Abstract:
A method for the recovery of zinc from zinc containing materials using a smelting apparatus for smelting a metalliferous feed material, wherein the smelting apparatus includes a smelting vessel, a smelt cyclone mounted on the smelting vessel and in connection with the inside of the smelting vessel and an off-gas duct connected to the smelt cyclone, and wherein the method includes the steps of: injecting the feed material with a carrier gas into the smelt cyclone, injecting an oxygen containing gas into the smelt cyclone, injecting coal with a carrier gas into the smelting vessel, injecting an oxygen containing gas into the smelting vessel, optionally injecting fluxes with a carrier gas into the smelting vessel, wherein the zinc containing materials are injected into the smelt cyclone and/or into the smelting vessel.
Abstract:
A method and recovering method of recovering zinc oxides and other metal oxides having an injection chamber where a mixture of natural gas and oxygen is formed and then ignited to form high temperature combustion gases of greater than 2000° C. with a high concentration of carbon monoxide. Then, the mixture is transported through a quiescent chamber to a feed chamber where the ignited high temperature combustion gases are mixed with finely divided material, including EAF dust. The mixture is transported to a reaction chamber, wherein zinc vapor and other metal vapors and molten slag particles are formed. The zinc vapor and other metal vapors are separated from the molten slag particles and transported to an insulated plenum. Zinc vapor and other metal vapors are mixed with air and become airborne zinc oxide and other metal oxides. The airborne zinc oxide and other metal oxides are collected.
Abstract:
The blast furnace in the present invention comprises a V-shaped or an inclined hearth, tuyeres disposed along said hearth, a tap hole for discharging matte and/or slag, said tap hole being disposed at the lowest part of the hearth, and dampers having V-shaped or inclined fore end, each of said dampers being disposed to agree with said tuyeres. The present blast furnace, when employed for smelting by feeding briquetted Zn bearing materials as the material thereto and blowing preheated air therein through the tuyeres disposed along the hearth, displays an improved smelting efficiency in separating and recovering volatile valuable metals and non-volatile valuable metals.
Abstract:
A method for the recovery of zinc from zinc containing materials using a smelting apparatus for smelting a metalliferous feed material, wherein the smelting apparatus includes a smelting vessel, a smelt cyclone mounted on the smelting vessel and in connection with the inside of the smelting vessel and an off-gas duct connected to the smelt cyclone, and wherein the method includes the steps of: injecting the feed material with a carrier gas into the smelt cyclone, injecting an oxygen containing gas into the smelt cyclone, injecting coal with a carrier gas into the smelting vessel, injecting an oxygen containing gas into the smelting vessel, optionally injecting fluxes with a carrier gas into the smelting vessel, wherein the zinc containing materials are injected into the smelt cyclone and/or into the smelting vessel.
Abstract:
A tuyere for a blast furnace, the main body of the tuyere being in the form of a tube with a central bore and the nose portion of the tuyere having a downwardly-inclined hood-like extension of the upper wall of the tube, whereby gas passing through the nose of the tuyere is deflected downwardly by the said extension, which extension has a gas outlet aperture of greater area than the cross-sectional area of the bore of the tube.
Abstract:
A DRY CROSSOVER DUCT WITHOUT IRRIGATION MEANS FOR CONVEYING ZINC BLAST FURNACE EXIT GASES, CONNECTS A CONDENSER WITH A SCRUBBING TOWER, THE DUCT BEING SLOPED UPWARDLY TOWARDS THE SCRUBBING TOWER TO RETURN LIQUID METAL TO THE CONDENSER. THE SCRBBING TOWER INCLUDES SPRAYS FOR COOLING AND SATURATING THE GASES IN SPACE WITHIN THE SCRUBBING TOWER IN ORDER TO AVOID ACCRETION AT THE END OF THE DUCT OR TOWER.
Abstract:
The present invention relates to a method for recovering zinc from zinc-containing materials, especially from zinc-containing materials recovered from waste gases in metallurgical smelting processes. Particulate zinc-containing materials are agglomerated together with a carbonaceous reduction material and optionally slag forming materials, and are supplied to a gas tight closed electrothermic smelting furnace containing a molten bath kept at a temperature between 1200.degree. and 1700.degree. C. in which the agglomerates are smelted and subjected to selective reduction and volatilization of zinc and other volatile metals. An inert slag phase and optionally a liquid metal phase are tapped from the smelting furnace, and zinc and other volatile metals are recovered from the waste gas from the smelting furnace by condensation. In order to prevent reoxidation of metallic zinc the particulate zinc-containing materials are agglomerated together with a carbonaceous binder which cracks at a temperature below 700.degree. C. and forms carbon black, and that the temperature in the gas atmosphere in the smelting furnace is kept above 1000.degree. C. in order to maintain a volume ratio between CO.sub.2 and CO in the gas atmosphere in the smelting furnaces below 0.3.