Abstract:
A method for analyzing skin response waveform information obtained by measuring skin impedance with a voltage of a predetermined frequency. A current value at the start of polarization caused by the application of the voltage is determined, followed by determining a current value after a predetermined amount of time from the start of the polarization. A current value after termination of the polarization (value NT) is then determined and the difference between the current value at the start of the polarization and after the predetermined amount of time from the start of the polarization (value A) is determined. The difference between the current value after the predetermined amount of time from the start of the polarization and the value NT (value B) is determined, followed by analyzing the skin response waveform information using the ratios A/B, B/A and the value NT.
Abstract:
A digital eddy current proximity system including a digital impedance measuring device for digitally measuring the proximity probes impedance correlative to displacement motion and position of a metallic target object being monitored. The system further including a cable-length calibration method, an automatic material identification and calibration method, a material insensitive method, an inductive ratio method and advanced sensing characteristics.
Abstract:
In a phase measurement apparatus having a phase detector for receiving a first frequency signal from a variable frequency signal generator and a second frequency signal from the generator through a calibration member having good linear frequency vs. phase characteristics and for detecting the input signals and outputting a phase difference signal, the apparatus further includes a first phase ratio operation section for changing an output frequency of the generator, receiving phase difference signals at frequencies as integer multiples of a phase difference of 2, and calculating a first frequency vs. phase difference ratio for the calibration member a second phase ratio operation section for changing the output frequency of the generator in a relatively narrow frequency range, receiving phase difference signals at upper and lower limit frequencies of the frequency range, and calculating a second frequency vs. phase difference ratio and a calibration section for comparing the first and second frequencies vs. phase difference ratios, increasing the gain of a variable gain amplifier for amplifying the phase difference signal when the second frequency vs. phase difference ratio is smaller than the first frequency vs. phase difference ratio, and decreasing the gain of the variable gain amplifier when the second frequency vs. phase difference ratio is larger than the first frequency vs. phase difference ratio.
Abstract:
A high resolution, high reliability, magnetically coupled, linear position sensor (50) provides a means of determining the position of an object (51) using a methodology that does not require a direct mechanical or physical connection between the sensor (50) and the object (53) whose position is to be determined. The sensor (50) can operate in a high temperature, high pressure fluid with exposure to moderate levels of radioactivity. The sensor (50) utilizes dual rod elements with a magnetically coupled bridging contact slider (51) supported by a ceramic guide all of which are contained within a non magnetic pressure housing. The topology of the sensor (50) supports at least two types of measurement techniques, Time Domain Reflectometry (TDR) as well as linear resistive to determine target (51) position.
Abstract:
A ratiometric circuit (40) includes a differential capacitive sensor (42) for sensing a change in capacitance, a differential capacitive detector (46) operatively connected to the differential capacitive sensor for detecting a change in the capacitance of the differential capacitve sensor, an error voltage generator (48) operatively connected to the differential capacitve detector for generating a corrective voltage in response to the detected change in capacitance, and a bias circuit (50) operatively connected to the differential capacitive sensor for generating a bias voltage inversely proportional to and independent of a supply voltage for maintaining the ratiometricity between an output voltage of the differential capacitive sensor and the supply voltage.
Abstract:
MOSFETs are provided to connect the sensor input terminals of a ratiometric output sensor to a pair of power terminals, and the gate of each MOSFET is coupled to the opposite power terminal so that both MOSFETs are rendered conducting to power the sensor when a supply voltage of a predetermined polarity is connected across the power terminals but one of the MOSFETs is rendered non-conducting when a voltage of the opposite polarity is so applied. The MOSFET that is rendered non-conducting is oriented so that any internal source-drain diode does not bypass current around the MOSFET when voltage of the opposite polarity is applied. Optionally, over-voltage protection is provided by an input voltage sensor controlling the other MOSFET through a third MOSFET.
Abstract:
A label, a method of providing a label, and a method of applying a label are disclosed. The label and methods provide a permanently adhering base label portion, semi-permanently affix a removable portion of a secondary label portion at least to at least a portion of the base layer label, permanently affix a non-removable portion of a secondary label portion to a at least a portion of the base layer label, and apply at least a portion of an RF ID tag to a non-external face of the removable portion.
Abstract:
A digital eddy current proximity system including a digital impedance measuring device for digitally measuring the proximity probes impedance correlative to displacement motion and position of a metallic target object being monitored. The system further including a cable-length calibration method, an automatic material identification and calibration method, a material insensitive method, an inductive ratio method and advanced sensing characteristics.