Abstract:
The voltage outputs of a charge coupled device (CCD) are examined to determine the hot pixels. A black pixel is determined to be a hot pixel if the voltage level associated with the black pixel exceeds the voltage level of an adjacent (e.g., previous) pixel by a threshold. If the present black pixel is determined to be a hot pixel, a previous black pixel is substituted for a present black pixel in the computation of the offset. However, if the first black pixel is determined to be a hot pixel, the second black pixel is used in lieu of the first black pixel. The offset is iteratively adjusted by an amount proportionate to an error determined based on the black pixels. The adjustment may be clipped by a threshold to avoid bands in the image.
Abstract:
To solve the problems on camera control such as control of the zoom lens of a camera, caused by the delay time from the time when camera control is performed up to the time when a camera-controlled image arrives, the electronic zoom processing for a displayed image is executed in accordance with the zoom control command, when a zoom control command for the camera is input.
Abstract:
An imaging device having a configurable focus area comprising: (a) an imaging system for generating a video signal of an image within a field of view, wherein the imaging system is adapted to adjust the focal point of the image according to an adjustment signal; and (b) a focusing system comprising: (i) a configuration device for facilitating configuration of a focus area within the field of view; and (ii) autofocusing circuitry coupled to the imaging system and the configuration device, the autofocusing circuitry being configured for correlating a configured focus area to a portion of the video signal, analyzing the portion for resolution, and effecting an adjustment signal to the imaging system to adjust the focal point of the image to improve the resolution of the configured focus area.
Abstract:
An electronic camera includes a camera main body and a lens barrel arranged on the front face of the camera main body to extend forward therefrom, and to hold an image-pickup lens therein. A U-shaped protruding cover is attached to the lens barrel to extend downward therefrom. The bottoms of the camera main body and the protruding cover are level with each other. First and second windows are arranged on the front face of the protruding cover. A lamp for emitting an auto-focus assist light is arranged in the protruding cover to face the first window. A sensor for receiving a light signal from a remote control is arranged in the protruding cover to face the second window.
Abstract:
A previewing system has a remote control that is detachably fixed to an image-capturing device. The remote control comprises a display panel and a control panel. A user can detach the remote control from the image-capturing device and use the control panel of the remote control to remotely control functionality of the image-capturing device. Furthermore, with the display panel, the user can preview an image that the image-capturing device will capture.
Abstract:
A three-dimensional image capturing device obtains distance information of a standard subject, to which the distance from the device to each point of a surface of the standard subject is known. Based on the distance information of the standard subject, correction data is sensed, which is an error of distance information sensed when using a measurement subject, to which the distance from the device to each point of a surface of the standard subject is unknown. A distance measurement is performed for the measurement subject, so that distance information is obtained. The distance information of the measurement subject is corrected using the correction data.
Abstract:
An image processing apparatus includes a camera unit providing an image of a shot object, a marker detection unit detecting an object from the image output from the camera unit and comparing the configuration of the detected object with a predetermined configuration stored in a storage unit, and an image processing unit converting at least a partial region of the image output from the camera unit into an image differing from the output image when the configuration of the object is analogous to the predetermined configuration as a result of comparison by the marker detection unit. Since at least a partial region of the output image is converted according to the presence of an object in the output image, a particular region associated with the object, for example a region of a person in the image, can be converted.
Abstract:
A focusing device is provided with an image sensor having a plurality of light receiving elements which output analog video signals, respectively. The analog video signal output by the image sensor is converted into an 8-bit data and contrast is calculated based on the 8-bit data. If thus calculated contrast is lower than a predetermined reference contrast, then the analog video signal is converted into a 9-bit data, and the contrast is calculated again.
Abstract:
A method of processing a digital image comprising: capturing the image utilizing an adjustable focusing technique; utilizing the focusing settings as an indicator of the position of structures within the image; and processing the image, utilizing the said focus settings to produce effects specific to said focus settings.
Abstract:
If a digital still camera is set for a manual focus adjustment and the luminance of a subject has a value less than a predetermined threshold value, the amplification factor of an amplifier circuit is set to a display amplification factor higher than that of the ordinary amplification factor. A video signal that has been amplified at this high amplification factor is applied to a liquid crystal display unit of the camera. A bright image of the subject is thus displayed on the display unit. Since the image of the subject is made easier to see owing to the increased brightness thereof, manual focusing is easy even when photography is performed at dark location.