Abstract:
A system includes at least a plane semi-reflecting mirror, a light source which is configured to emit a continuous illumination and an event camera to generate events when the object exhibits at least one movement. The plane semi-reflecting mirror is arranged so that it reflects at least the illumination toward the event camera in order to dazzle the camera. The system makes it possible to limit the memory and energy consumption required for monitoring.
Abstract:
New platform technologies to actuate and sense force propagation in real-time for large sheets of cells are provided. In certain embodiments the platform comprises a device for the measurement of mechanical properties of cells or other moieties, where device comprises a transparent elastic or viscoelastic polymer substrate disposed on a rigid transparent surface; and a plurality of micromirrors disposed on or in said polymer substrate, wherein the reflective surfaces of the micromirrors are oriented substantially parallel to the surface of said polymer substrate. In certain embodiments the device comprises more than about 1,000,000, or more than about 10,000,000 micromirrors. In certain embodiments the micromirrors comprise a magnetic layer and/or a diffraction grating.
Abstract:
A sensor assembly for measuring a torsion of a rotor blade of a wind turbine generator system includes a first light source configured to generate light and a first transmitter-side polarizer disposed downstream thereof in a direction of light propagation and configured to generate linearly polarized light as a first transmission light. A second light source is configured to generate unpolarized light as a second transmission light. First and second detector elements are arranged and adapted to receive the first and second transmission light. A first receiver-side polarizer is disposed upstream of the first detector element in the direction of light propagation and a second receiver-side polarizer is disposed upstream of the second detector element in the direction of light propagation. An orientation of a polarization plane of the first receiver-side polarizer and an orientation of a polarization plane of the second receiver-side polarizer are different from one another.
Abstract:
The range of operating angles of a position transducer is widened, and its signal-to-noise ratio is improved. The position transducer includes a light source and a detector including at least one pair of photodiodes (PDs) disposed on a predetermined circle. The detector receives light emitted from the light source to output a signal varying depending on the areas of regions where the light is received on two PDs forming a pair. The PDs are formed on separate chips, respectively, and the chips are disposed on a substrate so that one or more pairs of PDs surround the entirety of a predetermined region and have an annular shape as a whole.
Abstract:
A system determines a position of a rotating object in a device and controls the device according to the determined position of the rotating object. The system includes a reflecting region on the rotating object and a light source located in the device. Emitted light is emitted by the light source onto the reflecting region and reflected light is reflected off the rotating object. The reflected light has an intensity. The system also includes a detector that detects the reflected light and measures the intensity of the reflected light. The reflecting region has a feature configured to effect a change in the intensity of the reflected light as the rotating object rotates. The change in the intensity of the reflected light corresponds to a change in a signal associated with a determined position of the rotating object. The device is controlled according to the determined position of the rotating object.
Abstract:
An optical sensor system, comprising refractory plasmonic elements that can withstand temperatures exceeding 2500° C. in chemically aggressive and harsh environments that impose stress, strain and vibrations. A plasmonic metamaterial or metasurface, engineered to have a specific spectral and angular response, exhibits optical reflection characteristics that are altered by varying physical environmental conditions including but not limited to temperature, surface chemistry or elastic stress, strain and other types of mechanical load. The metamaterial or metasurface comprises a set of ultra-thin structured layers with a total thickness of less than tens of microns that can be deployed onto surfaces of devices operating in harsh environmental conditions. The top interface of the metamaterial or metasurface is illuminated with a light source, either through free space or via an optical fiber, and the reflected signal is detected employing remote detectors.
Abstract:
A method for reporting motion information from an electronic device to a remote host device includes: using an optical sensor for sensing the motion information of the electronic device, the optical sensor being configured within the electronic device; and reporting a motion result of the electronic device to the remote host device based on the optical sensor when the electronic device has moved a predetermined distance each time.
Abstract:
A tamper detection system for a utility meter includes an emitter configured to emit light and a detector configured to receive light. The tamper detection system also includes a light modifying feature coupled to an interior surface of a meter cover. An end portion of the light modifying feature is configured to be positioned proximate to the emitter and the detector while the meter cover is in a closed position relative to the utility meter. The light modifying feature is also configured to alter a direction of travel of the emitted light and to direct the emitted light toward the detector while the meter cover is in the closed position relative to the utility meter.
Abstract:
An apparatus, a system and a method are provided for monitoring position of a machine element within a mechanical system and/or cleaning a machine element. A light source and sensor may be positioned within a cylinder. The sensor may detect the intensity of light within the cylinder as a shaft element moves laterally throughout the cylinder. The measurement may indicate the position of the shaft element within the cylinder. In addition, a seal, a wire brush and/or a bronze brush may be placed near an end wall of a cylinder. The seal may surround the shaft element. Furthermore, the shaft element may be coated with a compound, such as a nitrile compound or a ceramic compound or the like. The wire brush and bronze brush may be in contact with the shaft element and may scrape any contaminants, such as weld spatter, which may be deposited on the shaft element.
Abstract:
An optical transducer includes a light source and a light detector mounted on a base member in laterally spaced relation to each other, a deformable membrane overlying the light source and light detector, and a light transparent body between the light source and light detector on one side, and the deformable membrane on the opposite side, such as to direct light emanating from the light source to the membrane, and to direct light reflected from the membrane to the light detector in accordance with the deformations of the membrane. According to the described method of making the optical transducer, the light source and light detector are enclosed in a first casing closed at one end by the base member and open at the opposite end; and the light transparent body is enclosed in a second casing to be closed at one end by the deformable membrane and open at the opposite end. The two casings are attached to each other with their open ends facing each other such that the light transparent body of the second casing overlies the light source and light detector of the first casing.