摘要:
CERMET fuel element includes a fuel meat of consolidated ceramic fuel particles (preferably refractory-metal coated HALEU fuel kernels) and an array of axially-oriented coolant flow channels. Formation and lateral positions of coolant flow channels in the fuel meat are controlled during manufacturing by spacer structures that include ceramic fuel particles. In one embodiment, a coating on a sacrificial rod (the rod being subsequently removed) forms the coolant channel and the spacer structures are affixed to the coating; in a second embodiment, a metal tube forms the coolant channel and the spacer structures are affixed to the metal tube. The spacer structures laterally position the coolant channels in spaced-apart relation and are consolidated with the ceramic fuel particles to form CERMET fuel meat of a fuel element, which are subsequently incorporated into fuel assemblies that are distributively arranged in a moderator block within a nuclear fission reactor, in particular for propulsion.
摘要:
Composite structures are provided whose composite matrix is a fully-dense (greater than 95%) magnesium oxide-containing phase and whose entrained phase, by virtue of its' decomposition temperature or chemical reactivity, would otherwise not be fabricable. Notably, a methodology is provided whereby a range of composite structures are formed by applying an advanced manufacturing technique and a blend of ceramic powder whose sintering is enhanced by small amounts of a metal halide sintering aid. This methodology and process significantly lowers the processing temperature of refractory ceramics such as magnesium oxide allowing formation of ceramic bodies incorporating phases such as metal hydrides, fragile ceramic phases, and highly reactive species such as beryllides. In all cases, the final product is substantially-free, or even devoid, of the metal halide sintering aid, resulting in a phase-pure ceramic matrix composed of the host phase and the entrained phase.
摘要:
A nuclear fuel pellet for a nuclear reactor is disclosed. The pellet comprises a metallic matrix and ceramic fuel particles of a fissile material dispersed in the metallic matrix. The metallic matrix is an alloy consisting of the principle elements U, Zr, Nb and Ti, and of possible rest elements. The concentration of each of the principle elements in the metallic matrix is at the most 50 molar-%.
摘要:
Carbide-based fuel assembly includes outer structural member of ceramic matrix composite material (e.g., SiC—SiC composite), insulation layer of porous refractory ceramic material (e.g., zirconium carbide with open-cell foam structure or fibrous zirconium carbide), and interior structural member of refractory ceramic-graphite composite material (e.g., zirconium carbide-graphite or niobium carbide-graphite). Spacer structures between various layers provide a defined and controlled spacing relationship. A fuel element bundle positioned between support meshes includes a plurality of distributively arranged fuel elements or a solid, unitary fuel element with coolant channels, each having a fuel composition including high assay, low enriched uranium (HALEU). Fuel assemblies are distributively arranged in a moderator block and the upper end of the outer structural member is attached to a metallic inlet tube for hydrogen propellant and the lower end of the outer structural member is interfaced with a support plate, forming a NTP reactor.
摘要:
Systems and methods for manufacturing metal fuel are described. Methods for fabricating a metal-fuel-matrix cermet nuclear fuel may include crushed ceramic particles combined with metallic fast reactor fuel via bottom pour casting or injection casting, or a powdered metallurgical process. A maximum quantity of crushed ceramic particles added to the metallic fuel must not exceed that which would fail to yield a continuous matrix of metal fuel. After a short irradiation period, the microstructure of the fuel may be substantially identical to that of injection cast fuel, without crushed ceramic particles, irrespective of the fabrication process. Thus, the extensive existing database for injection cast fuel, without crushed ceramic particles, may be an excellent indicator of expected irradiation performance. Each of the processes may contribute to a solution of the spent nuclear fuel problem and may denature Pu239 during the process.
摘要:
Coated nuclear fuel particles are made by first pyrolytically depositing low density carbon onto fuel cores and thereafter depositing a fission-product retentive, higher density exterior coating. In the improvement, cores of uranium, thorium or plutonium oxides are coated by co-depositing silicon carbide or zirconium carbide along with the low density pyrocarbon to create a uniform dispersion. Silicon or zirconium is deposited in an amount equal to at least about one atom for each fission anticipated during the fuel lifetime.
摘要:
There is provided a process for the production of fuel compacts consisting of an isotropic, radiation resistant graphite matrix of good heat conductivity having embedded therein coated fuel and/or fertile particles for insertion into high temperature fuel elements by providing the coated fuel and/or fertile particles with an overcoat of molding mixture consisting of graphite powder and a thermoplastic resin binder. The particles after the overcoating are provided with hardener and lubricant only on the surface and subsequently are compressed in a die heated to a constant temperature of about 150.degree.C., hardened and discharged therefrom as finished compacts.
摘要:
1. In a process for producing a tenacious zirconium carbide coating on graphite impregnated with uranium comprising the steps of impregnating a piece of porous graphite with uranyl nitrate dihydrate dissolved in tertiary butyl alcohol, enveloping said graphite piece in clean tertiary butyl alcohol solvent to dissolve said uranyl nitrate dihydrate impregnant from the surface of said graphite into a liquid, enveloping said graphite piece in liquid nitrogen to freeze said impregnated solution, evaporating said frozen solvent therefrom, whereby said uranyl nitrate dihydrate is deposited within said graphite pores, converting said uranium to the carbide by the application of heat, outgassing said graphite, applying a coating of finely divided zirconium suspended in liquid containing a carbonaceous binder onto said graphite surface, evaporating said liquid and converting said zirconium to the carbide by the application of heat whereby a zirconium carbide coating is obtained.
摘要:
As compositions of matter non-agglomerating microspheres of oxides in the 5 to 500 micron size range. The particles have a uniform crystallite structure with a grain size of 1 micron or less, and a sigma value derived from the equation Sigma D/Ds of about 1 to 1.3.
摘要翻译:作为5至500微米尺寸范围内的氧化物的物质非附聚微球的组合物。 颗粒具有晶粒尺寸为1微米或更小的均匀微晶结构,并且由方程式Sigma = D / Ds得到约1至1.3的σ值。