contact with the underlying substrate. A second electrode layer is deposited to fill the removed portions of the laminated body.
According to example embodiments, a resistance switching material element includes a resistance switching material layer between a first electrode and a second electrode, and a self-rectifying layer provided between the resistance switching material layer and one of the first and second electrodes. The second electrode may be on the first electrode.
A memory element can include a first electrode; a second electrode; and a memory material programmable between different resistance states, the memory material disposed between the first electrode and the second electrode and comprising a solid electrolyte with at least one modifier element formed therein; wherein the first electrode is an anode electrode that includes an anode element that is ion conductible in the solid electrolyte, the anode element being different than the modifier element.
A semiconductor light emitting device includes a substrate structure; a semiconductor layer disposed on the substrate structure, the semiconductor layer including a light emitting layer; and an electrode formed on a surface of the semiconductor layer, wherein a relatively coarse uneven portion and a relatively fine uneven portion are formed by a frost process on a surface of the semiconductor layer at a side of the electrode.
A semiconductor light emitting device and package containing the same include: a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. A light extraction layer is disposed on the light emitting structure and includes a light-transmissive thin film layer having light transmittance, a nano-rod layer including nano-rods disposed on the light-transmissive thin film layer, and a nano-wire layer including nano-wires disposed on the nano-rod layer.
A semiconductor light emitting element suppressing non-uniformity in light emission on a light emitting surface is provided. An n-type semiconductor layer, a light emitting layer and a p-type semiconductor layer are laminated in order, and a translucent electrode film is laminated on the p-type semiconductor layer and a p-electrode is provided on the translucent electrode film. On the other hand, an n-electrode is provided on a semiconductor layer exposure surface that exposes the n-type semiconductor layer. The p-electrode includes a connecting portion having a circular planar shape and an extending portion that extends like a long and slender strip from the connecting portion to encircle and face the n-electrode. Holes in the translucent electrode film are provided such that the density thereof is decreased along with a move from the n-electrode side toward the p-electrode side.
Provided are a high-quality non-polar/semi-polar semiconductor device with reduced defect density and improved internal quantum efficiency and light extraction efficiency, and a manufacturing method thereof. The manufacturing method is a method for manufacturing a semiconductor device, in which a template layer and a semiconductor device structure are formed on a sapphire substrate having a crystal plane for growing a non-polar or semi-polar nitride semiconductor layer. The sapphire substrate is etched to form uneven patterns, and the template layer including a nitride semiconductor layer and a GaN layer is formed on the sapphire substrate in which the uneven patterns are formed.
A method for manufacturing an image sensor, including the successive steps of: forming columns of a semiconductor material; forming one or several pixels at a first end of each of the columns; and deforming the structure so that the second ends of each of the columns come closer to each other or draw away from each other to form a surface in the shape of a polyhedral cap.
A method for manufacturing an image sensor, including the steps of: forming elementary structures of an image sensor on the first surface of a semiconductor substrate; installing a layer on the first surface; defining trenches in the layer, the trenches forming a pattern in the layer; and installing, on a hollow curved substrate, the obtained device on the free surface side of the layer, the pattern being selected according to the shape of the support surface.
On the front side of an n-type semiconductor substrate, p-type regions are two-dimensionally arranged in an array. A high-concentration n-type region and a p-type region are disposed between the p-type regions adjacent each other. The high-concentration n-type region is formed by diffusing an n-type impurity from the front side of the substrate so as to surround the p-type region as seen from the front side. The p-type region is formed by diffusing a p-type impurity from the front side of the substrate so as to surround the p-type region and high-concentration n-type region as seen from the front side. Formed on the front side of the n-type semiconductor substrate are an electrode electrically connected to the p-type region and an electrode electrically connected to the high-concentration n-type region and the p-type region.
A photovoltaic device and method include a doped germanium-containing substrate, an emitter contact coupled to the substrate on a first side and a back contact coupled to the substrate on a side opposite the first side. The emitter includes at least one doped layer of an opposite conductivity type as that of the substrate and the back contact includes at least one doped layer of the same conductivity type as that of the substrate. The at least one doped layer of the emitter contact or the at least one doped layer of the back contact is in direct contact with the substrate, and the at least one doped layer of the emitter contact or the back contact includes an n-type material having an electron affinity smaller than that of the substrate, or a p-type material having a hole affinity larger than that of the substrate.
The present disclosure involves an illumination apparatus. The illumination apparatus includes an n-doped semiconductor compound layer, a p-doped semiconductor compound layer spaced apart from the n-doped semiconductor compound layer, and a multiple-quantum-well (MQW) disposed between the first semiconductor compound layer and the second semiconductor compound layer. The MQW includes a plurality of alternating first and second layers. The first layers of the MQW have substantially uniform thicknesses. The second layers have graded thicknesses with respect to distances from the p-doped semiconductor compound layer. A subset of the second layers located most adjacent to the p-doped semiconductor compound layer is doped with a p-type dopant. The doped second layers have graded doping concentration levels that vary with respect to distances from the p-doped semiconductor layer.
A multi-layered film, a backsheet for photovoltaic modules, a method of manufacturing the same, and a photovoltaic module are provided. The multi-layered film can be configured so that a resin layer including a fluorine-based polymer and an oxazoline group-containing polymer is formed on a substrate. As a result, the resin layer including the fluorine-based polymer can have excellent durability and weather resistance, and show high interfacial adhesive strength to the substrate. During the preparation of the multi-layered film, a drying process can also be performed at a relatively low temperature, so that the manufacturing costs can be reduced and the quality of the product can be prevented from being deteriorated by thermal deformation or thermal shock. The multi-layered film may be effectively used as the backsheet in a variety of photovoltaic modules.
To provide a nitride semiconductor light-emitting element in which a buffer layer provided between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer has a first buffer layer expressed by an equation of Inx1Ga1-x1N (0
In one aspect, the present disclosure relates to a device including a silicon substrate, wherein at least a portion of the substrate surface can be a silicon nanowire array; and a layer of alumina covering the silicon nanowire array. In some embodiments, the device can be a solar cell. In some embodiments, the device can be a p-n junction. In some embodiments, the p-n junction can be located below the bottom surface the nanowire array.
A semiconductor-to-metal interface with ohmic contact is provided. The interface includes a semiconductor material, a metal layer, and a silicon carbide layer disposed between the semiconductor material and the metal layer. The silicon carbide layer causes the formation of a semiconductor-to-metal interface with ohmic contact. Applications include forming a photovoltaic device with ohmic contact by disposing a layer of silicon carbide over the photovoltaic material before depositing a bottom electrode layer of metal to complete the bottom of a photovoltaic cell.
On a substrate formed of a first semiconductor material, a first overlying layer formed of a second semiconductor material is deposited. A second overlying layer formed of a third semiconductor material is deposited over the first overlying layer. The first and second overlying layers are patterned to define fins, wherein each fin includes a first region formed of the third material over a second region formed of the second material. An oxide material fills the space between the fins. A thermal oxidation is then performed to convert the second region to a material insulating the first region formed of the third material from the substrate. As an optional step, the second region formed of the second material is horizontally thinned before the oxide material is deposited and the thermal oxidation is performed. Once the fins are formed and insulated from the substrate, conventional FinFET fabrication is performed.
A layer of microscopic, 3-terminal transistors is printed over a first conductor layer so that bottom electrodes of the transistors electrically contact the first conductor layer. A first dielectric layer overlies the first conductor layer, and a second conductor layer over the first dielectric layer contacts intermediate electrodes on the transistors between the bottom electrodes and top electrodes. A second dielectric layer overlies the second conductor layer, and a third conductor layer over the second dielectric layer contacts the top electrodes. The devices are thus electrically connected in parallel by a combination of the first conductor layer, the second conductor layer, and the third conductor layer. Separate groups of the devices may be interconnected to form more complex circuits. The resulting circuit may be a very thin flex-circuit.
A semiconductor device includes a trench formed in a substrate, a first stacked structure formed in the trench and including a plurality of first material layers and a plurality of second material layers stacked alternately on top of each other, and a transistor located on the substrate at a height corresponding to a top surface of the first stacked structure.
According to one embodiment, the semiconductor element includes a semi-insulating substrate which has a first first-conductivity-type layer. The semiconductor element includes a first semiconductor layer. The first semiconductor layer contains non-doped AlXGa1-XN (0≦X<1). The semiconductor element includes a second semiconductor layer. The second semiconductor layer contains non-doped or second-conductivity-type AlYGa1-YN (0
An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.
A semiconductor device includes an active region having a channel region and at least a wing region adjoining the channel region under the gate dielectric layer. The at least one wing region may be two symmetrical wing regions across the channel region.
The invention provides an LDMOS transistor of which the time-dependent degrading of the performance due to the trapping of hot electrons in the gate insulation film is decreased. A body layer is disposed in a surface portion of an N− type semiconductor layer. A source layer including an N− type layer is disposed in a surface portion of the body layer. An N− type drift layer is formed in a surface portion of the N− type semiconductor layer. This drift layer includes a first region having a first N type impurity concentration peak region and a second region having a second N type impurity concentration peak region that is positioned deeper than the first N type impurity concentration peak region, the second region adjoining this first region. An N+ type drain layer is formed in a surface portion of the second region.
A nanowire sensor having a nanowire in a network structure includes: source and drain electrodes formed over a substrate; a nanowire formed between the source and drain electrodes and having a network structure in which patterns of intersections are repeated; and a detection material fixed to the nanowire and selectively reacting with a target material introduced from outside.
A method of producing a semiconductor device includes the step of forming a through hole in a semiconductor substrate. The semiconductor substrate has a first main surface and a second main surface opposite to the first main surface, and includes a first conductive layer formed on the second main surface. The through hole penetrates through the semiconductor substrate from the first main surface to the second main surface, so that the first conductive layer formed on the second main surface is exposed at a bottom portion of the through hole. The method further includes the steps of forming a seed layer on a side surface of the through hole from the bottom portion of the through hole to the first main surface; forming a second conductive layer on the seed layer through a first plating process; and forming a third conductive layer selectively on the second conductive layer.
A plurality of elongated, substantially parallel mandrels are formed on a first work surface, the mandrels being spaced apart a distance in the range between the resolution limit and twice the resolution limit. Spacers are formed on the work surface extending from sidewalls of the mandrels. First portions of the work surface are exposed through gaps in the spacers near the midpoint between a majority of adjacent mandrels; but at least one pair of adjacent mandrels is close enough together that the spacers extend continuously between the adjacent mandrels. The mandrels are then removed, thereby exposing second portions of the work surface. The exposed first and second portions are etched down to a second work surface; and the exposed portions of the second work surface are etched to form trenches in that surface. A wire routing is formed by filling the trenches with a metal such as copper.
A non-volatile memory device includes first and second vertical channel layers generally protruding upwardly from a semiconductor substrate substantially in parallel; a first gate group configured to include a plurality of memory cell gates which are stacked substantially along the first vertical channel layer and are isolated from each other with an interlayer insulating layer interposed substantially between the memory cell gates; a second gate group configured to include a plurality of memory cell gates which are stacked substantially along the second vertical channel layer and are isolated from each other with the interlayer insulating layer interposed substantially between the memory cell gates; a pipe channel layer configured to couple the first and the second vertical channel layers; and a channel layer extension part generally extended from the pipe channel layer to the semiconductor substrate and configured to couple the pipe channel layer and the semiconductor substrate.
A thermal processing apparatus including: a cylindrical processing vessel; a support unit to be loaded into and unloaded from the vessel; and a heating furnace surrounding an outer periphery of the vessel, with a cooling space therebetween. The furnace is connected to a cooling-gas introduction unit, including a gas introduction passage to which a blowing fan is connected, for introducing a cooling gas into the cooling space during a temperature lowering operation after a thermal process. The furnace is connected to a cooling-gas discharge unit, including a heat exchanger, a suction fan, and a gas discharge passage, for discharging the cooling gas of a raised temperature from the cooling space. Connected to the gas discharge passage at a position upstream of the heat exchanger is a temperature-lowering gas introduction unit for introducing a temperature-lowering gas to the cooling gas of a raised temperature so as to lower its temperature.
Disclosed herein are various methods of forming replacement gate structures with a recessed channel region. In one example, the method includes forming a sacrificial gate structure above a semiconducting substrate, removing the sacrificial gate structure to thereby define an initial gate opening having sidewalls and to expose a surface of the substrate and performing an etching process on the exposed surface of the substrate to define a recessed channel in the substrate. The method includes the additional steps of forming a sidewall spacer within the initial gate opening on the sidewalls of the initial gate opening to thereby define a final gate opening and forming a replacement gate structure in the final gate opening.
Embodiments include high electron mobility transistors (HEMT). In embodiments, a gate electrode is spaced apart by different distances from a source and drain semiconductor region to provide high breakdown voltage and low on-state resistance. In embodiments, self-alignment techniques are applied to form a dielectric liner in trenches and over an intervening mandrel to independently define a gate length, gate-source length, and gate-drain length with a single masking operation. In embodiments, III-N HEMTs include fluorine doped semiconductor barrier layers for threshold voltage tuning and/or enhancement mode operation.
Metal gate high-k capacitor structures with lithography patterning are used to extract gate work function using a combinatorial workflow. Oxide terracing, together with high productivity combinatorial process flow for metal deposition can provide optimum high-k gate dielectric and metal gate solutions for high performance logic transistors. Surface treatments can be inserted at three possible steps during the formation of the MOSCAP structures. The high productivity combinatorial technique can provide an evaluation of effective work function for given high-k dielectric metal gate stacks for PMOS and NMOS transistors, which is critical in identifying and selecting the right materials.
A method of manufacturing a semiconductor device, includes providing a lead frame including a frame portion, including a through hole penetrating the lead frame, a device forming portion surrounded by the frame portion in plan view, including a die pad, and a semiconductor chip mounted on the die pad; after the providing step, sealing the semiconductor chip with sealing resin by supplying the sealing resin to the device forming portion via a first region of the frame portion in which the through hole is formed in plan view, thereby forming a sealing body sealing the device forming portion and the first region of the frame portion; and after the sealing step, removing a first part of the sealing body located at the first region of the frame portion from the lead frame by inserting a pin into the through hole.
A semiconductor package includes a first semiconductor chip including a target circuit surface and a side surface, a first sealing insulating layer including a first surface positioned toward the target circuit surface and configured to seal the target circuit surface and the side surface, at least one wiring layer formed on the first surface of the first sealing insulating layer, at least one insulating layer formed on the at least one wiring layer, a second semiconductor chip mounted on the at least one insulating layer, and a second sealing insulating layer formed on the at least one insulating layer and configured to seal the second semiconductor chip.
A semiconductor memory device can include a first conductive line crossing over a field isolation region and crossing over an active region of the device, where the first conductive line can include a first conductive pattern being doped, a second conductive pattern, and a metal-silicon-nitride pattern between the first and second conductive patterns and can be configured to provide a contact at a lower boundary of the metal-silicon-nitride pattern with the first conductive pattern and configured to provide a diffusion barrier at an upper boundary of the metal-silicon-nitride pattern with the second conductive pattern.
Provided are a semiconductor device including an oscillator and a manufacturing method thereof, in which cost is low and design flexibility is high. The semiconductor device includes a wiring structure region and an oscillator region. The semiconductor device also includes, in the oscillator region, a metal resistive element as the same layer as a conducting film over uppermost metal wiring in the wiring structure region.
A method of forming a semiconductor device is disclosed. The method includes: forming a dielectric region on a substrate; annealing the dielectric region in an environment including ammonia (NH3); monitoring a nitrogen peak of at least one of the substrate and the dielectric region during the annealing; and adjusting a parameter of the environment based on the monitoring of the nitrogen peak.
A stacked via structure for reducing vertical stiffness includes: a plurality of stacked vias, each via disposed on a disc-like structure. The disc-like structure includes a platted through hole landing supporting the plurality of stacked vias. The platted through hole landing includes an etched pattern.
A semiconductor package includes a post carrier having a base plate and plurality of conductive posts. A photosensitive encapsulant is deposited over the base plate of the post carrier and around the conductive posts. The photosensitive encapsulant is etched to expose a portion of the base plate of the post carrier. A semiconductor die is mounted to the base plate of the post carrier within the etched portions of the photosensitive encapsulant. A second encapsulant is deposited over the semiconductor die. A first circuit build-up layer is formed over the second encapsulant. The first circuit build-up layer is electrically connected to the conductive posts. The base plate of the post carrier is removed and a second circuit build-up layer is formed over the semiconductor die and the photosensitive encapsulant opposite the first circuit build-up layer. The second circuit build-up layer is electrically connected to the conductive posts.
3D integrated circuit packages with through-mold first level interconnects and methods to form such packages are described. For example, a semiconductor package includes a substrate. A bottom semiconductor die has an active side with a surface area. The bottom semiconductor die is coupled to the substrate with the active side distal from the substrate. A top semiconductor die has an active side with a surface area larger than the surface area of the bottom semiconductor die. The top semiconductor die is coupled to the substrate with the active side proximate to the substrate. The active side of the bottom semiconductor die is facing and conductively coupled to the active side of the top semiconductor die. The top semiconductor die is conductively coupled to the substrate by first level interconnects that bypass the bottom semiconductor die.
A low leakage current switch device (110) is provided which includes a GaN-on-Si substrate (11-13) covered by a passivation surface layer (43) in which a T-gate electrode with sidewall extensions (48) is formed and coated with a conformal passivation layer (49) so that the T-gate electrode sidewall extensions are spaced apart from the underlying passivation surface layer (43) by the conformal passivation layer (49).
One or more techniques or systems for controlling a profile of a surface of a semiconductor region are provided herein. In some embodiments, an etching to deposition (E/D) ratio is set to be less than one to form the region within the semiconductor. For example, when the E/D ratio is less than one, an etching rate is less than a deposition rate of the E/D ratio, thus ‘growing’ the region. In some embodiments, the E/D ratio is subsequently set to be greater than one. For example, when the E/D ratio is greater than one, the etching rate is greater than the deposition rate of the E/D ratio, thus ‘etching’ the region. In this manner, a smooth surface profile is provided for the region, at least because setting the E/D ratio to be greater than one enables etch back of at least a portion of the grown region.
An organic light-emitting display device including a thin film transistor (TFT) on a substrate; an organic light emitting diode (OLED) electrically connected to the TFT, the OLED including a pixel electrode, an organic layer, and an opposite electrode; a pixel defining layer (PDL) on the pixel electrode, the PDL including an opening that exposes at least one portion of the pixel electrode; and a light scattering layer between the pixel electrode and the organic layer.
An array substrate and a manufacturing method thereof, and an OLED display device are provided. The array substrate comprises: sub-pixel units defined by gate lines and data lines that cross with each other on a substrate, each of the sub-pixel units comprising a first TFT, a second TFT and a pixel electrode, a gate electrode of the first TFT being connected to the gate line, a source electrode of the first TFT being connected to the data line, and a drain electrode of the second TFT being connected to the pixel electrode. The source electrode and a drain electrode of the first TFT are formed on the same layer as a gate electrode of the second TFT, and the drain electrode of the first TFT is directly connected to the gate electrode of the second TFT.
Methods for forming a semiconductor device including fine patterns are provided. The method may include forming a mask layer including first holes spaced apart from each other in a first direction and a second direction. The method may also include forming local mask patterns on the mask layer and forming a sacrificial layer on the mask layer filling the first holes and surrounding the local mask patterns. The local mask patterns may be offset from the first holes in the first direction and the second direction. The method may further include removing the local mask patterns to form openings in the sacrificial layer exposing the mask layer and etching the mask layer through the opening to form second holes in the mask layer.
Methods of forming arrays of small, densely spaced holes or pillars for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer.
A two piece ceramic showerhead includes upper and lower plates which deliver process gas to an inductively coupled plasma processing chamber. The upper plate overlies the lower plate and includes radially extending gas passages which extend inwardly from an outer periphery of the upper plate, axially extending gas passages in fluid communication with the radially extending gas passages and an annular recess forming a plenum between the upper and lower plates. The lower plate includes axially extending gas holes in fluid communication with the plenum. The two piece ceramic showerhead forms a dielectric window of the chamber through which radiofrequency energy generated by an antenna is coupled into the chamber. The gas delivery system is operable to supply an etching gas and a deposition gas into the processing chamber such that the etching gas in the plenum can be replaced with the deposition gas.
A high dielectric constant (high-k) gate dielectric for a field effect transistor (FET) and a high-k tunnel dielectric for a non-volatile random access memory (NVRAM) device are simultaneously formed on a semiconductor substrate. A stack of at least one conductive material layer, a control gate dielectric layer, and a disposable material layer is subsequently deposited and lithographically patterned. A planarization dielectric layer is deposited and patterned, and disposable material portions are removed. A remaining portion of the control gate dielectric layer is preserved in the NVRAM device region, but is removed in the FET region. A conductive material is deposited in gate cavities to provide a control gate for the NVRAM device and a gate portion for the FET. Alternately, the control gate dielectric layer may replaced with a high-k control gate dielectric in the NVRAM device region.
A semiconductor device includes an n-conductive type semiconductor substrate having a main side and a rear side, a p-conductive type layer arranged over the main side of the substrate, a main side n-conductive type region arranged in the p-conductive type layer, a rear side n-conductive type layer arranged over the rear side of the substrate, a first trench which reaches the substrate and penetrates the main side n-conductive type region and the p-conductive type layer, a second trench which reaches an inside of the p-conductive type layer, a second electrode layer, which is embedded in the second trench and connected to the p-conductive type layer. Hereby, the semiconductor device, in which the recovery property of a diode cell can be improved without damaging the property of a MOS transistor cell or an IGBT cell and the surge withstand property does not deteriorate, can be obtained.
According to one embodiment, a laser annealing method includes: detecting an intensity distribution of a laser light formed as a line beam by a line beam optical system; dividing width in short axis direction of the line beam in the detected intensity distribution by number of times of the irradiation per one site and partitioning the width; and calculating increment of crystal grain size of a non-crystalline thin film for energy density corresponding to wave height of the partitioned intensity distribution, and summing the increments by number of times of pulse irradiation, when energy density of the laser light is larger than a threshold, the crystal grain size of the non-crystalline thin film taking a downward turn at the threshold, the increment summed before the energy density exceeds the threshold being set to zero.
The present invention provides an LED light with electrostatic protection and a backlight module using the LED light. The LED light includes a carrying frame, a light-emitting die mounted in the carrying frame, and an encapsulation resin encapsulating the light-emitting die in the carrying frame. The carrying frame includes a frame body, first and second copper foils mounted in the frame body, and a first conductive metal plate mounted in the frame body. The first and second copper foils are respectively and electrically connected by two gold wires to the light-emitting die. The first conductive metal plate is arranged to space from the first or second copper foil, whereby an electrical capacitor is formed between the first or second copper foil and the first conductive metal plate. The present invention effectively prevents burnout of gold wires caused by static electricity.
Reduced-graphene oxide circuits are directly patterned on glass substrate using an industrially available excimer laser system. A threshold of laser energy density is observed, which provide a clear differentiation on whether the graphene oxide is reduced. The highest conductivity measured is 7.142×103 S/m. The reduced-graphene oxide displays a transmittance greater than 80% across the entire range from 450 to 800 nm. The outstanding electrical, optical, and morphological properties have enabled reduced-graphene oxide to display promising applications, and this nano-processing method makes reduced-graphene oxide even more attractive when used as a transparent electrode for touch screens or in other applications.
A structure having: a substrate and a diamond layer on the substrate having diamond nanoparticles. The diamond nanoparticles are formed by colliding diamond particles with the substrate. A method of: directing an aerosol of submicron diamond particles toward a substrate, and forming on the substrate a diamond layer of diamond nanoparticles formed by the diamond particles colliding with the substrate.
To improve color reproduction areas in a display device having light-emitting elements. A display region has a plurality of picture elements. Each picture element includes: first and second pixels each including a light-emitting element which has a chromaticity whose x-coordinate in a CIE-XY chromaticity diagram is 0.50 or more; third and fourth pixels each including a light-emitting element which has a chromaticity whose y-coordinate in the diagram is 0.55 or more; and fifth and sixth pixels each including a light-emitting element which has a chromaticity whose x-coordinate and y-coordinate in the diagram are 0.20 or less and 0.25 or less, respectively. The light-emitting elements in the first and second pixels have different emission spectrums from each other; the light-emitting elements in the third and fourth pixels have different emission spectrums from each other; and the light-emitting elements in the fifth and sixth pixels have different emission spectrums from each other.
A solid-state image sensor includes a dispersing element array which is arranged to face a photosensitive cell array and which includes a plurality of high-refractive-index transparent portions, a low-refractive-index transparent layer that fills a gap between the high-refractive-index transparent portions, and pairs of dispersing elements arranged to face multiple unit blocks of the photosensitive cell array. Each pair of dispersing elements is comprised of: a first dispersing element which includes one of the high-refractive-index transparent portions and which splits incoming light into two light rays representing first and second color components, respectively; and a second dispersing element which includes another one of the high-refractive-index transparent portions and which splits the incoming light into two light rays representing third and fourth color components, respectively.
This solid-state image sensor includes an array of photosensitive cells and an array of dispersive elements. The photosensitive cell array is comprised of a plurality of unit blocks 40, each including four photosensitive cells 2a, 2b, 2c and 2d. An optical filter 11a is arranged to cover those photosensitive cells 2a through 2d. A portion of the optical filter 11a that covers the photosensitive cells 2a and 2b is located closer to the imaging area than another portion thereof that covers the photosensitive cells 2c and 2d.
An image sensor includes a pixel array and a calibration circuit. The pixel array includes a plurality of pixels each of which includes a photoelectric conversion device configured to absorb incident light and generate a photocharge, a transfer transistor configured to transfer the photocharge from the photoelectric conversion device to a floating diffusion node, and a reset transistor configured to reset the floating diffusion node. The calibration circuit is connected to the reset transistor of each pixel, and is configured to apply a different voltage to each pixel and adjust an amount of photocharge generated by the photoelectric conversion device in each pixel.
A semiconductor device is assembled from a rectangular substrate sheet. The substrate sheet has die mounting pads accessible from a first side and package mounting pads accessible from an opposite side. Corner regions of the substrate sheet have receding edges. A semiconductor die is attached to the substrate sheet such that electrodes or bonding pads of the die are mounted to respective die mounting pads of the substrate sheet. An encapsulating material covers the semiconductor die and the first side of the substrate sheet. Corner covering sections of the encapsulating material further cover the receding edges of the corner regions.
In a conventional analog buffer circuit composed of polycrystalline semiconductor TFTs, a variation in the output is large. Thus, a measure such as to provide a correction circuit has been taken. However, there has been such a problem that a circuit and driver operation are complicated. Therefore, a gate length and a gate width of a TFT composing an analog buffer circuit is set to be larger. Also, a multi-gate structure is adopted thereto. In addition, the arrangement of channel regions is devised. Thus, the analog buffer circuit having a small variation is obtained without using a correction circuit, and a semiconductor device having a small variation can be provided.
The invention relates to an integrated circuit comprising a semi-conducting substrate and first and second cells. Each cell comprises first and second transistors of nMOS and pMOS type including first and second gate stacks including a gate metal. There are first and second ground planes under the first and second transistors and an oxide layer extending between the transistors and the ground planes. The gate metals of the nMOS and of a pMOS exhibit a first work function and the gate metal of the other pMOS exhibiting a second work function greater than the first work function. The difference between the work functions is between 55 and 85 meV and the first work function Wf1 satisfies the relation Wfmg−0.04−0.005*Xge
An apparatus for inspecting an integrated circuit is an apparatus for inspecting an integrated circuit having a semiconductor substrate and a circuit portion formed on a front face a side of the semiconductor substrate. The apparatus comprises a light generation unit for generating light L for irradiating the integrated circuit, a wavelength width adjustment unit, for adjusting the wavelength width of the light irradiating the integrated circuit, an irradiation position adjustment unit for adjusting the irradiation position of the light irradiating the integrated circuit, and a light detection unit for detecting the light from the integrated circuit when the light from the light generation unit irradiates the circuit portion through a rear face of the semiconductor substrate.
The following layers are deposited above the upper surface of a base substrate in this order with a lattice relaxation layer therebetween: a lower barrier layer made of AlxGa1-xN (0
A semiconductor device using a high-k dielectric film is provided. The semiconductor device comprises a first gate insulating layer on a substrate and a first barrier layer on the first gate insulating layer, the first barrier layer having a first thickness. A first work function control layer is on the first barrier layer. A second barrier layer is present on the first work function control layer, the second barrier layer having a second thickness that is less than the first thickness.
Embodiments include a semiconductor device comprising: a substrate; a first transistor formed on the substrate; and a second transistor formed on the substrate, wherein a common region of the semiconductor device forms (i) a drain region of the first transistor, and (ii) a source region of the second transistor, and wherein a gate region of the first transistor is electrically coupled to a gate region of the second transistor.
A method of manufacturing a semiconductor device which can prevent leakage current caused by gate electrodes intersecting element isolation layers in a major axis of an active region, and which further has vertical channels to provide a sufficient overlap margin, and a semiconductor device manufactured using the above method. The device includes gate electrodes formed on element isolation layers that are disposed between active regions and have top surfaces that are higher than the top surfaces of the active regions. Since the gate electrodes are formed on the element isolation layers, leakage current in a semiconductor substrate is prevented. In addition, the gate electrodes are formed using a striped shape mask pattern, thereby obtaining a sufficient overlap margin compared to a contact shape or bar shape pattern.
A semiconductor device includes a semiconductor substrate and a trench isolation. The trench isolation is located in the semiconductor substrate, and includes an epitaxial layer and a dielectric material. The epitaxial layer is in a trench of the semiconductor and is peripherally enclosed thereby, in which the epitaxial layer is formed by performing etch and epitaxy processes. The etch and epitaxy process includes etching out a portion of a sidewall of the trench and a portion of a bottom surface of the trench and forming the epitaxial layer conformal to the remaining portion of the sidewall and the remaining portion of the bottom surface. The dielectric material is peripherally enclosed by the epitaxial layer.
A super junction structure having implanted column regions surrounding an N epitaxial layer in a deep trench is disclosed to overcome charge imbalance problem and to further reduce Rds. The inventive super junction can be used for MOSFET and Schottky rectifier.
Oxygen vacancies in an oxide semiconductor film and the vicinity of the oxide semiconductor film are reduced and electric characteristics of a transistor including the oxide semiconductor film are improved. Further, a highly reliable semiconductor device including the transistor including the oxide semiconductor film is provided. In the transistor including the oxide semiconductor film, at least one insulating film in contact with the oxide semiconductor film contains excess oxygen. By the excess oxygen included in the insulating film in contact with the oxide semiconductor film, oxygen vacancies in the oxide semiconductor film and the vicinity of the oxide semiconductor film can be reduced. Note that the insulating film including the excess oxygen has a profile of the excess oxygen concentration having two or more local maximum values in the depth direction.
Semiconductor devices are provided that include spacers on sidewalls of conductive lines, as well as methods for manufacturing the same. A method for manufacturing a semiconductor device includes forming bit lines on a semiconductor substrate. Triple-layered bit line spacers are formed on respective sidewalls of the bit lines. An interlayer insulation layer is formed on the bit lines and the triple-layered bit line spacers. Storage node contact plugs that penetrate the interlayer insulation layer are formed between the bit lines. Portions of the triple-layered bit line spacers are etched to form recessed regions. An insulation layer is formed on the substrate including the recessed regions. Storage node electrodes electrically connected to the storage node contact plugs are formed.
Jet impingement and two-phase cooling apparatuses with sloped vapor outlet channels are disclosed. In one embodiment, a cooling apparatus includes a fluid inlet channel, a jet orifice surface having one or more jet orifices fluidly coupled to the fluid inlet channel such that coolant fluid within the fluid inlet channel flows through the one or more jet orifices as one or more impingement jets, and a target surface. The target surface and the jet orifice surface define an impingement chamber where the one or more impingement jets impinge the target surface at an impingement region such that at least some of the coolant fluid changes to a vapor. The cooling apparatus further includes a plurality of sloped vapor outlet channels that are fluidly coupled to the impingement chamber. Coolant fluid flows through the plurality of sloped vapor outlet channels after it impinges the target surface.
A tandem mass spectrometer and method are described. Precursor ions are generated in an ion source and an ion injector injects ions towards a downstream ion guide via a single or multi reflection TOF device that separates ions into packets in accordance with their m/z. A single pass ion page in the path of the precursor ions between the ion injector and the ion guide is controlled so that (only a subset of precursor ion packets, containing precursor ions of interest, is allowed onward transmission to the ion guide. A high resolution mass spectrometer is provided for analysis of those ions, or their fragments, which have been allowed passage through the ion gate. The technique permits multiple m/z ranges to be selected from a wise mass range of precursors, with optional fragmentation of one or more of the chosen ion species.
Disclosed is a charged particle radiation apparatus capable of capturing a change in a sample due to gaseous atmosphere, light irradiation, heating or the like without exposing the sample to atmosphere. The present invention relates to a sample holder provided with a sample stage that is rotatable around a rotation axis perpendicular to an electron beam irradiation direction, the sample holder being capable of forming an airtight chamber around the sample stage. A sample is allowed to chemically react in any atmosphere, and three-dimensional analysis on the reaction is enabled. A sample liable to change in atmosphere can be three-dimensionally analyzed without exposing the sample to the atmosphere.
An ion generation device includes: a high voltage generation circuit; and an ion generation element. The high voltage generation circuit includes: a capacitor; a high voltage transformer; a switching element; and a pulse signal generation portion which generates a pulse signal for controlling the turning on and off of the switching element. The pulse signal generation portion adjusts a pulse width of an on-period such that the pulse width of the on-period of the pulse signal is substantially equal to a time obtained by multiplying the reciprocal of an output voltage frequency at the time of a forward operation of the high voltage transformer by one-fourth.
A fuse cutout indicator includes: a battery pack; an alarm; and a power controller. The power controller has a contactless power sensor for communication with a fuse, and is operable to connect the alarm to the battery pack in response to cessation of current through or voltage across the fuse.
A mechanical switch in the form of a bypass switch assembly is arranged between two electrical conductors (busbars) and stays open during normal operation. When a cell fault happens, the fault and bypass information is transmitted to an actuator (acting as a trigger circuit) which activates inter alia a gas generator producing huge volume of gas in a very short time. The gas pressure pushes a movable member to bridge the two electrical conductors with ultrafast speed.
An electrical switch includes a pivotally supported blade, a toggle mechanism, and an operating mechanism. The operating mechanism is drivable in a first direction to pivot the blade about a first axis and toward a closed blade position. When pivoting toward the closed blade position, the toggle mechanism inhibits the blade from pivoting about a second axis. Upon reaching the closed blade position, continued motion of the operating mechanism in the first direction causes the toggle mechanism to pivot the blade about the second axis toward a closed contact position. In the closed contact position, the blade contacts at least one blade contact to electrically connect the blade and a first electrical terminal.
An electrode, the electrode including a conducting layer configured to act, in use, as a charge collector to provide an electrical path for generated and/or stored charge through the conducting layer; a barrier layer, the barrier layer configured to cover a portion of a surface of said conducting layer such that, when the electrode is in contact with an electrolyte, the electrolyte is prevented from substantially contacting and corroding the conducting layer at the covered portion; and an active electrode element configured for use in generation and/or storing charge, the active electrode element positioned in a non-covered portion in electrical contact with the conducting layer to prevent the electrolyte from substantially contacting and corroding the conducting layer in the non-covered portion and to also be exposed to said electrolyte to allow for the generation and/or storage of charge and provide the generated/stored charge to the conducting layer.
An insulation system for a winding structure. The insulation system includes an innermost barrier pair arranged to cover a majority of the winding structure in the axial direction of the winding structure inside and outside the barrier structure relative the curvature of winding turns of windings of the winding structure, wherein at least one barrier of the innermost barrier pair defines a first flow path allowing flow of a dielectric fluid mainly in a first axial direction between the winding structure and the at least one barrier when the insulation system is in a assembled state; and a first outer barrier arranged radially inwards or radially outwards relative each barrier of the innermost barrier pair, wherein the first outer barrier defines a second flow path, parallel to the first flow path, allowing flow of a dielectric fluid mainly in a second axial direction opposite the first axial direction.
The present invention provides a metal foil provided with an electrical resistance layer, in which peeling between the metal foil and the electrical resistance layer disposed on the metal foil can be prevented and variation in the resistivity of the resistance layer can be reduced, and a method of manufacturing the same. The present invention includes a metal foil with an electrical resistance layer including a metal foil having a surface of a ten-point mean roughness Rz, which is measured by an optical method according to 1 μm or less and the surface being treated by irradiation with ion beams at an ion beam intensity of 0.70-2.10 sec·W/cm2 and an electrical resistance layer disposed on the surface of the metal foil.
The manufacturing method of the honeycomb structure includes a step of coating a surface of each of releasing sheets with a paste for an electrode, to prepare electrode forming sheets in which the releasing sheets are provided with electrode paste films; a formed honeycomb body with the electrode forming sheets forming step of attaching the electrode forming sheets to a side surface of a tubular formed ceramic honeycomb body which is the curved surface to prepare a formed honeycomb body with the electrode forming sheets; and a honeycomb structure forming step of firing the formed honeycomb body, or removing releasing sheets from the formed honeycomb body to form the formed honeycomb body with the pastes for the electrodes, and then firing the formed honeycomb body with the pastes for the electrodes, to obtain a honeycomb structure having a side surface provided with the electrodes.
A sensing material for use in a sensor is disclosed. Such a sensing material includes a polymer base and a piezoresistive nanocomposite embedded into the polymer base in a continuous pattern. The nanocomposite comprises a polymer matrix and a plurality of conductive nanofillers suspended in the matrix. The conductive nanofillers may be one or a combination of nanotubes, nanowires, particles and flakes. The density of the plurality of nanofillers is such that the nanocomposite exhibits conductivity suitable for electronic and sensor applications.
A line arrangement for transmitting high-power electrical energy and a pressurized fluid, having a hose that has a hose interior, an electrical conductor, at least one hose-terminating element having a hose-terminating element interior and at least one electrically conductive conductor-terminating element, wherein the electrical conductor is at least partially accommodated in the hose interior, a fluid channel is formed in the hose interior, the conductor-terminating element is arranged on the electrical conductor at a free end and is fastened in the hose-terminating element interior at a distance from the hose-terminating element, and an insulation means, which circumferentially enclose the electrical conductor and the conductor-terminating element, are provided at least in the transition region between the electrical conductor and the conductor-terminating element.
The present invention relates to an optical fiber and power line composite cable comprising a cable core comprising at least one power line unit including a conductor and an insulator surrounding the conductor and at least one optical fiber unit including an optical fiber and a tube accommodating the optical fiber, a protective metal layer surrounding the cable core, and having corrugations including corrugation peaks and corrugation valleys that are alternately formed and an outer coating layer surrounding the protective metal layer, wherein a relation shown by the following formula is satisfied Di
A method includes providing a capability to control divergence of a coherent light beam having an axially symmetrical distribution of intensity thereof through an optical divergence controller, and directing an output of the optical divergence controller related to the controlled divergence of the coherent light beam onto a glass prism. The glass prism includes a planar shape onto which a pyramidal structure is formed. The method also includes controlling a distance between maxima of an output light field of the glass prism and intensity thereof through controlling the divergence of the coherent light beam through the optical divergence controller and/or varying a distance between the optical divergence controller and the glass prism, and utilizing the output light field of the glass prism in controlling microparticles in a microtechnology or a nanotechnology application.
The present invention is directed to mobile radiation systems and methods of use that comprise a mobile UVA irradiator including a power supply, a UVA lamp, a control and system indicator unit; a UV radiation blocker nest having an adaptor opening for receiving a hand-held irradiator when said irradiator is in a seated position in said nest; and a mobile carrier comprising a first compartment for housing said power supply, hand-held irradiator, said irradiator nest, wheels and said control unit. The nest may be configured to conform to the hand-held irradiator to block irradiation from the hand-held irradiator when it is energized and in its seated position. The mobile radiation device produced UVA radiation having peak radiation wavelength in a range of from 250 nm to 450 nm and can have a peak irradiation power in a range of from 0.5 W/cm2 to 10 W/cm2.
A memory array includes a memory segment having at least one memory bank. The at least one memory bank includes an array of memory cells, and wherein at least two first read tracking cells are disposed in a read tracking column of the at least one memory bank. The memory array further includes a read tracking circuit coupled to the at least two first read tracking cells. Outputs of the at least two first read tracking cells are connected to a tracking bit connection line (TBCL). A tracking circuit connected to the TBCL is configured to output a tracking-cells output signal to generate a global tracking result signal to a memory control circuitry. The memory control circuitry is configured to reset a memory clock based on the global tracking result signal.
A method of operating a semiconductor memory device is disclosed. The method may include receiving an access command, applying a first voltage to a selected word line of the semiconductor memory device for a period of time in response to receiving the access command, applying a second voltage to word lines adjacent to the selected word line before and after the period of time, and applying a third voltage to the word lines adjacent to the selected word line for the period of time, a voltage level of the third voltage greater than the second voltage. The applying the third voltage may occur when the semiconductor memory device is operated at a temperature below the predetermined temperature.
A method of operating a data storage device includes setting program verify voltages for verifying whether memory cells of a nonvolatile memory device are programmed to desired program states; transmitting the set program verify voltages to the nonvolatile memory device; generating data patterns respectively corresponding to program states based on the program verify voltages; transmitting a data pattern corresponding to the program verify voltages to the nonvolatile memory device; and programming the memory cells with the transmitted data pattern.
Embodiments of methods and systems disclosed herein provide a NAND cell programming technique that results in a substantially reduced Tprog to complete a programming operation. In particular, embodiments of the subject matter disclosed herein utilize two Vpgm programming pulses during each programming iteration, or loop. One of the two programming pulses corresponds to a conventional programming Vpgm pulse and the second pulse comprises a programming pulse that having a greater Vpgm that is greater than the conventional programming Vpgm so that the slow cells are programmed to PV in fewer pulses (iterations), thereby effectively simultaneously programming and verifying cells having different programming speeds.
A non-volatile static random access memory cell and includes a bistable regenerative circuit coupled to first and second transistors and to first and second non-volatile memory cells. Methods of use include directly transferring a complementary data bit between the non-volatile memory cell and the bistable regenerative circuit. Alternatively, complementary data from the bistable regenerative circuit may be regenerated by a sense amplifier and a second bistable regenerative circuit before being transferred to non-volatile memory cells in a column of memory cells. The bistable regenerative circuit may be reset to ground potential. Applications using the non-volatile SRAM cell with direct read out from the bistable regenerative circuit include a non-volatile flip-flop or non-volatile multiplexer.
A method can include electrically programming memory elements between first and second states; and reading data from the memory elements by applying electrical sense conditions; wherein a memory element in the first state takes a longer time to undergo a change in property under the sense conditions than a memory element in the second state.
For a media-editing application, some embodiments provide a method for creating a media presentation that combines several media clips. During an editing process to define a particular media project, the method receives a first set of edits to the particular media project while the media-editing application is in a first resolution mode that uses content stored at a first resolution to generate the particular media project. The method receives a selection of a user interface tool to modify the resolution mode. The method switches to a second resolution mode that uses content stored at a second resolution to generate the particular media project without interrupting the editing process. After switching to the second resolution mode, the method receives a second set of edits to the same particular media project during the same editing process to define the particular media project.
An apparatus includes a plasmonic transducer with first and second oppositely disposed outer edges. A waveguide is configured to receive light from a light source, the waveguide have first and second portions that deliver first and second portions of the light to the first and second edges of the plasmonic transducer. The first and second portions are different by at least one of a geometry and a construction to cause a relative phase shift between the first and second portions of the light.
A device having an air bearing surface (ABS), the device including a near field transducer (NFT), the NFT having at least a portion thereof at the ABS; a first wrap layer, the first wrap layer surrounding at least a portion of the NFT, the first wrap layer having a thickness of not greater than about 30 nanometers (nm), and the first wrap layer being made of a material that has a refractive index (n) that is not greater than 2.0; a second wrap layer, the second wrap layer surrounding at least a portion of the first wrap layer, the second wrap layer having a thickness that is not greater than 100 nm, and the second wrap layer being made of a material that has a refractive index (n) that is at least about 1.9; and a top cladding layer surrounding at least a portion of the second wrap layer, the top cladding layer being made of a material that has a refractive index (n) that is not greater than 2.0.
Amplifier architectures are provided for current sensing applications. An amplifier includes a load device, an operational amplifier, a current source, and a bipolar transistor. The operational amplifier has a first input terminal connected to a first input node that receives an input current, and a second input terminal connected to a second input node that receives a reference voltage. The current source is connected to an output of the operational amplifier. The operational amplifier, the current source, and the bipolar transistor form a feedback loop that generates and maintains a bias voltage on the first input node based on the reference voltage applied to the second input node. The bipolar transistor amplifies the input current received on the first input node, and generates an amplified input current. The load device converts the amplified input current to an output voltage, wherein the output voltage is used to sense the input current.
Systems and methods are provided for throughput optimization of a hard disk drive (HDD) using position error signaling (PES) that includes determining a PES for a HDD mounted in a chassis based on a dynamic disturbance. The method also includes calculating a critical parameter of the PES. The method further includes indicating a mechanical design modification of the HDD or the chassis if the critical parameter of the PES exceeds a pre-defined threshold.
Methods including determining a distribution of a position error signal (PES) of a magnetoresistive head by obtaining PES data from a servo controller associated with the magnetoresistive head; determining an encroachment function of a storage disc; and determining a track density of the storage disc by considering both the PES distribution and the encroachment function.
An apparatus includes an input region having a high-refractive-index material and an input surface configured to receive light emitted from a laser. An output surface of the apparatus is configured to deliver energy to a recording medium. The apparatus includes a plasmonic waveguide having a first elongated portion at an angle to the input surface and configured to receive the light through the input region. In response to receiving the light, surface plasmons are excited and guided to an end of the first elongated portion. The plasmonic waveguide includes a second elongated portion coupled to the end of the first elongated portion and configured to guide the surface plasmons to the output surface.
A write portion for a thermally assisted magnetic head slider includes an air bearing surface facing to a magnetic recording medium; a write element having an opposed-to-magnetic recording medium surface; a waveguide for guiding light generated by a light source module mounted on a substrate of the thermally assisted magnetic head slider; and a plasmon unit provided around the write element, which has a near-field light generating surface for propagating near-field light to the air bearing surface. And only the opposed-to-magnetic recording medium surface of the write element is covered by a carbon layer. The invention can prevent corrosive elements in the write portion from being corroded and prevent the write element from being worn and abraded not only, and maintain stable thermal ability for a plasmon unit but also.
A two-dimensional magnetic recording (TDMR) multi-sensor read head has three stacked sensors separated by magnetic shields. The lower sensor is the primary sensor that is always aligned with the target track. The middle sensor is spaced laterally from the lower sensor a distance substantially equal to the track pitch (TP). The upper sensor is aligned with the lower sensor. The spacing D between the lower and upper sensors is selected to be related to TP and a maximum skew angle, where the skew angle is the angle between a line orthogonal to the sensor and the data track that varies with radial position of the head. The read head is connected to circuitry that selects two of the three sensors to be the active sensors depending on the radial position of the head and thus the skew angle of the head.
A disk drive slider supports a microwave-assisted magnetic recording (MAMR) write head with a spin-torque oscillator (STO) and a separate corrosion monitor (CM). The CM includes a corrosion detection layer formed of the same material as the STO's spacer layer. The CM is coplanar with the STO but laterally spaced from the STO. The corrosion detection layer has an edge at the ABS so as to be exposed to the same atmospheric conditions as the STO's spacer layer. Electrical leads are located at the ends of the CM and are electrically connected to pads on the upper surface of the slider. Electrical resistance of the CM is measured by detection of current in the plane of the corrosion detection layer.
An apparatus according to one embodiment includes a near field transducer comprising a conductive metal film having a main body, a notch extending from the main body, and a notch diffusion barrier layer interposed between the notch and the main body. An apparatus according to another embodiment includes a write pole, and a near field transducer adjacent the write pole. The near field transducer includes a conductive metal film having a main body, a notch extending from the main body, and a notch diffusion barrier layer interposed between the notch and the main body. The notch diffusion barrier layer includes a metal selected from a group consisting of Rh, W, Mo, Ru, Ir, Co, Ni, Pt, B, and alloys thereof. Additional systems and methods are also presented.
In one embodiment, a spin torque oscillator (STO) includes a reference layer having a magnetization that is capable of free in-plane rotation, a field generation layer (FGL) including at least one magnetic film having an easy magnetization plane effectively in a film plane, wherein a magnetization of the FGL is capable of in-plane rotation, and a stabilizing layer (STL) positioned on a side of the FGL opposite the reference layer, the STL including a magnetic film having an easy magnetization plane effectively in a film plane, wherein a magnetization of the STL is capable of in-plane rotation, wherein a product of a saturation magnetization of the STL multiplied by a thickness of the STL is less than half a product of a magnetization of the FGL multiplied by a thickness of the FGL.
Methods and apparatus for signal processing are disclosed. Source separation can be performed to extract moving source signals from mixtures of source signals by way of independent component analysis. Source motion is modeled by direct to reverberant ratio in the separation process, and independent component analysis techniques described herein use multivariate probability density functions to preserve the alignment of frequency bins in the source separation process.
Typical textual prediction of voice data employs a predefined implementation arrangement of a single or multiple prediction sources. Using a predefined implementation arrangement of the prediction sources may not provide a good prediction performance in a consistent manner with variations in voice data quality. Prediction performance may be improved by employing adaptive textual prediction. According to at least one embodiment determining a configuration of a plurality of prediction sources, used for textual interpretation of the voice data, is determined based at least in part on one or more features associated with the voice data or one or more a-priori interpretations of the voice data. A textual output prediction of the voice data is then generated using the plurality of prediction sources according to the determined configuration. Employing an adaptive configuration of the text prediction sources facilitates providing more accurate text transcripts of the voice data.
An automatic speech recognition engine may generate text or tokens that correspond to audio data. For example, the automatic speech recognition engine may generate first text or first speech tokens corresponding to a first portion of audio data. The automatic speech recognition engine may further generate second text or second speech tokens that correspond to a first portion of the audio data and a second portion of the audio data. The text or speech tokens generated by the automatic speech recognition engine may be provided to a device for presentation thereon. In some embodiments, the automatic speech recognition engine generates the second text or second speech tokens substantially while the first text or first speech tokens are presented on the device.
An adaptive equalization system that adjusts the spectral shape of a speech signal based on an intelligibility measurement of the speech signal may improve the intelligibility of the output speech signal. Such an adaptive equalization system may include a speech intelligibility measurement module, a spectral shape adjustment module, and an adaptive equalization module. The speech intelligibility measurement module is configured to calculate a speech intelligibility measurement of a speech signal. The spectral shape adjustment module is configured to generate a weighted long-term speech curve based on a first predetermined long-term average speech curve, a second predetermined long-term average speech curve, and the speech intelligibility measurement. The adaptive equalization module is configured to adapt equalization coefficients for the speech signal based on the weighted long-term speech curve.
Data associated with spoken language may be obtained. An analysis of the obtained data may be initiated for understanding of the spoken language using a deep convex network that is integrated with a kernel trick. The resulting kernel deep convex network may also be constructed by stacking one shallow kernel network over another with concatenation of the output vector of the lower network with the input data vector. A probability associated with a slot that is associated with slot-filling may be determined, based on local, discriminative features that are extracted using the kernel deep convex network.
For generating a signal to be transmitted original information is encoded into a main channel and a side channel, wherein the side channel is more robust against channel influences than the main channel. On the receiver side, when the receive quality is above a threshold, which is necessitated to execute a successful decoding of the main channel, the main channel is reproduced. If the receive quality falls below this threshold, however, the side channel is reproduced which may have less bits than the main channel and which is a correspondingly lower quality representation of the original information than the main channel.
A noise reducing sound reproduction system comprises a loudspeaker that is connected to a loudspeaker input path and that radiates noise reducing sound. A microphone is connected to a microphone output path and picks up the noise or a residual thereof. An active noise reduction filter is connected between the microphone output path and the loudspeaker input path, and the active noise reduction filter comprises at least one shelving filter.
There is provided an acoustic element (102) for placement in a sound path (120) of a loudspeaker device (100), the acoustic element (102) comprising a container (104) and an acoustic volume increasing material (106) located in the container (104). In an embodiment, the container (104) comprises wall portions with different physical characteristics. In other embodiments, the walls of the container (104) are made of the same material.
A method for browsing in a visual content such as a document or a list. The content is available on a terminal having a browsing command. Part of the content is displayed on a display of the terminal. The browsing commands enable the contents displayed on the screen to be made to scroll in the direction specified by the command introduced. The displayed part is duplicated into two identical images when one end of the content situated in the direction of movement specified by the browsing command is displayed on the means for displaying. A first image remains still and a second image moves in the direction of movement specified by the browsing command so long as the command is active. In this way, the user sees that the command has indeed been taken into account and notes visually that the end of the visual content has been reached.
A method and system for dynamically modifying the graphics capabilities of a mobile device is disclosed. One embodiment of the present invention sets forth a method, which includes the steps of abstracting the handling of a first graphics subsystem and a second graphics subsystem associated with the mobile device, so that the first graphics subsystem and the second graphics subsystem appear as a third graphics subsystem to an operating system for the mobile device, detecting a configuration change event corresponding to the first graphics subsystem, masking the configuration change event to induce the generation of a reset event, and modifying the graphics capabilities of the mobile device to match the highest graphics capabilities between the first graphics subsystem and the second graphics subsystem that are accessible to the mobile device.
A liquid crystal device includes a pair of substrates with a liquid crystal layer interposed therebetween. A planar region of the pair of substrates has at least one display pixel region and at least one viewing-angle control pixel region that performs dark display in the front direction of surfaces of the pair of substrates and has brightness variable depending on a viewing angle in an oblique direction to the normal direction of the surfaces of the pair of substrates. A pair of electrodes driving the liquid crystal layer is provided in the display pixel region and the viewing-angle control pixel region. A voltage applied between the pair of electrodes in the viewing-angle control pixel region at the time of driving the liquid crystal layer in the viewing-angle control pixel region is higher than a voltage applied between the pair of electrodes in the display pixel region.
Some embodiments describe techniques that relate to power efficient, high frequency displays with motion blur mitigation. In one embodiment, the refresh rate of a display device may be dynamically modified, e.g., to reduce power consumption and/or reduce motion blur. Other embodiments are also described.
This disclosure describes novel systems, methods and software for determining a position of a tracked object, which might be a fixed-wing or rotary-wing aircraft, some other flying object, a vehicle (e.g., an automobile, a tactical military vehicle, etc.), a person, and/or the like. More particularly, in an aspect of this disclosure, a measured altitude for an aircraft is adjusted based on a correction factor, which is determined by comparing a measured altitude at reference point with a known reference elevation for the same reference point. This can provide enhanced accuracy and/or precision in recorded altitude measurements, which allows for more faithful presentation of altitude data, for example in post-mission debriefings, simulations and the like.
A vehicle object warning system and method that differentiates between expected and unexpected objects. A sensor detects a set of objects external to the vehicle upon the occurrence of different triggering conditions. A controller determines locations of the sets of objects detected by the sensor. Further, the controller can store the locations of a set of objects in a memory as well as determine if the location of an object is not stored in the memory. An alarm provides a different type of warning if the controller determines that the location of an object is not stored in the memory.
Systems and methods for generating a predicted flight trajectory using a combination of aircraft state data, flight information, environmental information, historical data or derived flight information from aircraft messaging which can be used for the transmission of environmental data. The generated trajectory prediction is assigned a level of confidence based on fidelity, merit or accuracy. The level of predicted accuracy is based on the number of and sources of the specific information, time, distance or flight phase. The predicted trajectory includes pseudo-waypoints at flight transitions not readily available in the flight information and also includes the environmental conditions at all waypoint (including pseudo-waypoint) locations.
A restaurant service indicator system method and kit includes a table unit having a processor, memory, a request sent indicator and transmitter that are communicatively linked to server unit having a processor, memory, table status indicator and receiver; The invention also includes a method for receiving, transmitting and displaying service request messages utilizing at least one table unit and server unit; The invention also includes a kit comprising a plurality of table units communicatively linked to a single server unit, a charger and instructions.
A system that generates haptic effects on mobile devices during a group event receives an identity of a first type of haptic effect to be broadcast during the group event and determines a first set of the mobile devices during the group event that will generate the haptic effect. The system then broadcasts the first type of haptic effect to the first set of mobile devices during the group event.
A method for controlling a bingo game comprising randomly selecting a first game number representing one of a predetermined set of game numbers. Displaying the first game number in an active number area. Receiving a user-entered command to randomly select a second game number. Determining whether the first game number has been marked on each of one or more bingo game cards. Randomly selecting a second game number representing a second of the predetermined set of game numbers, if the first game number has been marked where it appears on each of the one or more bingo game cards. Deducting a predetermined time penalty from a countdown timer if the first game number has not been marked where it appears on each of the one or more bingo game cards.
The present invention provides a gaming machine employing a free game system which provides an enhanced game element. The gaming machine determines the number of adding free game based on a game number lottery table under the condition that a first symbol is rearranged in the symbol display unit in the free game, and adds a preset number of free game under the condition that a second symbol is rearranged in the symbol display unit in the free game.
A gaming system which displays a community game to one or more participating players. During the community game, the gaming system accumulates one or more community game tokens for one or more participating players. The gaming system subsequently assigns a value to each community game token redeemed by each participating player.
Games, networked gaming systems, gaming machines and methods are disclosed that provide various player-centric games and rewards the casino patrons, as well as systems games, rewards, and tournaments to the casino patrons.
A method of operating a sensor 112 having a first transmit plate 114, a second receive plate 115 and a dielectric material between the two plates 114, 115. The method comprises the steps of: applying an alternating across the transmit and receive plates 114, 115, thereby to create an alternating electric field, which applied voltage results in a current Iz flowing through the two plates 114, 115; producing a voltage signal corresponding to the resultant current Iz; determining the average value of the product of the corresponding voltage signal and a reference voltage signal Vref3; and adjusting the phase of the reference voltage Vref3 until a null condition is achieved, at which condition the average value is approximately zero. A sensor 112 is also disclosed.
A dynamic uploading protocol comprises an input interface configured to receive a manifest comprising a plurality of events which may be uploaded; wherein the manifest additionally comprises sensor information relating to each of the plurality of events. The system for a dynamic uploading protocol additionally comprises a processor configured to determine whether to upload additional information about each event, wherein determining whether to upload additional information about each event is based at least in part on the sensor information and contextual information. The system for a dynamic uploading protocol additionally comprises an output interface configured to request the additional information. The system for a dynamic uploading protocol additionally comprises a memory coupled to the processor and configured to provide the processor with instructions.
A method and system for informing fuel efficient driving are provided. The method includes collecting, by a controller, vehicle context data that includes fuel consumption per second and calculating a fuel efficiency influencing factor that includes a driving time after starting an engine based on the vehicle context data. The fuel efficiency influencing factor is stored in a database and a driving propensity of a driver is analyzed based on the data stored in the database. Further, fuel efficiency analysis data that includes a fuel efficient driving index is produced a fuel efficiency analysis result based on the fuel efficiency analysis data is displayed.
An indicator of an estimated remaining life of an associated spring device can include at least one sensor and at least one processor. The at least one sensor can be operative to generate a signal having a relation to at least one of a usage condition and an environmental exposure condition of a spring device. The at least one processor can be communicatively coupled with the at least one sensor and programmed to receive signals from the at least one sensor, derive data from the received signals, and determine an estimated remaining life of at least the spring device using the data and an expression modeling a relationship between an estimated remaining life of the spring device and at least one of a usage condition and an environmental exposure condition. A gas spring and indicator assembly, a suspension system and a method are also included.
Three-dimensional data is associated with a first imaging area including a left breast of a subject to be examined and a second imaging area including a right breast of the subject. An image displaying apparatus includes a specifying unit that specifies a nipple position of the left breast on the basis of positional information of pressure plates from the three-dimensional data. The image displaying apparatus also includes a generating unit that generates, by a maximum intensity projection, four projection images from the three-dimensional data. Two of the projection images respectively correspond to a plurality of divided areas of the left breast in the first imaging area divided on the basis of the specified nipple position. Two of the projection images respectively correspond to a plurality of divided areas of the right breast in the second imaging area. The four projection images are simultaneously displayed.
An image processing apparatus for adjusting the luminance of a target pixel of an image is provided. The target pixel includes original pixel data and corresponds to a mask value. The image processing apparatus includes a luminance detection unit, a luminance compensation unit and a mapping unit. The luminance detection unit generates an original luminance value according to the original pixel data. The luminance compensation unit adjusts the original luminance value according to a non-linear function to generate a compensated luminance value. The mapping unit generates adjusted pixel data according to the compensated luminance value. The non-linear function at least includes a first monomial function, which has a base part associated with an inverse value of the original luminance value and an exponent part associated with the mask value.
Systems and methods are provided for the improvement of an image of a device under test, such as a belt. The image of device under test is made more optimal by determining if the object is rotated away from a preferred axis of the image frame. If so, the image is rotated an opposing angle such that the object is parallel to the preferred axis of the image frame. The rotated image is then made available for analysis of the object. Rib width analysis is performed along the entire length of the detected rib by either de-rotating the image or not.
Given an image and an aligned depth map of an object, the invention predicts the 3D location, 3D orientation and opening width or area of contact for an end of arm tooling (EOAT) without requiring a physical model.
An image processing apparatus includes: a luminance extraction means to extract luminance components of an input image; a contrast extraction means to extract contrast components of the input image based on the luminance components of the input image extracted by the luminance extraction means; a storage means to store a performance function indicating relation between the contrast components of the input image and depth amounts subjectively perceived, which is determined based at least in part on visual sense characteristics of human beings; and a contrast adjustment means to calculate present depth amounts of the input image from the contrast components of the input image extracted by the contrast extraction means based at least in part on the performance function with respect to region of the input image which are determined from depth information of the input image and adjusting contrast components of the input image.
Several approaches are disclosed for combining HDR and 3D image structure analysis and coding, in particular an encoding apparatus for encoding a first view high dynamic range image and a second view high dynamic range image comprising: first and second HDR image receivers (203, 1201) arranged to receive the first view high dynamic range image and a second view high dynamic range image; a predictor (209) arranged to predict the first view high dynamic range image from a low dynamic range representation of the first view high dynamic range image; and a view predictor (1203) to predict the second view high dynamic range image from at least one of the first view high dynamic range image, a low dynamic range representation of the second view high dynamic range image, or a low dynamic range representation of the first view high dynamic range image.
A method of detecting an alignment error includes the steps of controlling a first portion of one or more imaging units to image on a substrate a first plurality of substantially parallel lines extending along a first direction and a second plurality of substantially parallel lines extending along a second direction and controlling a second portion of one or more imaging units to image a third plurality of substantially parallel lines extending along the first direction and a fourth plurality of substantially parallel lines extending along the second direction. One or more distances between adjacent lines of the second plurality of lines are varied and one or more distances between adjacent lines of the fourth plurality of lines are varied. Further, the lines imaged by the first and second portions form an alignment pattern. The method further includes the steps of collecting data relating to the alignment pattern and analyzing the collected data to determine an alignment error between the first and second portions of the one or more imaging units.
The present invention relates to the determination of the specific orientation of an object. In order to provide enhanced positioning information of an object to a user, a medical imaging system and a method for operating of a medical imaging system are proposed wherein 2D image data (14) of an object is acquired (12) with an imaging system, wherein the object is provided with at least three markers visible in the 2D image; and wherein (16) the markers are detected in the 2D image; and wherein the spatial positioning and rotation angle (20) of the object in relation to the system geometry is identified (18) on behalf of the markers; and wherein an object-indicator (24) is displayed (22) indicating the spatial positioning and rotation angle of the object.
A method for detecting a scratch on a printed image is disclosed, which may include obtaining a digital representation of the printed image and a digital reference image. The method may also include summing values of pixels of pixel lines in at least one segment of the digital representation of the printed image along a suspected direction to obtain a projection signal of the digital representation of the printed image for that segment, and summing values of pixels in a corresponding at least one segment of the digital reference image in the suspected direction to obtain a projection signal of the reference image for the corresponding segment. The method may further include comparing the projection signals to detect dissimilarity indicative of a directional coherence in the suspected direction due to a scratch in the segment of the digital representation of the printed image. Non-transitory computer readable medium and system are also disclosed.
An image compression method includes at least the following steps: receiving a plurality of pixels of a frame, wherein pixel data of each pixel has a plurality of color channel data corresponding to a plurality of different color channels, respectively; encoding the pixel data of each pixel and generating bit-streams corresponding to the plurality of color channel data of the pixel, wherein the bit-streams corresponding to the plurality of color channel data of the pixel are separated; packing bit-streams of a same color channel data of different pixels into color channel bit-stream segments, wherein each of the bit-stream segments has a same predetermined size; and concatenating color channel bit-stream segments of the different color channels into a final bit-stream. Alternatively, color channel bit-stream segments of the same pixel are concatenated into a concatenated bit-stream portion, and concatenated bit-stream portions of different pixels are concatenated into a final bit-stream.
A financial-service system that manages content objects includes a chronicles platform with a chronicle associated with a loan request. A content manager determines a set of content objects to be associated with the chronicle and generates a bucket for each content object of the set of content objects. Each bucket is associated with a name and is configured to receive an associated content object. The chronicle is populated with the generated buckets. An interface that detects a user action and that thereafter receives or generates a content object, which is detected by the content manager and associated with a bucket. The content manager causes the bucket to receive the content object and presents representations of the buckets to a user. Representations of one or more buckets that have received a content object differ from representations of one or more other buckets that have not received a content object.
A computer-implemented method is disclosed herein. The method includes the step of receiving, with a processing device of a commerce server, one or more shopping list signals from an electronic computing device to establish a shopping list of a plurality of items offered for sale in a retail store. The method also includes the step of receiving, with the processing device, one or more signals from an augmented reality device worn by a consumer as the consumer shops in the retail store. The method also includes the step of determining, with the processing device, that an item from the shopping list has been placed in a shopping container from the one or more signals received from the augmented reality device. The method also includes the step of modifying, with the processing device, the shopping list in response to said determining step.
Analytics data for a network-based site may be compressed according to recurring time periods. An analytics service may obtain analytics data for network-based sites to compress into a compressed analytics data stream. To compress the analytics data, the analytic service may identify a particular time period corresponding to each analytic data value and may add the analytic data value to the compressed analytics data stream as either a baseline object for the particular time period or a difference object relative to an existing baseline object for the particular time period. These objects may be interleaved according to a time-based ordering of multiple different recurring time periods. An analytic service may send the compressed analytics data stream to an analytics client. The analytics client may decompress a portion of the compressed analytics trend without decompressing the remaining portions of the compressed analytics data stream.
A method for controlling a medical device is provided including: acquiring identification information of a patient; acquiring patient information and diagnostic information based on the identification information; and changing a state of the medical device based on the patient information and the diagnostic information.
A method or system that receives a product definition that includes a feature family having data defining one or more product features. The product definition including one or more corresponding rules defining one or more relationships between one or more product features. The method or system receiving input selecting one or more feature families of interest. The method or system identifying the one or more rules that provide a relationship connecting the one or more feature families to the selected feature families of interest. The method or system converting the identified rules to one or more positive logic rule groups. The method or system generating one or more global representations of the product definition by interacting the one or more positive logic rule groups to produce a result that defines the relationship between the interacted positive logic rule groups and storing the results that are determined as being valid.
A system arranged to authenticate a user via its mobile device to a service provider, the system comprising: an authentication server; the user mobile device, the user mobile device provided with a verification application arranged to communicate with the authentication server; and a notification server in communication with the authentication server and arranged to transmit a notification to the user mobile device responsive to the authentication server, the authentication server arranged to provide a signed authentication to the service provider responsive to present and historical information regarding one of: the user mobile device; and an additional user device in communication with said authentication server, said signed authentication provided in accordance with a rule set determined by an authorized entity stored on said authentication server memory governing the required present and historical information attribute.
In general, apparatuses, methods and computer program products for receiving a contactless transmission from an external apparatus to an automated teller machine (ATM) are disclosed. An ATM machine is provided that has been equipped with a contactless interface for interacting with an external apparatus such as a debit/credit card, mobile device, and/or contactless transmission equipped stickers.
Association of personal, financial, and/or business-related identification information with a mobile communication device (MCD) is provided for herein. For example, an MCD can be associated with a financial account and can further include an identification component that verifies an identity of a user of the MCD. Identity can be verified by biometric analysis (e.g., finger/thumb print scan), username and password, optical feature scan, or a combination thereof or of like mechanisms, for instance. Accordingly, the claimed subject matter provides a mechanism to verify identification of a user of an MCD and incorporate user ID into remote data exchange, including remote financial transactions, with one or more networked devices.
The invention relates to executing an online contest. The contest comprises use of a brand key. The brand key has an owner and is associated to at least one item of a brand key group. A brand key group may comprise a brand, a trademark or servicemark, an indicia of source of origin, a product or good, a place, a person, an event, a character, and a business. A user is provided a user key for tagging an occurrence in a multimedia file of said at least one item. The user key is combined with a brand key to create a unique identifier to mark at least one occurrence of at least one item by a user in a multimedia file. The unique identifier is associated with a discrete time within a multimedia file and tracked as part of the online contest.
Methods and features for providing and activating a software license in a system, such as a magnetic resonance system, are disclosed. For example, a software license is stored in the system. The system with the stored software license is sold or rented to a client. The software license is operable to be activated by or at the client.
A computer-implemented method of managing inventory includes receiving, at an antenna operatively coupled to a radio-frequency identification (RFID) reader, product identification information encoded in an RF signal transmitted by a plurality of RFID tags. Each of the RFID tags is associated with a respective one of a plurality of products. The method further includes processing, by a processor, the product identification information contained in a portion of the encoded RF signal to identify a characteristic associated with each of the products, and identifying, by the processor using the product identification information, one of the products having a characteristic different from another one of the products. The method may include identifying a majority of the products having a characteristic in common based on the product identification information, and identifying at least one of the products having a characteristic different from the majority.
Embodiments relate analytic solution integration. According to an aspect, a method for analytic solution integration includes establishing an engine abstraction layer configured to interface with a plurality of analytic engines associated with a plurality of models. A services layer is interfaced with the engine abstraction layer to provide a communication interface to invoke the analytic engines associated with the models. A user interface is provided to the services layer. The user interface is configured to define an analytic solution as an executable sequence of one or more of the models.
A method for controlling an energy storage unit having a model which tracks each charging instances includes, for each charging event, capturing energy charged into the energy storage unit and an unit energy price of the charging source(s) at the time of charging; updating a unit price of total energy stored in the storage unit at each time-step; during a discharging event, updating the unit price of energy in the storage unit on a selected cost model; comparing the unit price of energy in the storage unit with other generation sources in the microgrid and a utility tariff; selecting a lowest cost combination from generation, storage, and grid and using the lowest cost combination to supply a load; and if a controller decides to use stored energy at any time, sending a discharge command to the energy storage unit.
A method for providing automatic, personalized information services to a computer user includes the following steps: transparently monitoring user interactions with data during normal use of the computer; updating user-specific data files including a set of user-related documents; estimating parameters of a learning machine that define a User Model specific to the user, using the user-specific data files; analyzing a document to identify its properties; estimating the probability that the user is interested in the document by applying the document properties to the parameters of the User Model; and providing personalized services based on the estimated probability. Personalized services include personalized searches that return only documents of interest to the user, personalized crawling for maintaining an index of documents of interest to the user; personalized navigation that recommends interesting documents that are hyperlinked to documents currently being viewed; and personalized news, in which a third party server customized its interaction with the user.
Apparatus and methods for heterosynaptic plasticity in a spiking neural network having multiple neurons configured to process sensory input. In one exemplary approach, a heterosynaptic plasticity mechanism is configured to select alternate plasticity rules when performing neuronal updates. The selection mechanism is adapted based on recent post-synaptic activity of neighboring neurons. When neighbor activity is low, a regular STDP update rule is effectuated. When neighbor activity is high, an alternate STDP update rule, configured to reduce probability of post-synaptic spike generation by the neuron associated with the update, is used. The heterosynaptic mechanism impedes that neuron to respond to (or learn) features within the sensory input that have been detected by neighboring neurons, thereby forcing the neuron to learn a different feature or feature set. The heterosynaptic methodology advantageously introduces competition among neighboring neurons, in order to increase receptive field diversity and improve feature detection capabilities of the network.
A method and system of detecting the activity of “bots” in an online community, by measuring the time elapsed between user actions and comparing this time to a timespan established as normal for users performing the same user actions without the assistance of bots. The timespan may be adjusted when other suspicion characteristics are detected. When detecting actions suspected to be bot-assisted, the method and system respond by executing one or more response instructions against the user suspected of using the bot, with the aim of preventing further bot activity. The response instructions are stored by associating them with a type of user action and a total number of suspect user actions. As a result, the response instructions may be set to increase in severity with each additional suspect act by a user.
Methods, systems, and apparatus, including computer programs, for a social search engine. In one aspect, a method includes receiving an answer to a question from an answerer; identifying an entity in the answer, in which the entity refers to a product, a service, a company, or a merchant; obtaining permission from the answerer to provide an interactive link for the entity in the answer to a resource from which the entity can be obtained; receiving a user submitted query and determining that the query is related to the entity; and responsive to determining, providing the answer, including the link to the resource, as part of search results that are responsive to the query.
A video hosting service comprising video classifiers that identify content sources of content included in videos uploaded to the video hosting service. Identifying the content source allows a content owner of the content source to claim ownership of videos that include content based on the content source. Usage policies associated with the content owners are applied to the uploaded videos that describe how the video hosting service is to treat the videos.
Techniques for aggregating hypotheses for use in data analytics. In one example, a method comprises the following steps. A plurality of hypotheses associated with one or more data analytics tasks are stored in a storage queue. Two or more hypotheses of the plurality of hypotheses are selected for aggregation. The selected two or more hypotheses are aggregated into a hypotheses group such that the selected two or more hypotheses of the hypothesis group are processed together using one or more common resources to perform at least one of the one or more data analytics tasks.
In one embodiment, a method includes one or more server computing devices receiving first data associated with an activity recently performed or currently being performed by a user of one or more client computing devices. A current state of the user is inferred at least in part by analyzing at least the first data, and second data associated with one or more historical durations associated with the inferred current state is accessed. An end time associated with the inferred current state is estimated based at least in part on the second data.
A time series classifying memory includes an enumerated group of synapses. Each synapse of the group has a junction including pre-synaptic emitters communicating with post synaptic receptors. A single pathway is input to each synapse of the group, and when innervated, stimulates the junctions. Each successive synapse has successively more post synaptic receptors according to a fixed ratio. At each junction, quanta of neurotransmitter emitted from the emitters bind with available receptors. When all the receptors at a junction have been bound, the junction goes refractory. The synapse adjacent to the last junction to go refractory is marked. During a training mode the mark is a Long Term Potentiation (LTP) mark. During a live mode the mark is a Short Term Potentiation (STP) mark. The input is classified upon successful correlation of the LTP mark with the STP mark. A clock operable with synaptic matrix models this process.
In image processing, for a pixel with a density level smaller than a predetermined threshold value, the density level is corrected based on a parameter representing a degree of condensation of ink in a nozzle. For pixel with a density level equal to or larger than the predetermined threshold value, the density level is not corrected. This makes it possible to suppress an unevenness in density caused by the condensation of ink while suppressing blur at a contour of a character or a thin line.
Embodiments are directed towards employing a printer to convert a document from its native file format into an image representation printable by the printer. A document may be provided to the printer in a native file format (e.g., .doc, .docx, .xls, .xlsx, .ppt, or .pptx) that is editable by a document-processing application. A page representation of each of page of the document to be printed may be determined. Each page representation (which may include a plurality of graphics primitives) may be determined straight from the native file format of the document independent of an intermediate page description language. From each page representation, an image representation (e.g., a bitmap) may be determined based on the plurality of graphics primitives of a corresponding page representation. At least one page of the document may be printed based on the determined image representations.
A data processing apparatus includes a processing unit that distinguishes a command of a first command system including commands designating attributes of a printing form and a command of a second command system including commands designating attributes that are not defined in the first command system. When a recording instruction including an instruction designating the printing form by a command of the first command system and data arranged in accordance with the printing form designated by the command of the first command system are input, the processing unit arranges the data included in the recording instruction in accordance with a printing form designated by the command of the second command system to generate recording data.
Provided is a tag integrated circuit (IC) module apparatus and a method of fabricating tag IC module apparatus. The tag IC module apparatus may include an n-turn loop coil, n denoting a natural number, connected in series with a tag IC, and a printed circuit board (PCB) disposed below the tag IC and patterned with the n-turn loop coil.
A system according to one embodiment includes a Radio Frequency Identification (RFID) tag, the RFID tag having a housing; an interface configured for detachable coupling to a connector that is coupleable or coupled to an external module having at least one of a battery and a remote sensor; a controller for processing data derived from an output of the remote sensor; a memory for storing the data derived from an output of the remote sensor and/or the processed data; and an antenna coupled to the controller for enabling backscatter communication.
Techniques for making electronic cards that can be displayed on a mobile phone. The techniques permit making an electronic card based on an arbitrary SMS message and making an electronic card (eCard) that corresponds to a pre-existing non-electronic privilege card such as a loyalty card. In the latter case, the system on which the card is being made obtains information about the user and the issuer and uses the information to determine whether to issue the eCard and also to make use validity information which is associated with the card and is used to determine the validity of the card as it is used.
A method for the production of a security card (1) having a card body (2) and a film (3) which is irreversibly attached to the card body (2) is provided. The method comprises the steps of: provision of the card body (2); provision of the film (3), wherein at least one of a side or a surface of the film (3) that faces the card body (2) is at least slightly smaller than at least one of a side or a surface of the card body (2) that faces the film (3); coating of at least one of the card body (2) or the film (3) with a transparent adhesive agent (4); at least one of combining or pressing of the card body (2) and the film (3) such that an edge region (5) of the surface of the card body (2) which is not covered by the film (3) is also covered by a layer of the adhesive agent (4), and the edges of the film (3) are at least one of enclosed by or embedded in the adhesive agent (4); and curing of the adhesive agent (4) by an application of electromagnetic waves.
A method for detection of a target present on at least two images of the same scene captured by separate cameras comprises a prior step for learning about targets under setup conditions and further comprises, under conditions of use, a simultaneous classification step for objects present on the images, the target being said to be detected as soon as an object is classified as being one of the targets learned during the learning step. The classification step includes a step for adapting at least one of the images to the setup conditions under which the learning step took place. Application: surveillance, assistance and safety based on stereoscopic images.
In accordance with various aspects of the disclosure, a detecting engine for detecting targets/materials in hyperspectral scenes is disclosed. The detecting engine combines data partitioning and dimensionality reduction to reduce the number of computations needed to identify in which pixels in a hyperspectral scene a given material is present. Computation reduction (in some instances, by two fold) greatly impacts the speed of and power consumed by the detecting engine making the engine suitable for hyperspectral imaging of large scenes, processing using many filters per pixel, or missions requiring testing large numbers of reference spectra to see which are present in a scene.
A method and a device for objects counting in image processing includes acquiring the depth image of any one frame; detecting objects according to the depth image; associating the identical object in different frames to form a trajectory; and determining the number of objects according to the number of trajectories. The devices include an acquisition module for acquiring the depth image of any one frame; a detection module for detecting objects according to the depth image; an association module for associating the identical object in different frames to form a trajectory; a determining module for determining the number of objects according to the number of trajectories. The objects are detected according to the depth image. The identical object in different frames is associated to form a trajectory and the number of objects is determined according to the number of trajectories.
A system and a method are disclosed that determine the informative zone of an image. A system and method include receiving image data representative of an image, determining the non-redundant regions of the image based on analysis of patterns of the image data, and determining an area of the image that encompasses the non-redundant regions of the image as the informative zone of the image.
A system, method, and computer program product for estimating upper body human pose are described. According to one aspect, a plurality of anatomical features are detected in a depth image of the human actor. The method detects a head, neck, and torso (H-N-T) template in the depth image, and detects the features in the depth image based on the H-N-T template. An estimated pose of a human model is estimated based on the detected features and kinematic constraints of the human model.
According to one embodiment, a face recognizing apparatus includes: a storage unit; an input unit; a face detector; an extractor; and a recognizing unit. The storage unit stores face feature information on a face feature of each person. The input unit receives image information including at least a face of a person. The face detector detects a face region of the face of the person from the image information received by the input unit. The extractor extracts face feature information on a face feature from the face region detected by the face detector. The recognizing unit recognizes the person in the image information received by the input unit based on the feature information extracted by the extracting unit and the face feature information stored in the storage unit.
A method for analyzing media assets such as video and audio files. The method includes providing access to all the frames of a digital media asset. The method includes, with a microprocessor, running a raw analyzer modules to analyze the asset frames to produce sets of raw analyzer result data that are stored in a data cache in a file associated with the asset. The sets of raw analyzer results are linked to the raw analyzer modules with unique identifiers. The digital media asset is played for the raw analyzer modules, which concurrently analyze the temporally-related frames. The raw analyzer results are stored as data tracks that include metadata for the asset such as immutable parameters including histograms. The method includes using a feature algorithm module to generate an analysis result, such as face identification, for the digital media asset based on the raw analyzer results accessed by the identifiers.
An object detection apparatus comprising: an extraction unit adapted to extract a feature amount for each of partial regions that constitute image data; a storage unit adapted to store, as a background feature amount for each of the partial regions, a feature amount extracted in advance from background image data and does not include the target object; a first determination unit adapted to determine whether or not the partial region is an object region including the target object by comparing a current feature amount extracted from the partial region with the background feature amount; a deciding unit adapted to decide a parameter for each of the partial regions based on a plurality of results of determination; and a second determination unit adapted to determine whether or not the partial region is the object region based on the parameter and the results of determination.
Disclosed is a position estimation device including a feature extraction unit that extracts invariant features from an input image, a matching unit that obtains matching between an input image and a registered place by referring to a database containing each registered place and invariant features in association, a similarity calculation unit that calculates a similarity with inclusion of a registered place near a selected registered place when the matching is a threshold or more, and a position identification unit that identifies the input image as a registered place when the similarity is a threshold or more. The feature extraction unit extracts local features from each input image being sequential images taken sequentially, selects features matched between the sequential images as sequential features, and calculates invariant features based on the sequential features. The number of sequential images is variable depending on the number of matched features.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for object detection are disclosed. Methods can include, for each of a plurality of locations in one or more positive images, image filters are identified, each image filter representing visual features of a location in a positive image (e.g., an image that includes a particular object). Positive location feature scores and negative location feature scores are determined for locations within images. A positive location feature score is based on a similarity between the image filter and feature values for a positive image. A negative location feature score is determined based on a similarity between the image filter and feature values for a negative image. A distinctive location is identified based on the positive and negative location feature scores, and distinguishing feature values for identifying the particular object are identified for the distinctive location.
A system and method for collection of electronically stored information (ESI) from Windows based desktops and laptops is disclosed that are under the control of remote custodians. The system and method include an external persistent memory storage device and a software application tool that is loaded onto the persistent memory storage device. The external persistent memory storage device is connected to the computer system hosting the persistent memory storage device to be examined, for example, by way of a USB or Ethernet port. Once connected to the computer system hosting the persistent memory storage device to be examined, a Quick Start program, which, when opened, allows the required processing to be methodically performed. Documentation is provided for completing information regarding the chain of custody of the external persistent memory storage device. The documentation may be imprinted on a security receptacle for receiving the external persistent memory storage device. The security receptacle is configured to protect the persistent memory storage device from electrostatic discharge and to indicate if the bag or container was tampered with after it was sealed.
Disclosed is a viewing apparatus including a transmission unit having light transparency, through which an image is viewed, the viewing apparatus comprising: an identification information obtaining unit which obtains identification information to identify a user of the viewing apparatus; and a processor which performs: authentication processing which authenticates the user based on the identification information; judgment processing which judges whether a hidden image included in advance in the image can be viewed or not, based on a result of the authentication processing; and adjustment processing which adjusts light passing through the transmission unit to switch whether the hidden image can be viewed or not, based on a result of the judgment processing.
An architecture for multi-core and many-core processor systems includes a set of resource managers having a hierarchy of at least one level. The resource managers act as trusted proxies for the operating system (OS) kernel to manage resources for applications. The application may include a trusted secure specification defining resource and access privileges of the associated application.
A method for verifying the authenticity and integrity of an ordered sequence of digital video frames, without having access to the original recording, by embedding therein a respective series of digital signatures based on a secret key, or keys, and on the video content of respective frames. Signatures are camouflaged by embedding in transform coefficients of a transformed representation of the video data in parts of the frame corresponding to motion. If there is sufficient motion to contain all of the signature bits, a supplementary technique embeds in high-texture areas of a frame. A final fall-back is to embed in a pre-defined default zone. A method of predicting when supplementary embedding is needed enables the process to be applied in a single pass allowing real-time operation. Verification is done during decoding by comparing, for identity, embedded signatures with signatures calculated anew using the method employed to embed.
A secure data parser is provided that may be integrated into any suitable system for securely storing and communicating data. The secure data parser parses data and then splits the data into multiple portions that are stored or communicated distinctly. Encryption of the original data, the portions of data, or both may be employed for additional security. The secure data parser may be used to protect data in motion by splitting original data into portions of data, that may be communicated using multiple communications paths. A keyed information dispersal algorithm (keyed IDA) may also be used. The key for the keyed IDA may additionally be protected by an external workgroup key, resulting in a multi-factor secret sharing scheme.
The security or other attributes of mobile applications may be assessed and assigned a security score. In one implementation, a device may obtain information relating to the mobile applications, and may determine, for each of the mobile applications, a number of security scores. Each of the security scores may define a level of risk for a security category relating to a mobile application. The device may further combine the security scores, for each of the mobile applications, to obtain, for each of the mobile applications, a final security score.
A system and method for capturing and re-calling an application function. The method of function re-call during anti-virus check includes the following steps: function intercept (capture); anti-virus analysis of the parameters used to call the function; preparing of an application stack for function re-call (when the analysis did not detect any malicious functionality); and calling the function again. The exemplary method can be used with browsers and other applications.
A technique shares smart television data among subscribing organizations to provide security. The technique involves collecting, by an electronic server apparatus, data elements from multiple smart television devices. The technique further involves performing, by the electronic server apparatus, a set of risk analysis operations to generate risk scores corresponding to the multiple smart television devices. Each risk score (e.g., a numerical value) indicates an amount of risk (e.g., a probability) that a respective smart television device is malicious. The technique further involves providing, by the electronic server apparatus, an ordered list of the multiple smart television devices, the ordered list ranking the multiple television devices based on the risk scores. Information from the ordered list is well suited for use by an anti-fraud service in which subscriber organizations are informed of the information and use the information to identify and stop fraudulent activity in the future.
The embodiments provide an apparatus for detecting configuration options including an option detector configured to receive a basic model of a security protocol and a set of options, where each option is a variation of the basic model. The option detector is configured to detect which options are configured in an implementation of at least one at least one security protocol entity based on the basic model and the set of options.
Methods and systems for authenticating users of client devices to allow access of resources and services in enterprise systems are described herein. An authentication device may validate a user based on authentication credentials received from a client device. Validation data stored by the authentication device, and a corresponding access token transmitted to the client device, may be used to authenticate the user for future resource access requests. A user secret also may be stored by the authentication device and used to validate the user for future resource access requests. Additionally, after validating a user with a first set of authentication credentials, additional sets of credentials for the user may be retrieved and stored at an access gateway for future requests to access other services or resources in an enterprise system.
In one embodiment, a method includes providing for presentation to a user a number of content objects. Some of the content objects are socially relevant to the user and some of the content objects are socially irrelevant to the user. The method also includes receiving input indicating a selection of one of the content objects by the user; determining whether the content object selected by the user is socially relevant to the user; authenticating the user if the content object selected by the user is socially relevant to the user; and declining to authenticate the user if the content object selected by the user is socially irrelevant to the user.
A method of authorizing a user at a location is disclosed. A user data input device is used for receiving of user information. In dependence upon stored policy data, a location of the workstation and other characteristics thereof, an authorization method for the user is determined. In the authorization method, the user is first identified with the security server and then optionally authorized thereby. The stored policy data results in different determined methods for different authorization procedures based upon the user data and the characteristic of the user data input device and the workstation.
A double patterning layout design method includes defining critical paths including a first path and a second path on a schematic circuit, and defining a double patterning layout divided into a first mask layout having a first color and a second mask layout having a second color, the double patterning layout corresponding to the schematic circuit. The defining of the double patterning layout includes anchoring the critical paths on the schematic circuit.
A method including accessing a first virtual prototype configured to perform a first simulation of a hardware design, identifying checkpoints within the first virtual prototype, each checkpoint including a storage state and/or behavioral state, and determining breakpoints for dividing execution of a second virtual prototype into a series of execution segments, where the second virtual prototype is configured to perform a second simulation of the hardware design, the second virtual prototype includes virtual models representing a separate portion of the hardware design, each virtual model representing a same portion of the hardware design as a corresponding virtual model of the first virtual prototype. The method may include mapping the storage state and/or behavioral state of each checkpoint to a respective execution segment, executing the second simulation while collecting respective data regarding execution of each execution segment, where two or more execution segments are executed concurrently, and aggregating the respective data.
Some embodiments provide a three dimensional (3D) media-editing application for dynamically presenting different views of a 3D project that includes one or more objects disbursed throughout a 3D space. A dynamic display provides the dynamic views upon the occurrence of specified triggering events. In some embodiments, the dynamic display appears within the 3D media-editing application throughout the duration of the triggering event and is removed upon completion of the triggering event. The dynamic display of some embodiments shows edits to the 3D project from a predicted angle or viewing perspective that best conveys the objects of the 3D project in conjunction with the actions of the triggering event without duplicating views presented in one or more static workspace windows of the 3D media-editing application.
A compute node includes a motherboard having a trusted platform module, and also includes a port for selectively coupling a hot pluggable device into communication with the motherboard. The compute node further includes a circuit coupled to the port for detecting a change in the physical connection of the hot pluggable device to the port and for asserting a physical presence signal to the trusted platform module in response to detecting a change in the physical connection of the hot pluggable device to the port. The change in the physical connection of the hot pluggable device to the port may include either physically connecting the hot pluggable device to the port, physically disconnecting the hot pluggable device from the port, or a combination thereof.
In some embodiments, a serial bus interface circuit includes at least two serial ports, a memory to store a relationship between serial bus addresses and the at least two serial ports, and a controller to control access to the at least two serial ports. The controller may be configured to receive an access request for a serial bus address, determine a first port of the at least two serial ports corresponding to the serial bus address using the relationships stored in the memory, and disable a second port of the at least two serial ports. Other embodiments are disclosed and claimed.
An apparatus includes a memory module with a plurality of memory blocks and an address decoder module that decodes one or more address lines of the plurality of memory blocks. An address output of the address decoder module corresponds to each memory block. A BWE module includes a block write enable (“BWE”) signal corresponding to each memory block. Each BWE signal has a block write enable state and a block write disable state. In response to receiving a block write enable control (“BWEC”) signal in a normal use mode, a MUX module passes a corresponding address output of the address decoder module to a write enable input of each memory block. In response to receiving the BWEC signal in a state trace mode, the MUX module passes a corresponding BWE signal to the write enable input of each memory block.
Embodiments described herein provide for systems and methods for providing a user with an interactive, feedback-driven exercise program through the use of exercise equipment which provides tactile, visual and auditory feedback through proactive and reactive control, as well as portable electronic devices in communication with the exercise equipment to sense user activity, store user data and feedback for providing automated exercise program modifications, and provide visual and auditory feedback in the form of an interactive visual exercise experience using displays and other device feedback. The systems and methods are configured to create prescriptive exercises based on user profiles, which are then displayed to the user on the portable electronic devices during the execution of the exercise program on the exercise equipment.
Writing logs in a distributed information system are provided. The logs are related to a transaction instance. A method includes retrieving a log proxy instance from a log server. The log proxy instance includes information related to the transaction instance and information related to currently running component in the transaction instance. The method also includes writing the logs for the transaction instance based on the log proxy instance. Aspects of the present invention further provide a method of facilitating writing logs and analyzing logs. Moreover, the embodiments further provide corresponding apparatuses and system.
To prevent the complete omission of a log due to log information which is destroyed since it cannot be transmitted, when the communication log information of a plurality of layers is transmitted and a log is displayed at a transmission destination. A test device 10 includes a log header generating unit 151 that generates a log header including layer identification information and time information, a log data generating unit 152 that generates log data including communication data, a test-device-side transmitting unit 17 that transmits the log header and the log data to a display device 30, and a priority control unit 19 that performs control such that the log header is transmitted prior to the log data. A display control unit 35 of the display device 30 displays a log such that the log header is associated with the log data.
A method of monitoring clinician responsiveness to alarms generated by patient monitors. The method includes the steps of: receiving an alarm event from a patient monitor at a central monitor, determining an alarm initiation time for the alarm events, receiving at the central monitor an acknowledgement of the alarm event by a clinician, calculating an event response time as the time between the alarm initiation time and the acknowledgement of the alarm event by the clinician, determining a total number of alarm events, determining event response times for each of the total number of alarm events, and computing a responsiveness score based on the event response time for each of the total number of alarm events.
Systems and methods for processing an index are described. Searches are scope checked more efficiently using a forward lookup process based on the size of the requested search scope. In addition, an index is partitioned into separate stores based on a search scope that is learned based on where the user commonly conducts searches. As an example, a separate store may be created for a user's home directory should the user be conducting most of his or her searches in that directory. In addition to limiting the size of the index, during retrieval, intelligent index partitioning avoids the need to scope check a common search location.
Methods, systems, and apparatus, including computer program products, for presenting search query suggestions. In an aspect, content of a resource that is determined to be responsive to a search query is received, and a candidate set of search query suggestions for the search query is suggested based, in part, on search history data associated with the search query. A final set of search query suggestions based on the search history data and the content of the resource and provided for display on a client device.
This specification describes methods, systems, and apparatus, including computer programs encoded on a computer-readable storage device, for non-default location support for publisher side files. In an aspect, location macros are used in content item data. The location macros are specific to vendors that serve the content items. For each content item request for which a publisher specified by the request utilizes a default location for a publisher side file location, the content item data are modified to specify the default location. Conversely, for each request for which the publisher specified by the request utilizes a non-default location for the publisher side file location, the content item data are modified to specify the non-default location.
A method is provided that includes locating a barcode applied to a part of a complex system. The barcode may encode links to respective system-related resources for the part, which may include software-based systems and/or electronic documents. At one or more instances during a lifecycle of the part, then, the method may include scanning the barcode, and decoding the links from the barcode. The method may include displaying the links in a graphical user interface, and affecting navigation of at least one of the links through the graphical user interface to access a respective at least one of the system-related resources for the respective part.
A semantic note taking system and method for collecting information, enriching the information, and binding the information to services is provided. User-created notes are enriched with labels, context traits, and relevant data to minimize friction in the note-taking process. In other words, embodiments of the invention are directed to collecting unscripted data, adding more meaning and use out of the data, and enriching the data with search results for rules and/or linked data provided by computer or network services. Mutable and late-binding to services is also provided to allow private thoughts to be published to a myriad of different applications and services in a manner compatible with how thoughts are processed in the brain. User interfaces and semantic skins are also provided to derive meaning out of notes without requiring a great deal of user input.
Connection pooling is proved in the context of middleware. A request is first received from an application. The received request is forwarded to a back end mechanism. When a response is received from the back end mechanism, as a response to the request, information is obtained from the response. A pool of database connections is maintained with at least a minimum number of connections open, where the minimum number of connections is determined independent of one or more application threads. To store the information in a database, a database connection is allocated from a pool of open database connections created to facilitate access to the database. After the information is stored in the database using the database connection, the database connection is returned to the pool of database connections.
Shared storage architectures and methods are provided. A particular shared storage architecture is a system including shared storage including data and file system metadata separated from the data. The file system metadata includes location data specifying storage location information related to the data. Services are provided from service providers to service consumers through the shared storage.
A proxy server distributes client messages to backend servers based on language. An incoming client message to the proxy server specifies a language to use for queries and other transactions with the backend servers. The proxy server determines a backend server that supports the language and transmits the client message to that backend server. A client message might specify a character set as well for interacting with the backend servers that support languages under a given character set.
Tools and techniques for indexing and searching dynamically changing search corpora are provided. These tools may receive requests to upload documents over a network to an online document repository, and present a user interface to facilitate the upload. The user interface may include devices that are responsive to user activation to grant permission to at least one other user to search for content contained within the documents. Through the user interface, these tools may receive selections from the user related to granting the permission, with the documents being associated with share parameters that incorporate the user selections. Finally, the tools may receive identifications of the documents to be uploaded.
A system and method is disclosed for a remote activity detection process using an analysis of data streams of an entity such as an end user and/or a customer. In an embodiment, the detection process uses the data stream analysis to evaluate an entity's potential involvement in an activity based on individual measures for the entity such as comparison of the entity's data stream to the entity's peers, comparison of the entity's data stream to historical information for the entity, and/or comparison of the entity's data stream to data streams for a known second entity involved in the activity. The detection process may also use other information available which may impact the data points in a data stream, such as premises attributes associated with an entity, demographic attributes for the entity, financial attributes for the entity, and system alerts.
A computer-implemented method for ranking content entities by their associated web pages and search queries is disclosed. The method comprises: at a computer system having memory and one or more processors: performing a textual analysis on one or more predefined websites to identify a plurality of reference web pages, further including determining content information and one or more search queries for each reference web page; for a respective content entity: identifying a subset of the reference web pages and the corresponding search queries based on the content information of the reference web pages and query terms of the corresponding search queries; and determining a popularity ranking for the respective content entity based on user interactions with the identified subset of reference web pages and the corresponding search queries; and selecting at least a subset of the content entities for display to an end user in accordance with their respective popularity rankings.