摘要:
Disclosed is a method for preparing polyester resins copolymerized with glycol for modification such as 1,4-cyclohexanedimethanol, in which the content of said glycol ingredient for modification ranges from 20 to 80 mol % of the total glycol content. Dicarboxylic acid such as terephthalic acid is esterified with ethylene glycol and said glycol for modification. The esterification product is subjected to polycondensation in the presence of a titanium dioxide/silicon dioxide coprecipitate catalyst, said catalyst being in the form of 4% or less strength by weight suspension in glycol. The copolyester prepared as above shows excellent transparency and color properties in addition to being produced at high efficiency.
摘要:
Processes for preparing linear polyesters by reacting a dicarboxylic acid having from 2 to 10 carbon atoms, a polyol having from 2 to 15 carbon atoms, a low-boiling primary alcohol and a catalytic-effective amount of a lipase, wherein the reaction mixture is free of additional solvents; are described. The use of such linear polyesters in cosmetics is also described.
摘要:
A process for producing a polyester. The process comprises polymerizing a polymerization mixture comprising (i) a carbonyl compound or an oligomer of a carbonyl compound and (ii) a glycol, in the presence of a titanium catalyst composition, to produce the polyester, wherein a coated titanium dioxide comprising a titanium dioxide and a coat is added before or during the polymerizing.
摘要:
This invention relates to a method for manufacturing polyesters, in particular, to using a lithium titanyl oxalate as the catalyst for such reaction to provide fast reactions with excellent color properties for the resulting polyester. The present invention provides an improved method of producing polyester by the polycondensation of polyester forming reactants wherein the improvement comprises utilizing, as the polycondensation catalyst, lithium titanyl oxalate. The improved process produces a polyester of improved color versus other titanyl oxalate catalysts and a novel polyester without the presence of antimony.
摘要:
In one embodiment, the invention is a process for the preparation of poly(trimethylene terephthalate) comprising (a) contacting terephthalic acid with 1,3-propanediol in the presence of an organic tin catalyst to form a bis(3-hydroxypropyl)terephthalate monomer; and (b) polymerizing said monomer in the presence of organic titanate polycondensation catalyst to obtain the poly(trimethylene terephthalate). In another embodiment, the invention is a process for the preparation of poly(trimethylene terephthalate) containing less than 1.6 mol % of DPG said process comprising contacting terephthalic acid with a 1.6 to 1 to 2:1 molar amount of 1,3-propanediol in the presence of 20 to 120 ppm (as tin), by weight of the poly(trimethylene terephthalate), of a organic tin catalyst, to form a bis(3-hydroxypropyl)terephthalate monomer and polymerizing said monomer to obtain the poly(trimethylene terephthalate). The invention is also directed to poly(trimethylene terephthalate) produced by the processes.
摘要:
The invention relates to the use of thermoplastic polyester molding compounds, containing A) 80 to 100 wt. % of a polyalkylene arylate, especially polybutyleneterephthalate, with a half-width of crystallization heat releases of ≦5° C. and B) 0 to 20 wt. % of other additives, the weight percentages of constituents A) and B) adding up to 100%, for producing molded bodies by blow-molding, profile extrusion and/or pipe extrusion. A preferred use for the inventive molding compounds is the production of light guide sheathing. The invention also relates to a 3-stage method for producing the polyesters as follows: a) esterification or re-esterification of an aromatic dicarboxylic acid or its derivative and a glycol; b) precondensation; and c) polycondensation to a viscosity number of at least 158 ml/g. The reaction is carried out in at least 2 temperature zones in stages a) and b).
摘要:
A process for preparing polytrimethylene terephthalate in which a carbonyl-containing 1,3-propanediol stream is purified for reuse of the 1,3-propanediol. The process involves reacting, under condensation polymerization conditions, terephthalic acid and a molar excess of 1,3-propanediol, with vacuum distillation and condensation of a major portion of the unreacted 1,3-propanediol. To this condensed stream is added a sufficient amount of base to raise the pH to a value greater than 7, and from this base-containing condensate the 1,3-propanediol is distilled and recycled to the polymerization reaction.
摘要:
Disclosed is a process of hydrogenating a polyester oligomer containing terephthalic acid residues wherein terephthalic acid residues are converted to residues of 1,4-cyclohexanedicarboxylic acid. Also disclosed is a process for the preparation of polyesters containing 1,4-cyclohexanedicarboxylic acid residues by first hydrogenating a polyester oligomer containing terephthalic acid residues and then reacting the resulting oligomer with one or more polyester-forming reactants to produce a higher molecular weight polyester.
摘要:
The invention is a polyester resin that includes between about 20 and 200 ppm of an inert particulate additive, preferably selected from the group consisting of surface-modified talc and surface-modified calcium carbonate. The invention is also a method of making the polyester resin, which is capable of being formed into low-haze, high-clarity bottles possessing reduced coefficient of friction.
摘要:
A polyester resin is prepared by polycondensing a dicarboxylic acid component containing terephthalic acid or its ester-forming derivative as the main component, and a diol component containing ethylene glycol as the main component in the presence of (1) a compound of at least one member selected from the group consisting of titanium group elements in Group 4A of the Periodic Table, via an esterification reaction or an ester exchange reaction, wherein the content of copolymerized components other than the terephthalic acid component and the ethylene glycol component, is not more than 4 mole % based on the total dicarboxylic acid component, and in a molded product with a thickness of 3.5 mm injection-molded at 280° C., the difference between the absorbance at a wavelength of 395 nm and the absorbance at a wavelength of 800 nm is at least 0.08, and the difference between the absorbance at a wavelength of 500 nm and the absorbance at a wavelength of 800 nm is at most 0.05.