Abstract:
A method and apparatus are provided for producing a tube of glass by zonewise heating and softening of a hollow cylinder by a movable heating zone while rotating about its rotation axis. The glass tube is continuously formed by radial expansion of the softened region under action of centrifugal force and/or internal overpressure applied in the hollow-cylinder bore. The method and apparatus make it possible to deform the hollow cylinder in a single or a small number of forming steps into a glass tube having a larger outer diameter and high dimensional accuracy by determining a circumferential position at which the wall thickness is comparatively small, and during heating and softening of the rotating hollow cylinder a coolant is dispensed from a coolant source onto the deformation zone only when or predominantly when the circumferential position having the comparatively small wall thickness passes the coolant source.
Abstract:
A method and apparatus are provided for producing a tube of glass by zonewise heating and softening of a hollow cylinder by a movable heating zone while rotating about its rotation axis. The glass tube is continuously formed by radial expansion of the softened region under action of centrifugal force and/or internal overpressure applied in the hollow-cylinder bore. The method and apparatus make it possible to deform the hollow cylinder in a single or a small number of forming steps into a glass tube having a larger outer diameter and high dimensional accuracy by determining a circumferential position at which the wall thickness is comparatively small, and during heating and softening of the rotating hollow cylinder a coolant is dispensed from a coolant source onto the deformation zone only when or predominantly when the circumferential position having the comparatively small wall thickness passes the coolant source.
Abstract:
A method for producing a large quartz-glass pipe is provided. In a first forming step, an intermediate cylinder made of quartz glass and having an intermediate-cylinder wall thickness and outside diameter is formed by using a forming tool and is then cooled. In a second shaping step, at least one length segment of the cooled intermediate cylinder is fed to a heating zone, heated to a softening temperature zone by zone therein, and, while rotating about the longitudinal axis of the intermediate cylinder, shaped into the large quartz-glass pipe having a final wall thickness and outside diameter. The quartz glass is synthetically produced and has an average hydroxyl group content of 10 ppm by weight or less. If the intermediate cylinder is divided into length segments of 1 cm, adjacent length segments have a difference of less than 2 ppm by weight in the average hydroxyl group content thereof.
Abstract:
A method and apparatus are provided for producing a tube of glass by zonewise heating and softening of a hollow cylinder by a movable heating zone while rotating about its rotation axis. The glass tube is continuously formed by radial expansion of the softened region under action of centrifugal force and/or internal overpressure applied in the hollow-cylinder bore. The method and apparatus make it possible to deform the hollow cylinder in a single or a small number of forming steps into a glass tube having a larger outer diameter and high dimensional accuracy by determining a circumferential position at which the wall thickness is comparatively small, and during heating and softening of the rotating hollow cylinder a coolant is dispensed from a coolant source onto the deformation zone only when or predominantly when the circumferential position having the comparatively small wall thickness passes the coolant source.
Abstract:
A method for forming a hollow cylinder, in a single step or in as small a number of steps as possible, into a quartz glass tube with a large outer diameter and high dimensional stability is provided. The cylinder, while rotating about a rotation axis, is softened in portions in a heating zone which is moved at a relative feed rate Va, and the softened portion is radially expanded by a centrifugal force and/or an internal overpressure applied in the hollow cylinder bore so as to form a deformation zone. The tube is continuously shaped with an outer diameter D2 which is greater than that of the hollow cylinder D1. The radial expansion of the softened portion is carried out at a location-dependent radial expansion rate Vr, the profile of which along the deformation zone has a maximum value Vr,max which is smaller than two times the feed rate Va.
Abstract:
A method of forming an opaque quartz glass component is provided. The method includes (a) providing a starting preform made of quartz glass; (b) heating at least a portion of the starting preform to a predetermined temperature at which the quartz glass of the starting preform has a viscosity in a range of 10E2 to 10E12 poise; and (c) deforming at least a portion of the heated preform at the predetermined temperature to change a shape and/or dimension(s) of the heated perform in order to form the opaque quartz glass component. The starting preform and the heated preform have respective densities of at least 2.15 g/cm3 and at least 2.10 g/cm3. The starting perform and the opaque quartz glass component have respective direct spectral transmissions of approximately 0.1-1% and 0.2-3% in the wavelength range of λ=190 nm to λ=4990 nm at a wall thickness of 3 mm and a diffuse reflectance of at least 60% in a wavelength range of λ=190 nm to λ=2500 nm.
Abstract:
A method and apparatus are provided for producing a tube of glass by zonewise heating and softening of a hollow cylinder by a movable heating zone while rotating about its rotation axis. The glass tube is continuously formed by radial expansion of the softened region under action of centrifugal force and/or internal overpressure applied in the hollow-cylinder bore. The method and apparatus make it possible to deform the hollow cylinder in a single or a small number of forming steps into a glass tube having a larger outer diameter and high dimensional accuracy by determining a circumferential position at which the wall thickness is comparatively small, and during heating and softening of the rotating hollow cylinder a coolant is dispensed from a coolant source onto the deformation zone only when or predominantly when the circumferential position having the comparatively small wall thickness passes the coolant source.
Abstract:
A method of forming an opaque quartz glass component is provided. The method includes (a) providing a starting preform made of quartz glass; (b) heating at least a portion of the starting preform to a predetermined temperature at which the quartz glass of the starting preform has a viscosity in a range of 10E2 to 10E12 poise; and (c) deforming at least a portion of the heated preform at the predetermined temperature to change a shape and/or dimension(s) of the heated perform in order to form the opaque quartz glass component. The starting preform and the heated preform have respective densities of at least 2.15 g/cm3 and at least 2.10 g/cm3. The starting perform and the opaque quartz glass component have respective direct spectral transmissions of approximately 0.1-1% and 0.2-3% in the wavelength range of λ=190 nm to λ=4990 nm at a wall thickness of 3 mm and a diffuse reflectance of at least 60% in a wavelength range of λ=190 nm to λ=2500 nm.
Abstract translation:提供了形成不透明石英玻璃部件的方法。 该方法包括(a)提供由石英玻璃制成的起始预制件; (b)将起始预型件的至少一部分加热到预定温度,在预定温度下,起始预型件的石英玻璃的粘度在10E2至10E12泊的范围内; 和(c)使加热的预制件的至少一部分在预定温度下变形,以改变加热的表面的形状和/或尺寸,以便形成不透明的石英玻璃组分。 起始预成型件和加热的预制件具有至少2.15g / cm 3和至少2.10g / cm 3的相应密度。 起始性能和不透明石英玻璃组分在λ= 190nm至λ= 4990nm的波长范围内在壁厚为3mm的情况下分别具有约0.1-1%和0.2-3%的直接光谱透射率,漫反射率 在λ= 190nm至λ= 2500nm的波长范围内至少为60%。
Abstract:
A method for forming a hollow cylinder, in a single step or in as small a number of steps as possible, into a quartz glass tube with a large outer diameter and high dimensional stability is provided. The cylinder, while rotating about a rotation axis, is softened in portions in a heating zone which is moved at a relative feed rate Va, and the softened portion is radially expanded by a centrifugal force and/or an internal overpressure applied in the hollow cylinder bore so as to form a deformation zone. The tube is continuously shaped with an outer diameter D2 which is greater than that of the hollow cylinder D1. The radial expansion of the softened portion is carried out at a location-dependent radial expansion rate Vr, the profile of which along the deformation zone has a maximum value Vr,max which is smaller than two times the feed rate Va.
Abstract:
An envelope for an oscilloscope tube is formed by simultaneously rotating and heating a glass tube and upsetting the heated tube, to form a cylindrical section having uniform thickness and varying diameter. The thus formed envelope portion is then pressed into a shape having a rectangular cross-section, without changing the circumference, in order to maintain the thickness of the envelope.