Abstract:
An arc bypass assembly for use in a circuit breaker includes: an arc chute including a base, two arc sides extending from the base, and a plurality of arc plates arranged within the two arc sides, the arc chute structured to dissipate an arc upon opening of primary contacts of the circuit breaker during a high current event; an arc horn extending outwardly from a first edge of the base of the arc chute toward a primary stationary contact coupled to a line-in conductor, the arc horn structured to attract the arc; and an arc bypass wire coupled to the base of the arc chute at one end and to a secondary stationary arm of the circuit breaker at another end, where the arc bypass assembly is structured to redirect a portion of current generated during the high current event to the load.
Abstract:
An electric arc breaker device comprises a contact zone in which there are present at least one stationary contact and at least one movable contact that is movable relative to the stationary contact. The contacts are capable of being put into contact with each other and of being separated from each other. An arcing horn is present facing the stationary contact, the height hc of the arcing horn being greater than or equal to the height ht of the stationary contact, and the arcing horn presenting a folded-back arc switching portion extending in a direction away from the stationary contact.
Abstract:
An electric arc breaker device comprises a contact zone in which there are present at least one stationary contact and at least one movable contact that is movable relative to the stationary contact. The contacts are capable of being put into contact with each other and of being separated from each other. An arcing horn is present facing the stationary contact, the height hc of the arcing horn being greater than or equal to the height ht of the stationary contact, and the arcing horn presenting a folded-back arc switching portion extending in a direction away from the stationary contact.
Abstract:
Circuit breakers include an arc chamber and an arc chute comprising a plurality of arc plates in the arc chamber. The circuit breakers also include a line conductor assembly with at least one arc runner attached to a line conductor in the arc chamber. The arc runner can extend below but adjacent to a bottom arc plate to thereby guide a respective arc into the arc chute.
Abstract:
An arc runner assembly for use in a circuit interrupter provides a pair of arc runners that are situated at opposite sides of a stationary contact of the circuit interrupter. If used in a DC application, the arc runner assembly is configured to communicate a positive DC arc along one of the arc runners in a first direction away from the stationary contact and is further configured to communicate a negative DC arc along the other arc runner in another direction away from the stationary contact. The arc runner assembly additionally includes a support that is electrically engaged with a conductor of the circuit interrupter on a surface opposite that on which the stationary contact is disposed. The improved arc runner assembly advantageously facilitates extinction of electrical arc and extinguishes both positive and negative DC arcs in a DC application.
Abstract:
An arc runner assembly for use in a circuit interrupter provides a pair of arc runners that are situated at opposite sides of a stationary contact of the circuit interrupter. If used in a DC application, the arc runner assembly is configured to communicate a positive DC arc along one of the arc runners in a first direction away from the stationary contact and is further configured to communicate a negative DC arc along the other arc runner in another direction away from the stationary contact. The arc runner assembly additionally includes a support that is electrically engaged with a conductor of the circuit interrupter on a surface opposite that on which the stationary contact is disposed. The improved arc runner assembly advantageously facilitates extinction of electrical arc and extinguishes both positive and negative DC arcs in a DC application.
Abstract:
A bent roundabout current path (8d) rising in the shape of an inverted U is formed between a horn portion (8a) and the end portion of a fixed contact (1) where an arcing horn (8) is joined to the fixed contact (1). An arc (12) is subjected to the electromagnetic force directed to an arc-extinguishing chamber side from the magnetic field H of an current I flowing through the arc-(12)-side conductor portion of the roundabout current path (8d). Therefore, the moving-contact-(4)-side foot of the arc (12) is retained in the leading end portion of the moving contact (4) and not returned to the movable contact (3) side.
Abstract:
A circuit interrupter comprising a stationary contact assembly having a stationary contact element securely attached to a stationary conductor, and a movable contact assembly having a movable contact element secured on a movable contact arm and operable in response to an overcurrent between ON and OFF positions relative to the stationary contact assembly. An arc runner is attached to the stationary conductor by a single rivet and includes an elongated main body extending along the stationary conductor for expanding an electric arc generated between the movable and the stationary contact elements upon current interruption. The circuit interrupter further comprises a pair of tabs mounted to the arc runner for defining a pair of sloped engagement surfaces for receiving and positioning therebetween the stationary conductor when the stationary contact assembly is assembled.
Abstract:
A circuit breaker characterized by a movable contact on a contact-carrying arm movable between open and closed positions of a stationary contact mounted on one leg of a U-shaped conductor with another leg secured to the circuit breaker housing, a U-shaped brace between the legs and having a first support supporting and insulated from the other leg and having second supports on opposite sides of the one leg for retaining it against opposing repulsion magnetic forces due to current overloads.
Abstract:
A stationary contact assembly is provided for a circuit breaker which has a base, a line terminal and an arc chute. The stationary contact arm is J-shaped and formed from a single piece of conductive material which has a contact affixed to the short leg of the J and is connected to the line terminal. The short leg of the J has a length sufficient for creating electromagnetic blow open forces in response to current flow of a preselected magnitude. An arc runner is positioned between the legs of the J for drawing out an arc into the arc chute and intensifying the electromagnetic repulsion forces.