Abstract:
A railcar system that includes a railcar and a nested sliding gate assembly disposed within the railcar. The nested sliding gate assembly includes an upper deck, a lower deck, and a driving system. The upper deck has a plurality of holes. The lower deck is positioned below the upper deck and has a plurality of discharge ports. The driving system positions the lower deck in a first position with respect to the upper deck, where the holes of the upper deck and the discharge ports of the lower deck do not align when the lower deck is in the first position. The driving system also positions the lower deck in a second position with respect to the upper deck, where the holes of the upper deck and the discharge ports of the lower deck at least partially align when the lower deck is in the second position.
Abstract:
The present invention relates to an equipment envelope (10) for a hopper wagon. The equipment envelope comprises a housing (11) that is configured to define an enclosed cavity storage space (12) in a bulk commodities storage chamber of a hopper wagon body, in which hopper wagon control means and/or other component parts of the hopper wagon (30) can be housed for use. The equipment envelope may be configured to be arranged in the chamber such that it is located above a hopper wagon bogie (40), preferably adjacent a closable outlet. The equipment envelope may comprise a first end wall (111) that is configured to extend at a predetermined incline angle α towards the outlet. Depending on the configuration of the hopper wagon, the equipment housing may be configured to be located adjacent a further or alternative closable outlet. The equipment envelope may comprise a second end wall (112) that is configured to extend at a predetermined incline angle β towards the further outlet. The first end wall and second end may be configured to meet at an apex (14) such that the equipment envelope has a cross-sectional profile of a triangle, preferably a scalene triangle. A further aspect of the present invention relates to a hopper wagon comprising at least one equipment envelope.
Abstract:
A covered hopper railcar includes a roof portion and a plurality of side portions coupled to the roof portion. The plurality of side portions and the roof portion at least partially define a longitudinal centerline axis and a transverse centerline axis that is substantially perpendicular to the longitudinal centerline axis. The covered hopper railcar also includes a bottom assembly coupled to the side portions. The bottom assembly includes a plurality of bottom side sheets and a trough assembly coupled to the plurality of bottom side sheets. The trough assembly is substantially parallel to and substantially aligned with the longitudinal centerline axis.
Abstract:
A baffle comprising a panel body that is mountable on a wall of a hopper adjacent to an edge of an outlet of a hopper and is arrangeable in a projecting position, to project in a generally downwardly direction beyond the edge of the outlet so as to restrict the spread of bulk commodities past the panel body as the bulk commodities discharge through the outlet. The panel body is arrangeable in the projected position to project in a generally downwardly direction beyond the edge of the outlet and between a gap space defined by the edge of the outlet and an outlet cover arranged in an open position. The baffle may comprise rotatable mounting means for rotatably mounting the panel body on the wall of the hopper such that the panel body is movable between the projected position and a retracted position, where the panel body is arranged so as to provide a minimal or no barrier effect. The baffle may comprise drive means to drive the panel body between the projected position and the extended position. The drive means may be self-actuating means and the self-actuating means are optionally configured to incite the rotation of the panel body between the projected position and the retracted position as the outlet cover moves between an open position and a closed position. The self-actuating means may comprise slidable coupling means for slidably coupling the panel body to the outlet cover and optionally the slidable coupling means comprise one or more low friction contact members mounted on a lower edge and/or side edge of the panel body and arranged in mating contact with the outlet cover.
Abstract:
A open top railcar comprises a pair of spaced trucks, a railcar body supported on the trucks, the body comprising a pair of side structures on opposed sides of the railcar and a pair of end structures on opposed ends of the railcar, and a top chord extending the length of the side structures and the width of the end structures, wherein the top chord includes an inwardly sloped top surface configured to discharge lading toward the interior of the railcar through gravity. The railcar may further include corner cap, or end cap members, with each corner cap, or end cap including inwardly sloped top surface configured to discharge lading toward the interior of the railcar through gravity. The railcar may be a hopper railcar having a plurality of discharge chutes forming pockets for the body which open to the interior with a plurality of door operated through a pneumatic door operating system and further including a manual door operating override for each door. The railcar may include a nonmetallic touch pad housing secured to the side structures and including a plurality of touch plates mounted in the housing configured for operating selective doors.
Abstract:
A open top railcar comprises a railcar body supported on the spaced trucks, the body comprising side and end structures on the railcar, and a top chord extending the length of the side structures and the width of the end structures, wherein the top chord includes an inwardly sloped top surface for discharging lading toward the railcar interior. The railcar may further include corner cap, or end cap members, including inwardly sloped lading discharging top surfaces. The railcar may be a hopper railcar having discharge chutes forming body pockets opening into the interior with pneumatic doors having manual override for each door. The railcar may include a nonmetallic touch pad housing secured to the side structures and including a plurality of touch plates mounted in the housing configured for operating selective individual doors and combination of doors.
Abstract:
A hopper car gate with a frame, a door supported by the frame and horizontally moveable between open and closed positions, a rack mounted to the door, and first and second shafts supported by the frame. A first gear mounted to the first shaft engages the rack. Second and third mating gears are mounted to the first and second shafts, respectively. A hopper car with first and second hopper car gates mounted to first and second hoppers, respectively. Doors of the gates move horizontally to an open position in opposite directions from each other with shaft rotation in the same direction. A hopper car gate opening and closing system including a hopper car gate with a pair of shafts, a gear mounted on each shaft, and racks that are positioned to engage the gears as the gate moves with respect to the racks.
Abstract:
A railroad hopper car discharge outflow is controlled by closure members, at least one of which is movable. The closure members (or doors) are hingeless, being mounted on four bar linkages, such that the distal edge of the doors sweeps predominantly horizontally while the proximal edge of the door moves predominantly upwardly. The doors move through noncircular arcs, such that the size of the vertically projected door opening is abnormally large compared to the clearance heights of the door during opening and closing. The doors are driven by a transverse drive linkage that is driven by a transversely mounted actuator. The actuator may be mounted in an accommodation in the lee of slope sheets between adjacent hoppers in a mid-span portion of the car. Drive from the actuator is carried to a pair of symmetrically mounted doors through drive train linkages.
Abstract:
A railway hopper car is provided. The railway hopper car includes an upper portion and a lower portion. The upper portion includes first and second sidewalls, and first and second end walls. The lower portion includes at least two cargo wells and a longitudinal boundary extending between the cargo wells. The upper and lower portions define an interior volume of the hopper car. The railway hopper car further includes a roof panel and a first support assembly. The roof panel includes an access opening extending longitudinally over at least a portion of the cargo wells. The first support assembly is coupled to an inner surface of the first sidewall, and extends between a top edge and a bottom edge of the first sidewall. The first support assembly is positioned proximate to the longitudinal boundary, and is configured to only partially extend into the interior volume of the hopper car.
Abstract:
A hopper car has arcuate side sheets that are bent over the forming members of the structure to give a generally outwardly bulging shape. The upper margin of the side sheet is kinked inwardly of the radius of curvature of the larger portion of the side sheet more generally, such as may tend to impose a bending moment on the large, relatively thin side sheet panels. This may in turn tend to urge or bias those panels to a bulging position or shape, rather than a sagging, deflected, or inwardly dented position.