摘要:
In a method apparatus for measuring the temperature of a semiconductor substrate during processing thereof in a processing chamber, a resonant circuit formed on the substrate surface is energized by an electromagnetic field radiation device, and disturbances in the electromagnetic field are detected to determine the resonant frequency of the resonant circuit. The temperature of the substrate is determined as a function of the resonant frequency. The substrate is moved into and out of processing chamber by a transfer arm, and the radiation device is disposed on the transfer arm or mounted on the processing chamber. Multiple resonant circuits may be provided, which are energized by movement of the transfer arm, without transferring the substrate.
摘要:
The apparatus which is located separately from the RTD includes means for measuring the resistance of a plurality of RTDs present at a selected site, the RTDs being those of a number of different RTD types. The module includes means for storing the resistance/temperature map for each of the plurality of RTDs and for determining the temperatures associated with said resistances from the resistance/temperature maps. The resulting plurality of temperatures for each RTD, respectively, is then transmitted in a known order to a remote protective relay which determines the correct temperature for each RTD connected to the module.
摘要:
A temperature sensor incorporating flexible circuit technology. A flexible circuit sensor subassembly is composed of a flexible printed circuit substrate on which is printed a sensor circuit. In a preferred example the flexible circuit sensor subassembly, the sensor circuit has a sensor at a distal end, as for example a surface mount device (SMD) thermistor, a plurality of trace pads at a proximate end, and an interconnecting conductive trace between each trace pad and the sensor. A crimp terminal is respectively crimped onto each trace pad to provide a flexible circuit sensor assembly, wherein the crimp terminals are configured as needed for interfacing with an external circuit. The location of the sensor may be selectively located anywhere on the conductive traces to thereby easily size the probe length of the flexible circuit sensor subassembly to suit a any particular application and fit into any housing. A housing id molded over the flexible circuit sensor assembly. The housing either alone or located in an external shell provides a temperature sensor for a particular purpose. In a variation of the flexible circuit sensor assembly, electronic components can be integrated with the sensor circuit to provide a smart sensor circuit, which may include multiple sensing devices.
摘要:
The present invention provides a thermal sensor circuit for sensing the temperature of an integrated circuit chip, the thermal sensor circuit including: an output comparator for comparing a reference voltage, Vref, with a sensed voltage, Vsense, the sensed voltage being measured over a sensing resistor relative to the ground potential of the circuit; a first circuit to which a reference voltage line in connected to measure Vref; a first current mirror providing a first current input to the first circuit and to a compensation circuit; and second current mirror providing a second current input to the compensation circuit and to the sensing resistor. The compensation circuit provides a current gain, defined as the ratio of the second current input to the first current input, for compensating for variations in Vref due to variations of the characteristics of the thermal sensing circuit arising from a manufacturing process of an integrated circuit chip on which the thermal sensor circuit is made by adjusting the second current input in dependence on the variations of the characteristics to thereby vary Vsense along with Vref.
摘要:
A multi-channel remote diode temperature sensor that receives current flow across a plurality of remote diodes on a plurality of channels at a single negative data pin, is small in size and has reduced noise coupling between channels at the common negative data pin. The noise coupling of the multi-channel remote diode temperature sensor is minimized by placing an output of a low impedance buffer in electrical communication with the negative data pin. The voltage produced by the low impedance buffer automatically stabilizes the common mode voltage at the negative data pin. The size is minimized by configuring all channels of the multi-channel remote diode temperature sensor to share the sole negative data pin, thereby reducing pin count.
摘要:
There is disclosed a method for continuously monitoring temperature at multiple locations within a controlled temperature unit (CTU) using RTDs that can be removed and reinserted. The key to the method is the collection of data using an RTD fixed in a phenolic thermowell, which in turn is inserted through a polytetrafluoroethylene-coated sleeve in the wall of the CTU. The temperature information is transmitted from a data module to an interfaced computer system where it may be presented to the operator in a graphical, tabular or text format or stored in memory. The temperature probes are easily removable so as to facilitate calibration without disruption of the contents of the CTU and can be consistently replaced in the same location within the CTU.
摘要:
In a three-wire RTD interface, a known current is connected to a first lead during a first measurement interval. In this configuration, current is directed to the first lead and into an RTD. This results in a first signal indicative of a first voltage drop resulting from the voltage drops across the RTD and the lead resistance of the first lead. During a second measurement interval, current is directed through a second lead having a lead resistance substantially identical to the lead resistance of the first lead. This results in a second signal indicative of the voltage drop resulting from the second lead. The first signal, the second signal, and the known current are then combined to eliminate the effect of the lead resistance and to determine the resistance of the RTD.
摘要:
For detecting the temperature of a fluid, particularly a flowing liquid or gaseous medium, in the hollow space of a housing, a temperature-measuring element is provided that can be connected to an evaluation device via a plug arrangement and is arranged in a protective tube of a sensor housing, which is closed on one side, and with a connection piece firmly affixed thereto. The protective tube projects at least with its tip into an opening of the hollow space that is sealed off from the outside atmosphere using an elastic O-ring. The temperature-measuring element is arranged in the region of the tip of the protective tube on one end of a longitudinally extending circuit board and is connected via strip conductors to the plug arrangement that leads to the outside. The plug arrangement is surrounded by a screw sheath of the sensor housing, which is firmly connected to the protective tube and is provided with a threading that projects into the housing of the hollow space for the purpose of mounting.
摘要:
The invention relates to a reader for an electromagnetic radiation detection element comprising: at least one integration capacitor (16) to integrate electrical charges output by the said detection element, an amplifier (18) with a high impedance terminal (20) connected to the integration capacitor (16) and a low impedance terminal connected to an output stage (22), and means (24, 27) of isolating the integration capacitor (16) from the detection element when the capacitor voltage exceeds a set value. According to the invention, the comparator means are connected to the low impedance terminal (50) of the amplifier (18). Application to sensors in matrices.
摘要:
The resistance of an air-fuel-ratio sensor element is determined from current detected before changing an applied voltage to the sensor and current detected when a predetermined period elapses after changing the applied voltage to the sensor. A resistence detector includes operational amplifiers, resistors and transistors. The applied voltage is changed by switching the transistors to more accurately detect a resistance value.